Your SlideShare is downloading. ×
0
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Volumes Question1
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Volumes Question1

528

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
528
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Solution!
  • 2. A.I.) Exploration of Functions 4x2 = 2x3 ­­ find points of intersection *To find the points of intersection, make each function equal to  each other to find points where each function co­exist
  • 3. A.I.) Exploration of Functions 4x2 = 2x3 ­­ find points of intersection 0 = 2x3 ­ 4x2 ­­ solve for the roots 0 = 2x2 (x ­ 2) ­­ factor out 2x2 x = 0, 2 ­­ points of intersection *Through simple algebra, we find two points of intersection.  These points are the boundaries of which the area coincides.

×