Solution!
A.I.) Exploration of Functions

4x2 = 2x3 ­­ find points of intersection




 *To find the points of intersection, make ea...
A.I.) Exploration of Functions

4x2 = 2x3 ­­ find points of intersection
0 = 2x3 ­ 4x2 ­­ solve for the roots
0 = 2x2 (x ­...
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Upcoming SlideShare
Loading in …5
×

Volumes Question1

552
-1

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
552
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Volumes Question1

  1. 1. Solution!
  2. 2. A.I.) Exploration of Functions 4x2 = 2x3 ­­ find points of intersection *To find the points of intersection, make each function equal to  each other to find points where each function co­exist
  3. 3. A.I.) Exploration of Functions 4x2 = 2x3 ­­ find points of intersection 0 = 2x3 ­ 4x2 ­­ solve for the roots 0 = 2x2 (x ­ 2) ­­ factor out 2x2 x = 0, 2 ­­ points of intersection *Through simple algebra, we find two points of intersection.  These points are the boundaries of which the area coincides.
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×