Cyclustijdreductie<br />bij<br />kunststofspuitgieten<br />Prof. dr. eng. Ludwig Cardon<br />University College Ghent - CP...
Centre forPolymer & Material Technologies<br />2<br />University College Ghent<br />FacultyApplied Engineering Sciences IN...
Education (>50 years – 1955)<br /><ul><li>Faculty of Applied Engineering Sciences
BSc & MSc courses
Specialisation polymers</li></ul>Research (>35 years - 1970)<br /><ul><li>Physical and fysico-chemical analyses</li></ul>	...
Mould making – hybrid moulds
Flow simulation (Moldex3D)
Biopolymers & biomedical applications
3D Prototyping & Tooling</li></li></ul><li>expertise<br />Physical analyses of polymers – materials & textiles<br />Proces...
Fysico-Chemical analyses
Polymer processing
Mouldmaking (conventional & hybrid technologies)
Micro moulding
Flow analyses (Moldex 3D)
3D Prototyping & Tooling
Additive Manufacturing</li></ul>Biobased polymers & biomedical applications<br /><ul><li> BioScaffolderTM
 Technical biobased polymer </li></ul>  processing<br />
aRGPolymerChemistry& Technologyhttp://polymer.ugent.be<br />Polymer materials and Biopolymers<br />Prof. dr. P. Dubruel<br...
Hybrid moulds for high quality plastic products<br />Advantages and limitations<br />Introduction<br />Mould material sele...
Introduction<br />Some examples of new tendencies in polymer processing:<br /><ul><li>Thin walled parts
Complex designed products
Multi layer foils/plates
Nano-fillers
Micro parts and moulds
Biobased and biodegradable polymers</li></ul>HYBRID MOULDS...<br />BUT ......<br />this will result in new design rules a...
What are hybrid moulds?<br />Who will use this?<br />Productdesigners new design methods<br />Mould designers more freed...
Actual status of mould development<br />hybrid moulds<br />conventional production technologies<br />AM technologies<br /...
Mould material selection<br />Thermal characteristics of mould materials are very important<br />Related to the core/cavit...
Mould material selection method<br />The metal groups:	Conventionalmould materials<br />			Selective Laser Sintermaterials...
Mould material selection method<br />The metal groups:	Conventionalmould materials<br />			Selective Laser Sintermaterials...
Tribology aspects of hybrid moulds<br />LaserForm100 - DS20 - Aluminium - 1730 <br />before and after 25000 shots<br />Wea...
Example of a<br />hybrid mould<br />
IR analysis of Prometal and Aluminium mould<br />ProMetal  55 °C<br />ProMetal & Aluminium 50 °C<br />
Sensor analysis of Prometal and Aluminium mould<br />ProMetal  55 °C<br />ProMetal & Aluminium 50 °C<br />
Upcoming SlideShare
Loading in …5
×

Hogeschool Gent - Ludwig Cardon

1,410 views

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,410
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Hogeschool Gent - Ludwig Cardon

  1. 1. Cyclustijdreductie<br />bij<br />kunststofspuitgieten<br />Prof. dr. eng. Ludwig Cardon<br />University College Ghent - CPMT research group<br />Faculty of Applied Engineering Sciences<br />Voskenslaan 362 – 9000 Gent<br />31 mei 2011<br />
  2. 2. Centre forPolymer & Material Technologies<br />2<br />University College Ghent<br />FacultyApplied Engineering Sciences INWE<br />Departments of Electromechanics & Chemistry<br />Schoonmeersstraat 52<br />B-9000 Gent – Belgium<br />+32 9 24 24 292<br />www.cpmt.eu<br />www.pmiconference.eu<br />http://polymer.ugent.be<br />
  3. 3. Education (>50 years – 1955)<br /><ul><li>Faculty of Applied Engineering Sciences
  4. 4. BSc & MSc courses
  5. 5. Specialisation polymers</li></ul>Research (>35 years - 1970)<br /><ul><li>Physical and fysico-chemical analyses</li></ul> of polymers-textiles-materials/metals<br /><ul><li>Polymer processing
  6. 6. Mould making – hybrid moulds
  7. 7. Flow simulation (Moldex3D)
  8. 8. Biopolymers & biomedical applications
  9. 9. 3D Prototyping & Tooling</li></li></ul><li>expertise<br />Physical analyses of polymers – materials & textiles<br />Processing of polymers & mouldmaking<br /><ul><li>Fysical & Mechanical Analyses
  10. 10. Fysico-Chemical analyses
  11. 11. Polymer processing
  12. 12. Mouldmaking (conventional & hybrid technologies)
  13. 13. Micro moulding
  14. 14. Flow analyses (Moldex 3D)
  15. 15. 3D Prototyping & Tooling
  16. 16. Additive Manufacturing</li></ul>Biobased polymers & biomedical applications<br /><ul><li> BioScaffolderTM
  17. 17. Technical biobased polymer </li></ul> processing<br />
  18. 18. aRGPolymerChemistry& Technologyhttp://polymer.ugent.be<br />Polymer materials and Biopolymers<br />Prof. dr. P. Dubruel<br />Polymer chemistry<br />Prof. dr. F. Du Prez<br />Appied material Sciences<br />Prof. dr. ir. J. Degrieck<br />Prof. dr.ir. W. Van Paepegem<br />Design<br />HoWest<br />Cardiovascular Tissue Engineering<br />Prof. dr. Van Nooten<br />Infrared Thermal analyses<br />Prof. dr. ir. De Mey<br />Food Safety and quality<br />« Pack4Food »<br />Prof. dr. ir. F. Devlieghere<br />Textiles<br />Prof. dr. ir. G. Schoukens<br />
  19. 19. Hybrid moulds for high quality plastic products<br />Advantages and limitations<br />Introduction<br />Mould material selection and relation to polymer processing<br />Parameters affecting the quality of the final product<br />New tendencies in processing and mould making<br />Case studies<br />Discussion <br />
  20. 20. Introduction<br />Some examples of new tendencies in polymer processing:<br /><ul><li>Thin walled parts
  21. 21. Complex designed products
  22. 22. Multi layer foils/plates
  23. 23. Nano-fillers
  24. 24. Micro parts and moulds
  25. 25. Biobased and biodegradable polymers</li></ul>HYBRID MOULDS...<br />BUT ......<br />this will result in new design rules and machine modifications.<br />
  26. 26. What are hybrid moulds?<br />Who will use this?<br />Productdesigners new design methods<br />Mould designers more freedom of design<br />Mould makers  adapted machining parameters <br />Polymer processors  adapted processing parameters<br />8<br />
  27. 27. Actual status of mould development<br />hybrid moulds<br />conventional production technologies<br />AM technologies<br />Mould cooling related to cycle time and product quality<br />optimal cooling channel layout<br />conformal cooling<br />mould material selection<br />Product quality improvement<br />e.g. sink marks<br />degree of crystallisation<br />tribology aspects (e.g. wearing)<br />
  28. 28. Mould material selection<br />Thermal characteristics of mould materials are very important<br />Related to the core/cavity design strategy<br />new part & mould design strategy<br />“Unknown” material characteristics<br />heat capacity Cp (DSC analysis)<br />specific density r<br />thermal conduction l<br />thermal diffusivity a<br />
  29. 29. Mould material selection method<br />The metal groups: Conventionalmould materials<br /> Selective Laser Sintermaterials <br /> Selective Laser Meltingmaterials<br />
  30. 30. Mould material selection method<br />The metal groups: Conventionalmould materials<br /> Selective Laser Sintermaterials <br /> Selective Laser Meltingmaterials<br />
  31. 31. Tribology aspects of hybrid moulds<br />LaserForm100 - DS20 - Aluminium - 1730 <br />before and after 25000 shots<br />Wearing of DMLS submarine gate <br /> for coated and non-coated (right) inserts<br />
  32. 32. Example of a<br />hybrid mould<br />
  33. 33. IR analysis of Prometal and Aluminium mould<br />ProMetal 55 °C<br />ProMetal & Aluminium 50 °C<br />
  34. 34. Sensor analysis of Prometal and Aluminium mould<br />ProMetal 55 °C<br />ProMetal & Aluminium 50 °C<br />
  35. 35. Integration of knowledge into a visit card box<br />17<br />Combination of:<br /><ul><li>multi materials in the same mould
  36. 36. conventional mould making
  37. 37. AM technologies
  38. 38. “conventional” conformal cooling
  39. 39. “AM” conformal cooling</li></ul>With final result :<br /><ul><li>optimal cooling channel layout
  40. 40. No “warpage”
  41. 41. Faster cycle time
  42. 42. Beter product quality and material properties</li></li></ul><li>The original mould<br />18<br /><ul><li>beryllium/copperinsert at living hingelocation</li></ul> related to betterrheologicalcharacterisatics<br /><ul><li>Injectioncone (“cold runner”)
  43. 43. conventional design methodsrelated to ejectors and coolingchanels.</li></li></ul><li>19<br />The original mould<br />
  44. 44. 20<br />The original mould<br />
  45. 45. The optimized mould<br />21<br /><ul><li>AM insertfor living hinge</li></ul> as forbetterrheologicalcharacteristics and “conformalcooling” <br /> a newcooling has been designed<br /><ul><li>Optimal “cooling” of living hinge
  46. 46. Betterrheology at location of living hinge</li></ul>  verification via Kistler sensors & IR analyses<br /><ul><li>Heatedinjectionnozzle
  47. 47. Integration of DME “Quick Strip” ejection system</li></ul> extra degree of freedom as forcooling channel design <br />  “conventional” “conformalcooling”<br /><ul><li>“freeform” design methodrelated to ejectors</li></li></ul><li>22<br />The optimized mould<br />
  48. 48. 23<br />The optimized mould<br />
  49. 49. 24<br />The optimized mould<br />conformal cooling insert in “maraging” steel<br />via EOS SLM technology (LayerWise Belgium)<br />
  50. 50. 25<br />The optimized mould<br />“conventional”conformal cooling insert (VDS Technics Belgium)<br />
  51. 51. Other applications of hybrid mould innovations?<br />26<br /><ul><li>Packaging
  52. 52. Heat control for mould making
  53. 53. Extrusion and stretch blow moulding
  54. 54. Thermoforming
  55. 55. Micro injection moulding
  56. 56. ...</li></li></ul><li>Conformal cooling<br />for packaging (Sirris Belgium)<br /><ul><li> Conventional cycle time: 38s
  57. 57. Estimated cycle time (conformal cooling HM): 19s
  58. 58. Real HM cycle time: 32s
  59. 59. HM shell is not accurate in calculating cycle time
  60. 60. 16% of cycle time reduction
  61. 61. Annual total profit of 222.000 €</li></ul> (6.000.000 parts/year)<br />
  62. 62. Modifiedcoolingnozzles for hot runner<br />
  63. 63. Stretch blowbottle<br />
  64. 64. Stretch blowbottle<br />
  65. 65. Extrusion blowbottle<br />Blow/cooling air simulation<br />
  66. 66. Micro injection moulding<br />32<br />
  67. 67. Micro injection moulding<br />33<br />
  68. 68. 34<br />Questions?<br />5th International<br />PMI Conference <br />12-14 September 2012_Ghent_Belgium<br />www.pmiconference.EU <br />University College Ghent<br />Schoonmeersstraat 52<br />B-9000 Gent<br />Belgium<br />Centre for Polymer & MaterialTechnologies - CPMT<br />+32 9 24 24 292 www.cpmt.eu<br />ludwig.cardon@hogent.be<br />

×