Your SlideShare is downloading. ×
0
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Hogeschool Gent - Ludwig Cardon
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Hogeschool Gent - Ludwig Cardon

1,043

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,043
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Cyclustijdreductie<br />bij<br />kunststofspuitgieten<br />Prof. dr. eng. Ludwig Cardon<br />University College Ghent - CPMT research group<br />Faculty of Applied Engineering Sciences<br />Voskenslaan 362 – 9000 Gent<br />31 mei 2011<br />
  • 2. Centre forPolymer &amp; Material Technologies<br />2<br />University College Ghent<br />FacultyApplied Engineering Sciences INWE<br />Departments of Electromechanics &amp; Chemistry<br />Schoonmeersstraat 52<br />B-9000 Gent – Belgium<br />+32 9 24 24 292<br />www.cpmt.eu<br />www.pmiconference.eu<br />http://polymer.ugent.be<br />
  • 3. Education (&gt;50 years – 1955)<br /><ul><li>Faculty of Applied Engineering Sciences
  • 4. BSc &amp; MSc courses
  • 5. Specialisation polymers</li></ul>Research (&gt;35 years - 1970)<br /><ul><li>Physical and fysico-chemical analyses</li></ul> of polymers-textiles-materials/metals<br /><ul><li>Polymer processing
  • 6. Mould making – hybrid moulds
  • 7. Flow simulation (Moldex3D)
  • 8. Biopolymers &amp; biomedical applications
  • 9. 3D Prototyping &amp; Tooling</li></li></ul><li>expertise<br />Physical analyses of polymers – materials &amp; textiles<br />Processing of polymers &amp; mouldmaking<br /><ul><li>Fysical &amp; Mechanical Analyses
  • 10. Fysico-Chemical analyses
  • 11. Polymer processing
  • 12. Mouldmaking (conventional &amp; hybrid technologies)
  • 13. Micro moulding
  • 14. Flow analyses (Moldex 3D)
  • 15. 3D Prototyping &amp; Tooling
  • 16. Additive Manufacturing</li></ul>Biobased polymers &amp; biomedical applications<br /><ul><li> BioScaffolderTM
  • 17. Technical biobased polymer </li></ul> processing<br />
  • 18. aRGPolymerChemistry&amp; Technologyhttp://polymer.ugent.be<br />Polymer materials and Biopolymers<br />Prof. dr. P. Dubruel<br />Polymer chemistry<br />Prof. dr. F. Du Prez<br />Appied material Sciences<br />Prof. dr. ir. J. Degrieck<br />Prof. dr.ir. W. Van Paepegem<br />Design<br />HoWest<br />Cardiovascular Tissue Engineering<br />Prof. dr. Van Nooten<br />Infrared Thermal analyses<br />Prof. dr. ir. De Mey<br />Food Safety and quality<br />« Pack4Food »<br />Prof. dr. ir. F. Devlieghere<br />Textiles<br />Prof. dr. ir. G. Schoukens<br />
  • 19. Hybrid moulds for high quality plastic products<br />Advantages and limitations<br />Introduction<br />Mould material selection and relation to polymer processing<br />Parameters affecting the quality of the final product<br />New tendencies in processing and mould making<br />Case studies<br />Discussion <br />
  • 20. Introduction<br />Some examples of new tendencies in polymer processing:<br /><ul><li>Thin walled parts
  • 21. Complex designed products
  • 22. Multi layer foils/plates
  • 23. Nano-fillers
  • 24. Micro parts and moulds
  • 25. Biobased and biodegradable polymers</li></ul>HYBRID MOULDS...<br />BUT ......<br />this will result in new design rules and machine modifications.<br />
  • 26. What are hybrid moulds?<br />Who will use this?<br />Productdesigners new design methods<br />Mould designers more freedom of design<br />Mould makers  adapted machining parameters <br />Polymer processors  adapted processing parameters<br />8<br />
  • 27. Actual status of mould development<br />hybrid moulds<br />conventional production technologies<br />AM technologies<br />Mould cooling related to cycle time and product quality<br />optimal cooling channel layout<br />conformal cooling<br />mould material selection<br />Product quality improvement<br />e.g. sink marks<br />degree of crystallisation<br />tribology aspects (e.g. wearing)<br />
  • 28. Mould material selection<br />Thermal characteristics of mould materials are very important<br />Related to the core/cavity design strategy<br />new part &amp; mould design strategy<br />“Unknown” material characteristics<br />heat capacity Cp (DSC analysis)<br />specific density r<br />thermal conduction l<br />thermal diffusivity a<br />
  • 29. Mould material selection method<br />The metal groups: Conventionalmould materials<br /> Selective Laser Sintermaterials <br /> Selective Laser Meltingmaterials<br />
  • 30. Mould material selection method<br />The metal groups: Conventionalmould materials<br /> Selective Laser Sintermaterials <br /> Selective Laser Meltingmaterials<br />
  • 31. Tribology aspects of hybrid moulds<br />LaserForm100 - DS20 - Aluminium - 1730 <br />before and after 25000 shots<br />Wearing of DMLS submarine gate <br /> for coated and non-coated (right) inserts<br />
  • 32. Example of a<br />hybrid mould<br />
  • 33. IR analysis of Prometal and Aluminium mould<br />ProMetal 55 °C<br />ProMetal &amp; Aluminium 50 °C<br />
  • 34. Sensor analysis of Prometal and Aluminium mould<br />ProMetal 55 °C<br />ProMetal &amp; Aluminium 50 °C<br />
  • 35. Integration of knowledge into a visit card box<br />17<br />Combination of:<br /><ul><li>multi materials in the same mould
  • 36. conventional mould making
  • 37. AM technologies
  • 38. “conventional” conformal cooling
  • 39. “AM” conformal cooling</li></ul>With final result :<br /><ul><li>optimal cooling channel layout
  • 40. No “warpage”
  • 41. Faster cycle time
  • 42. Beter product quality and material properties</li></li></ul><li>The original mould<br />18<br /><ul><li>beryllium/copperinsert at living hingelocation</li></ul> related to betterrheologicalcharacterisatics<br /><ul><li>Injectioncone (“cold runner”)
  • 43. conventional design methodsrelated to ejectors and coolingchanels.</li></li></ul><li>19<br />The original mould<br />
  • 44. 20<br />The original mould<br />
  • 45. The optimized mould<br />21<br /><ul><li>AM insertfor living hinge</li></ul> as forbetterrheologicalcharacteristics and “conformalcooling” <br /> a newcooling has been designed<br /><ul><li>Optimal “cooling” of living hinge
  • 46. Betterrheology at location of living hinge</li></ul>  verification via Kistler sensors &amp; IR analyses<br /><ul><li>Heatedinjectionnozzle
  • 47. Integration of DME “Quick Strip” ejection system</li></ul> extra degree of freedom as forcooling channel design <br />  “conventional” “conformalcooling”<br /><ul><li>“freeform” design methodrelated to ejectors</li></li></ul><li>22<br />The optimized mould<br />
  • 48. 23<br />The optimized mould<br />
  • 49. 24<br />The optimized mould<br />conformal cooling insert in “maraging” steel<br />via EOS SLM technology (LayerWise Belgium)<br />
  • 50. 25<br />The optimized mould<br />“conventional”conformal cooling insert (VDS Technics Belgium)<br />
  • 51. Other applications of hybrid mould innovations?<br />26<br /><ul><li>Packaging
  • 52. Heat control for mould making
  • 53. Extrusion and stretch blow moulding
  • 54. Thermoforming
  • 55. Micro injection moulding
  • 56. ...</li></li></ul><li>Conformal cooling<br />for packaging (Sirris Belgium)<br /><ul><li> Conventional cycle time: 38s
  • 57. Estimated cycle time (conformal cooling HM): 19s
  • 58. Real HM cycle time: 32s
  • 59. HM shell is not accurate in calculating cycle time
  • 60. 16% of cycle time reduction
  • 61. Annual total profit of 222.000 €</li></ul> (6.000.000 parts/year)<br />
  • 62. Modifiedcoolingnozzles for hot runner<br />
  • 63. Stretch blowbottle<br />
  • 64. Stretch blowbottle<br />
  • 65. Extrusion blowbottle<br />Blow/cooling air simulation<br />
  • 66. Micro injection moulding<br />32<br />
  • 67. Micro injection moulding<br />33<br />
  • 68. 34<br />Questions?<br />5th International<br />PMI Conference <br />12-14 September 2012_Ghent_Belgium<br />www.pmiconference.EU <br />University College Ghent<br />Schoonmeersstraat 52<br />B-9000 Gent<br />Belgium<br />Centre for Polymer &amp; MaterialTechnologies - CPMT<br />+32 9 24 24 292 www.cpmt.eu<br />ludwig.cardon@hogent.be<br />

×