Your SlideShare is downloading. ×
  • Like
  • Save
Natalia Restrepo-Coupe_Remotely-sensed photosynthetic phenology and ecosystem productivity studies informed by tower eddy covariance carbon dioxide fluxes
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Now you can save presentations on your phone or tablet

Available for both IPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Natalia Restrepo-Coupe_Remotely-sensed photosynthetic phenology and ecosystem productivity studies informed by tower eddy covariance carbon dioxide fluxes

  • 198 views
Published

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
198
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
0
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Remotely-sensed photosyntheticphenology and ecosystemproductivity studies informed bytower eddy covariance CO2 fluxesPresentation byNatalia Restrepo-Coupe, Alfredo Huete, Kevin Davies, Jason Beringer,James Cleverly, Derek Eamus, Eva van Gorsel, Lindsay Hutley, Ray Leuning
  • 2. MotivationSite-specific eddy covariance measurements rely on toolslike remote sensing products to scale CO2, energy andH2O fluxes from local footprints (~1 – 4 km) to regions.Flux tower data is a powerful validation tool of theAusCover phenology products –they can inform if we areable to capture the correct timing of green-up and othertransitional dates: Peak of Growing Season (POS), End ofSeason (EOS), Length of Season (LOS) and derivatives
  • 3. MotivationLearn more about what we are measuring: • What Vegetation Indices (VIs) mean? Qualitative it is associated to greening and increase of photosynthetic activity. • Quantitatively? • Relations between in-situ measurements of ecosystem behavior and VIs are biome specific or one relation fits all?If RS products inform land surface models any improvementson the understanding of the seasonality, phenology andrelations ecosystem capacity – VIs could translate on morerobust models.
  • 4. Background
  • 5. GEP GEP Pc sat GEP Pc satI EVI-2 -1 -2 -1 -2 -1 LAI-2 -1 (gC m d ) (gC m d ) (gC -2 -1 (gC mm d d ) ) (gC m d ) (g 0 10 20 0 20 40 0 6 12 0.45 3.5 0.1 0.8 0 7 0 10 0 20 40 0 20 HSP 0.8 JFMAMJ J ASOND 0 0 2 4 0 0 0 2 4 12 24 12 24 0.8 0.6 0.2 0.5 0.8 100 400 700 100 LUE LUEVI GEP/PAR fPAR (-) NDVI GEP/PAR (gC/MJ) PAR (gC/MJ) fPAR (--) (mmolCO2/mmol) (mmolCO2/mmol) CS (mmol m-2 s-1) (m Challenge
  • 6. GEP GEP Pc sat GEP Pc Pc satI EVI-2 -1 EVI -2 -1-1 -2 -1 -2 -1 LAI-2 -1 (gC m d ) LAI (gC m d ) (gC -2 (gC mm d d ) ) (gC m dd ) ) (gC m (gC (g 0 10 20 0 20 40 0 6 12 0.45 3.5 0.45 0.1 3.5 0 0.1 7 0.8 0 10 20 0 0 0 10 20 0 20 40 0 0.8 HSP 7JFMAMJ J ASOND 0.8 JFMAMJ J ASOND 0 0 2 4 0 0 0 0 0 0 2 4 12 24 12 24 12 24 0.8 0.6 0.2 0.5 0.8 0.6 0.2 0.5 0.8 100 400 700 100 LUE LUEVI GEP/PAR fPAR (-) fPAR (-) NDVI GEP/PAR NDVI GEP/PAR (gC/MJ) (gC/MJ) PAR (mmolCO /mmol) ( fPAR (--) (mmolCO2/mmol)fPAR (--) (mmolCO /mmol) CS 2 2 CS (mmol m-2 s-1) (m GEP GEP Pc sat Pc GEP Pc satI EVI-2 -1 EVI -2-1 -1 -2 -2 -1 -2 -1 Challenge LAI -2 -1 (gC m d ) LAI (gC m d ) (gC mm d d) ) (gC m dd ) ) (gC (gC m (gC (g 0.45 0.45 3.5 0.1 3.5 0.8 0.1 0.8 0 0 10 200 0 20 7 400 0 10 6 120 0 10 20 20 40 0 0 20 TBR 7JFMAMJ J ASOND 0.8JFMAMJ J ASOND 0 0 0 0 2 4 0 0 0 2 4 0 12 24 12 24 12 24 0.8 0.6 0.2 0.5 0.6 0.8 0.2 0.5 0.8 100 400 700 100 LUE LUEVI GEP/PAR fPAR (-) fPAR (-) NDVI GEP/PAR NDVI GEP/PAR (gC/MJ) (gC/MJ) PAR (mmolCO /mmol) ( fPAR (--) (mmolCO2/mmol)fPAR (--) (mmolCO2/mmol) 2 CS CS (mmol m-2 s-1) (m
  • 7. Methods
  • 8. Methods
  • 9. Methods
  • 10. Methods
  • 11. Methods 5 4 GEPsatGEP (μmolCO2 m-2 s-1) 3 2 LUE 1 Pc 0 -1 -2 0 500 1000 1500 PAR (μmol m-2 s-1)
  • 12. Methods HSP Aw BSh Cwa ASP BWh Cfa BWkCsb CHO TBR Cfb
  • 13. Seasonality of productivity and ecosystem drivers 12 700 (mmol m-2 s-1) (gC m d ) HSP -2 -1 GEP PAR 6 400 HSP Aw 0 100 BSh 40 4 Cwa (gC m d ) -2 -1 ASP (gC/MJ) sat LUEGEP 20 2 BWh Cfa 0 0 (mmolCO2/mmol) 20 24 BWk (gC m d ) -2 -1 GEP/PAR Csb CHO TBR Pc 10 12 Cfb 0 0 0.8 0.8 NDVI EVI 0.45 0.5
  • 14. 20 24 (mmolCO2/mm(gC m d ) -2 -1 GEP/PAR Seasonality of productivity and Pc 10 12 0 0 ecosystem drivers 0.8 HSP 0.8 NDVI EVI 0.45 0.5 HSP Aw 0.1 0.2 7 BSh fPAR (--) Cwa fPAR (-) ASP CS 0.6 LAI 3.5 BWh Cfa 0 0 JFMAMJ J ASOND BWk Csb CHO TBR Cfb
  • 15. Seasonality of productivity and ecosystem drivers 12 700 (mmol m-2 s-1) (gC m d ) TBR -2 -1 GEP PAR 6 400 HSP Aw 0 100 BSh 40 4 (gC m d ) Cwa -2 -1 (gC/MJ) ASP sat LUEGEP 20 2 BWh Cfa 0 0 (mmolCO2/mmol) 20 24 BWk (gC m d ) -2 -1 GEP/PAR Csb CHO TBR Pc 10 12 Cfb 0 0 0.8 0.8 NDVI EVI 0.45 0.5
  • 16. ( 0 0 (mmolCO2/mmol) 20 Seasonality of productivity and 24(gC m d ) -2 -1 GEP/PAR ecosystem drivers Pc 10 12 0 HSP 0 0.8 0.8 HSP Aw NDVI EVI 0.45 0.5 BSh 0.1 0.2 Cwa 7 ASP fPAR (--) fPAR (-) BWh CS 0.6 LAI 3.5 Cfa TMB BWk 0 0 JFMAMJ J ASOND Csb CHO TBR Cfb
  • 17. Seasonality of productivity and ecosystem drivers 12 700 (mmol m-2 s-1) (gC m d ) ASP -2 -1 GEP PAR HSP 6 400 Aw BSh 0 100 40 Cwa 4 (gC m d ) ASP -2 -1 (gC/MJ) sat LUE GEP BWh 20 2 Cfa 0 0 (mmolCO2/mmol) BWk 20 24 (gC m d ) CHO -2 -1 GEP/PAR Csb TBR Cfb Pc 10 12 0 0 0.8 0.8 NDVI EVI 0.45 0.5
  • 18. 0 0 (mmolCO2/mmol) 20 24(gC m d ) Seasonality of productivity and -2 -1 GEP/PAR Pc 10 12 0 0 ecosystem drivers 0.8 0.8 ASP NDVI HSP EVI 0.45 0.5 Aw 0.1 0.2 BSh 7 Cwa fPAR (--) ASP fPAR (-) CS 0.6 LAI 3.5 BWh Cfa 0 0 JFMAMJ J ASOND BWk Csb CHO TBR Cfb
  • 19. Seasonality of productivity and ecosystem drivers 12 700 (gC m d ) CHO -2 -1 HSP GEP Aw 6 400 BSh 0 100 Cwa 40 4 ASP (gC m d ) -2 -1 sat LUE GEP BWh 20 2 Cfa 0 0 BWk 20 24 CHO TBR (gC m d ) Csb -2 -1 Cfb Pc 10 12 0 0 0.8 0.8 EVI 0.45 0.5
  • 20. 6 400 G P (gCSeasonality of productivity and 0 40 100 4 (gC m d ) ecosystem drivers20 -2 -1 (gC/MJ) sat LUE GEP 2 0 0 HSP (mmolCO2/mmol) Aw 20 24 (gC m d ) -2 -1 GEP/PAR Pc BSh 10 12 Cwa ASP 0 0 BWh 0.8 CHO 0.8 Cfa NDVI EVI 0.45 0.5 BWk Csb CHO TBR 0.1 0.2 Cfb 7 fPAR (--) fPAR (-) CS 0.6 LAI 3.5 0 0 JFMAMJ J ASOND
  • 21. Satellite products – CO2 fluxAre they synchronous?Peak at the same timeDo they underestimate the amplitude of theseasonal cycleHysteresisCross site
  • 22. Satellite products – CO2 flux
  • 23. Satellite products – CO2 flux 9 9 9 9GEP (gC m-2 d-1) GEP=4.017 LAI-2.2 GEP=22.16 fPAR-7.36 GEP=21.27 NDVI-7.86 GEP=26.04 EVI-4.37 p=5.1e-055 p=8.5e-031 p=1.3e-077 p=6.6e-079 r2=0.78 r2=0.6 r2=0.76 r2=0.78 4.5 HSP 4.5 HSP 4.5 HSP 4.5 HSP 0 0 0 0 0 1.5 3 0.2 0.5 0.8 0.2 0.5 0.8 0.1 0.35 0.6 LAI fPAR NDVI EVI 43 43 9 9 9 9 GEP (gC m-2 d-1)GEP (gC m-2 d-1) GEP=20.86 NDVI-8.44 GEP=28.29 EVI-5.21 GEP=-5815Green+383 GEP=-0.2638 LSTam+12.4 GEP=-196.5Red+17.7 GEP=0.3303 LSTpm+-3.26 p=6.7e-052 p=1.8e-052 p=0.64 p=7.3e-035 p=4.2e-03 p=3.7e-020 r2=0.81 r2=0.82 r2=0.0009 r2=0.47 r2=0.32 r2=0.27 4.5 HSP 4.5 HSP 4.5 HSP 4.5 HSP HSP HSP 0 0 0 0 0.3 0.6 0.9 0.1 0.35 0.6 0 17.7 0.1 33.4 0.2 49.1 0 6.7 0.1 16.6 0.2 26.5 NDVI EVI Green43 LST Red43 LST am pm 9 9 9 GEP (gC m-2 d-1) GEP=-5815Green+383 GEP=-196.5Red+17.7 GEP=60.8 NIR-11.2 p=0.64 p=7.3e-035 p=7.3e-051 r2=0.0009 r2=0.47 r2=0.59 4.5 HSP 4.5 HSP 4.5 HSP 0 0 0 0 0.1 0.2 0 0.1 0.2 0.1 0.25 0.4 Green Red NIR43 43 43 9 GEP=60.8 NIR-11.2
  • 24. Satellite products – CO2 flux 0.021 0.021 EVI HSP NDVI ( molCO /mmol) EVIoz NDVIoz GEP/PAR 2 0.011 0.011 0.001 0.001 J FMAMJ J A SOND J FMAMJ J A SOND 0.021 0.035 0.021 0.035 GreenEVI TBR LAI NDVI( molCO /mmol)( molCO 2/mmol) Greenoz EVIoz LAIoz NDVI GEP/PAR GEP/PAR oz 2 0.011 0.0205 0.011 0.0205 0.001 0.006 0.001 0.006 J FJM A M J JJ A S O N D D FMAM J A SON J JFF M A M JJ JAASS O N D MAMJ OND 0.035 0.035
  • 25. Satellite products – CO2 flux 2 RfPARcs 0.2 GEP HSPNormalized Standard Deviation Model and observations 0.4 1.5 are out of phase 0.6 1 fPARcs R43 Model and observations are in phase 0.8 0.5 LSTpm NIR43 LSTam fPAR LAI NDVI EVI 0 0 0.5 1 Obs 1.5 2 Model understimates the Model overestimates the amplitude of GEP amplitude of GEP seasonal cycle. seasonal cycle.
  • 26. Satellite products – CO2 flux 2 2 RfPARcs 0.2 0.2 GEP HSP GEP TBRNormalized Standard Deviation Normalized Standard Deviation 0.4 0.4 1.5 1.5 R NIR 43 0.6 0.6 1 1 R43 fPARcs R43 G 43 0.8 0.8 0.5 LSTpm 0.5 NIR43 LSTam LSTpm LSTam fPAR LAI NDVI EVI 0 0 Obs 0 0.5 1 Obs 1.5 2 0 0.5 1 1.5 2
  • 27. Satellite products – CO2 flux 2 2 0.2 0.2 GEP - EVI GEP/PAR - EVINormalized Standard Deviation Normalized Standard Deviation 0.4 0.4 1.5 R 1.5 R 0.6 0.6 1 1 CHO 0.8 0.8 0.5 0.5 ASP TBR ASP HSP HSP CHO 0 Obs 0 Obs 0 0.5 1 1.5 2 0 0.5 1 1.5 2
  • 28. Satellite products – CO2 fluxAre they synchronous?Peak at the same timeDo they underestimate the amplitude of theseasonal cycleCross siteHysteresis
  • 29. Satellite products – CO2 flux 50 50 (mmolCO2/mmol) (mmolCO /mmol) GEP/PAR GEP/PAR 2 25 25 0 0 0 0.4 0.8 0.2 0.6 1 EVI NDVI MOD16 MOD16 50 50(mmolCO /mmol) (mmolCO /mmol) GEP/PAR GEP/PAR 2 2 25 25 0 0 0 4 8 0 0.5 1 LAI fPAR
  • 30. Satellite products – CO2 flux 50 50(mmolCO2/mmol) (mmolCO /mmol) GEP/PAR =122.6EVIMOD16+-25.3 GEP/PAR =52.07NDVIMOD16+-20.7 p=5.8e-61 r 2=0.51 p=1.4e-110 r 2=0.73 GEP/PAR GEP/PAR 2 25 25 0 0 0 0.4 0.8 0.2 0.6 1 EVI NDVI MOD16 MOD16 50 50(mmolCO2/mmol) (mmolCO /mmol) GEP/PAR =4.32LAI+-0.148 GEP/PAR =34.17fPAR+-10 p=6.6e-104 r 2=0.69 p=1.1e-116 r 2=0.73 GEP/PAR GEP/PAR 25 2 25 0 0 0 4 8 0 0.5 1 LAI fPAR
  • 31. Satellite products – CO2 flux fPAR oz 2 2 2Normalized Standard Deviation Normalized Standard Deviation Normalized Standard Deviation fPA 0.2 0.2 0.2 GEP/PAR [HSP] GEP/PAR [ASP] HS 0.4 0.4 0.4 1.5 R 1.5 1.5 R 0.6 0.6 1 1 1 fPAR oz 0.8 0.8 0.5 NDVI 0.5 fPAR 0.5 fPAR oz fPAR EVI oz GreenNDVIoz Red oz NDVI EVI NDVI fPAR EVI Red NDVI Green EVIoz EVI oz RedGreenoz NDVI oz Green EVI Greenoz 0 Green oz 0 0 Obs 0 0.5 1 Obs 1.5 2 0 0.5 1 Obs 0 1.5 0.5 2 1 2 2Normalized Standard Deviation Normalized Standard Deviation 2 fPA 0.2 0.2 Normalized Standard Deviation 0.2 GEP/PAR [CHO] GEP/PAR [TBR] CH 0.4 0.4 0.4 1.5 R 1.5 1.5 R 0.6 0.6 1 1 1 Green 0.8 oz 0.8 0.5 0.5 EVIoz 0.5 fPAR Red Green oz Red NDVI Green fPAR EVIRed fPAR EVI EVI Red NDVI Greenoz NDVI Green fPAR NDVI oz NDVI EVIoz oz NDVI EVIoz Greenoz oz 0 fPAR oz oz 0 0 0.5 1 1.5 2 0 Obs 0 1.5 0.5 2 Obs 1 Obs 0 0.5 1
  • 32. Satellite products – CO2 fluxAre they synchronous?Peak at the same timeDo they underestimate the amplitude of theseasonal cycleCross siteHysteresis
  • 33. (mmolCO2/mmol) (mmolCO2/mmol) GEP/PAR GEP/PAR 1 11 21 1 11 21 0 0.2 (mmolCO2/mmol) (mmolCO2/mmol) 1 11 21 1 11 21 0 0.2 HSP HSPfPAR fPAR NDVI NDVI 0.6 0.6 1 0.3 0.3 0.6 GEP/PAR GEP/PAR 1 (mmolCO /mmol) (mmolCO /mmol) 0.6 2 2 GEP/PAR GEP/PAR 1 11 21 1 11 21 0 (mmolCO /mmol) (mmolCO /mmol) 0.6 2 2 1 11 21 1 11 21 0 2 0.6 0.3LAI EVILAI EVI 2 3.4 0.3 0.6 3.4 0.6 GEP/PAR GEP/PAR (mmolCO2/mmol) (mmolCO2/mmol) 5.5 5.5 0 0 11 11 0 0.2 ASP 0.3 0.4fPAR NDVI 0.6 0.6 GEP/PAR GEP/PAR (mmolCO /mmol) (mmolCO /mmol) 2 2 5.5 5.5 0 0 11 11 0 0 Satellite products – CO2 flux0.5 0.2LAI EVI 1 0.4
  • 34. GEP/PAR GEP/PAR (mmolCO2/mmol) (mmolCO2/mmol) 23.5 23.5 6 41 6 41 0 0.6 TBR 0.3 0.8fPAR NDVI 1 0.6 GEP/PAR GEP/PAR (mmolCO /mmol) (mmolCO /mmol) 2 2 23.5 23.5 6 41 6 41 2 0.24.5 0.4LAI EVI 7 0.6 GEP/PAR GEP/PAR (mmolCO /mmol) (mmolCO /mmol) 1 2 2 5 9 1 5 9 0 0.2 CHO 0.3 0.4fPAR NDVI 0.6 0.6 GEP/PAR GEP/PAR (mmolCO /mmol) (mmolCO /mmol) 2 2 1 5 9 1 5 9 0 0.2 Satellite products – CO2 flux0.5 0.2LAI EVI 0.8 0.4
  • 35. ConclusionsMODIS Vis show are synchronous to measuresof ecosystem photosynthetic capacity(GEP/PAR** and LUE)Predictive power of RS data on describingecosystem photosynthetic activity when cross-site values inform the regressions.
  • 36. AcknowledgementsAusCover: Sydney node - Phenology validationOzflux: J. Beringer, D. Chittleborough, J. Cleverly, D.Eamus, E. van Gorsel, L. Hutley, R. Leuning, W. Meyer, G.Whiteman.ANDS project AP28 Primary production in space and timeI. C. Prentice e et al.ARC DP110105479: Integrating remote sensing,landscape flux measurements, and phenology tounderstand the impacts of climate change on Australianlandscapes.
  • 37. Thank you
  • 38. Seasonality of physical drivers HSP Aw BSh 1100 36 Cwa ASP HSP Jan SavannaSW (W m )-2 Jul BWh Ta ( C) 550 25 Cfa in BWk 0 Csb 14 CHO TBR 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 5 11 Cfb NEE (gC m d ) -2 -1 VPD (kPa) 2.5 -4 Jan Jul 0 -19 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00
  • 39. Seasonality of physical drivers HSP Aw BSh 1100 (c) Mulga 36 Cwa ASP Jan HSPSW (W m )-2 Jul BWh Ta ( C) 550 25 Cfa in BWk 0 Csb 14 CHO TBR 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 5 11 Cfb NEE (gC m d ) -2 -1 VPD (kPa) 2.5 -4 Jan Jul 0 -19 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00
  • 40. Seasonality of physical drivers HSP Aw BSh 1100 36 Cwa (d) Malle ASP Jan HSPSW (W m )-2 Jul BWh Ta ( C) 550 25 Cfa in BWk 0 Csb 14 CHO TBR 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 5 11 Cfb NEE (gC m d ) -2 -1 VPD (kPa) 2.5 -4 Jan Jul 0 -19 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00
  • 41. Seasonality of physical drivers 1000 24 Jan TBRSW (W m )-2 Jul Ta ( C) 500 11 HSP Wet schlerophill in Aw 0 -2 BSh 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 Cwa 2 9 ASP NEE (gC m d ) -2 -1 VPD (kPa) BWh 1 -7 Cfa Jan BWk Jul 0 Csb -23 CHO TBR 00:00 06:00 12:00 18:00 00:00 06:00 12:00 18:00 Cfb