Marois triumf-20101120pub

296 views
212 views

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
296
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
4
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Marois triumf-20101120pub

  1. 1. Images of Exoplanets Christian Marois, PhD NRC-HIA, Canada Triumf, November 2010
  2. 2. 400 years of innovations
  3. 3. From an eye piece to CCDs
  4. 4. The search for Exoplanets a 2,500 years old history a 2,500 years old history 500 BC 2010 AD
  5. 5. Our Solar system Unique until 1995... A unique picture until 2008...
  6. 6. Planetary system formation
  7. 7. Planetary systems formation Niel Brandt Solar system
  8. 9. The Solar System From Formation to Now From Formation to Now “ Icy planets” “ Rocky Planets” Ice line
  9. 10. A possible “violent” pass
  10. 11. But is it Unique?
  11. 12. The Exoplanet Quest Giant planet region Brown Dwarfs 500 BC - 2010 AD Rocky planet region
  12. 13. Why direct imaging? <ul><li>Fast detection and characterization (few months). </li></ul><ul><li>Planet photons (photometry & spectroscopy). </li></ul><ul><li>Nicely complement RV searches - sensitive to planets >5-10 AU (planet formation at wide separations). </li></ul><ul><li>Follow orbits. </li></ul><ul><li>Masses are derived from models. </li></ul>
  13. 14. Why did it took 400 years? + I see exoplanets! This is much more interesting than Jupiter or Venus! = = ?
  14. 15. A Resolution Challenge 1 pc 5” 0 stars Diffraction limit 2cm at 1.6 microns: 16” 0.1 m: 3.30” 1 m: 0.33” 10 m: 0.033” 5 AU
  15. 16. A Resolution Challenge 10 pc 0.5” ~200 stars Diffraction limit 2cm at 1.6 microns: 16” 0.1 m: 3.30” 1 m: 0.33” 10 m: 0.033” 5 AU
  16. 17. A Resolution Challenge 100 pc 0.05” >200,000 stars Diffraction limit 2cm at 1.6 microns: 16” 0.1 m: 3.30” 1 m: 0.33” 10 m: 0.033” 5 AU
  17. 19. A Contrast Challenge 1 million years 1 billion years Hydrogen burning No hydrogen burning
  18. 20. The challenge Everest mount (10km) Jupiter: basketball Earth: ant
  19. 21. Imperfect optics & the need for an atmosphere In space (perfect optics) Atmospheric turbulence At focal plane
  20. 22. From blurry to sharp images
  21. 23. Choosing the “right” stars <ul><li>Low mass stars? </li></ul><ul><li>Massive stars? </li></ul><ul><li>Radial vel. stars? </li></ul><ul><li>Closest stars? </li></ul><ul><li>Young? </li></ul>
  22. 24. Our Surveys 2004-2007 Gemini North: 80 solar-type stars
  23. 25. Using Canadian-derived Innovations!
  24. 26. A new Canadian imaging technique! Image 1 Image 2 (+ 5 minutes) Subtraction
  25. 27. Only true for solar-type stars... 2007-now, new survey for stars more massive than the Sun at Gemini North, Keck 2 and VLT.
  26. 28. The 2nd ADI survey <ul><li>Remove “late-type” bias </li></ul><ul><li>Focus an young nearby “massive” stars </li></ul><ul><li>IR excess </li></ul><ul><li>Low in HR diagram </li></ul>
  27. 29. The initial discovery (March 2008) Gemini North NRC October 2007
  28. 30. Somewhere over the Pacific (July 2008) Keck II NRC Canada October 2007 July-Aug. 2008
  29. 31. A third planet! Keck II NRC September 2008
  30. 34. HR 8799 Characteristics <ul><li>A5V star </li></ul><ul><li>V~6 </li></ul><ul><li>39 pc (130 ly) </li></ul><ul><li>Pegasus </li></ul>
  31. 35. Voyager 1 (43 AU) 18 cm diameter Keck 2 (130 ly), 10m diameter 8 200 000 AU Neptune
  32. 36. 3 years of orbital motion!
  33. 38. PM July 2004 July 2004 July 2008 September 2008 Did HR 8799 planets formed in a dust/gas disk?
  34. 39. Solar system formation leftover vs HR 8799 Spitzer IR excess, dust at ~10 AU (asteroid belt?) IRAS/ISO IR excess, dust at ~100 AU (Kuiper belt?) Spitzer dust emission at ~1000 AU (collisions+Prad?)
  35. 40. Also... A NEW PLANET! Coming 2010 in a Journal near you... CLASSIFIED SORRY... AREA 51 AREA 51 AREA 51 AREA 51 Ok - a small preview... ... but do not ask any question about it...
  36. 41. The near future with the Gemini Planet Imager Gemini Planet Imager GPI.berkeley.edu When: 2011 Where: Gemini South Who: PI’s B. Macintosh & J. Graham How: High-order AO with coronagraphy What: 0.9 – 2.4  icrons, m I < 9 mag stars, polarimetry, R~40 spectroscopy
  37. 42. Keck 10s 10s with GPI Keck 20 minutes (ADI) Simulated HR8799 system with GPI
  38. 43. The TMT Telescope <ul><li>3x the diameter </li></ul><ul><li>9x the flux </li></ul><ul><li>Potentially could take the first image of an Earth-like planet before any space mission </li></ul>
  39. 44. Toward the search for other Earth...
  40. 45. Affordable? 2,000 years old question - answer cost ~1B US $ (1,400$ per day of waiting or 0.14$/Earthling) 2 B$ or 150 M$ per day or also one Avatar movie...
  41. 46. Life in the Galaxy Drake’s equation N = N s f p n e f l f i f c f L 100 billions 50% 1 50% 20% 20% 10,000 years 1000 systems & life like us?!?! Fermi’s paradox: where are they?
  42. 47. Listening to/Contacting Alien civilizations SETI
  43. 48. Galaxy Colonization
  44. 49. The planets we find today... are the places we’ll be going tomorrow...
  45. 50. Are we alone?
  46. 51. Many stars still to look at... 100,000 ly diameter, 100B stars Currently only survey inside ~300 ly diameter
  47. 52. Gemini Observatory/Lynette Cook <ul><li>Direct exoplanet imaging is picking-up speed! </li></ul><ul><li>Cool new tools coming online SOON... </li></ul><ul><li>Exciting new discoveries are about to be made... </li></ul><ul><li>Billions of stars & systems, more than enough for everyone. </li></ul><ul><li>Be an astronomer, and join the fun! </li></ul>Conclusions

×