What To Do If Your Results Are Statistically (In)Significant

87
-1

Published on

You're a proactive employer, and are in the process of examining your compensation structure for internal pay equity. You've assembled and cleaned your data, the statistical models have been carefully constructed and the regressions have been performed. You're now presented with a summary of the regression results. Some of those results indicate statistically significant differences and some don't.

What do you do now?

This is THE question - not just for compensation regression, but for any statistical analysis of any kind of employment decision.

If you know what to do next, you'll be able to evaluate potential problem areas, take appropriate action, and do what's in the best interest of your organization and your employees.

If you don't know what to do next, you may overreach and make wide-sweeping changes that can make things worse. You may choose to do nothing, lulled into thinking there are no issues because you've overestimated what statistics can tell you.

In this installment, we talk about what to do when your results are statistically (in)significant. I provide five questions to ask that will help you decide what to do next

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
87
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

What To Do If Your Results Are Statistically (In)Significant

  1. 1. THE PROACTIVE EMPLOYER PODCAST October 28, 2011 What To Do If Your Results Are Statistically (In)Significant Sponsored by Thomas Econometrics www.thomasecon.com
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×