Dichio - Sostenibilità dei sistemi frutticoli
Upcoming SlideShare
Loading in...5
×
 

Dichio - Sostenibilità dei sistemi frutticoli

on

  • 299 views

Progetto Factor 20 - Seminario

Progetto Factor 20 - Seminario
La sfida della sostenibilità energetica per le imprese agricole
Metaponto, 9 dicembre 2013

Statistics

Views

Total Views
299
Views on SlideShare
299
Embed Views
0

Actions

Likes
0
Downloads
4
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment
  • The particular causes are many. Analysis of the intergovernmental panel on climate change (IPCC) estimated that agricultural practices in 2004 contributed approximately 14% of all GHG emissions. <br /> When also considering how agriculture causes the deforestation, agricultural emissions were a quarter of all GHG emissions. <br />
  • Agriculture is expected be an important cure for climate change – and make up for more than it causes. <br /> Improved agriculture is expected provide 18% of the all expected reductions in GHG emissions. <br /> Together with better forest management, agriculture is expected to provide a third of all climate change reductions. <br /> So how is agriculture expected to do more than its share of reducing emissions? <br />
  • What is the best course of action for Climate Smart Agriculture? <br /> First, we need to know - what is Climate Smart Agriculture (or CSA) - its goal and objectives. <br /> CSA does a number of things. <br /> According to the World Bank, CSA <br /> increases agricultural harvests (thereby helping to reduce poverty & improve food security), <br /> makes yields more resilient in the face of worsening weather conditions (thus adapting agriculture to climate change), and <br /> transforms the farm into a solution to the climate change problem (in other words, helping to mitigate climate change). <br /> In sum, more vegetation and carbon for greater earnings and environments. <br />

Dichio - Sostenibilità dei sistemi frutticoli Presentation Transcript

  • 1. Cristos Xiloyannis Bartolomeo Dichio DiCEM- Università degli Studi della Basilicata Sostenibilità dei sistemi frutticoli e certificazione dell’impronta del carbonio e dell’acqua SEMINARIO FORMATIVO La sfida della sostenibilità energetica per le imprese agricole lunedì 09 dicembre 2013
  • 2. Consequences after 2057 Three possible paths for future carbon emissions: i nta i Ma over 800 ppm atmospheric CO2 + 5°C e ra t t en rr cu n Maintain current rate and adopting reducing strategies 380 ppm 8 360 6 340 5 4 320 3 Atmosphere CO2 2 2 7 525 ppm atmospheric CO2 + 3°C REDUCE current rate and adopting reducing strategies 280 2 1 1957 1957 450 ppm atmospheric CO2 + 2°C today today Past 50 years Next 50 years 2057 Source: National Geographic. Oct 2007
  • 3. Report Intergovernmental Panel for Climate Change (Ipcc) September 2013 – Stockolm Non ci sono, affatto, le minimizzazioni né i cambiamenti di rotta annunciati -50 billlions tonnes of CO2 eq/year EMISSIONS - TO MANTAIN THE INCREASE OF TEMP. AROUND 2C WE MUST EMMIT NO MORE THAN 820-1445 BILLIONS TONNES OF CO2 eq TO THE ATMOSPHERE DURING THE REST OF THE CENTURY. - GLOBAL TEMPERATURES ARE LIKELY TO RISE BY 0.3 TO 5 C BY THE END OF THE CENTURY. - SEA LEVELS ARE EXPECTED TO RISE A FURTHER 26-82cm BY 2100. - THE OCEANS HAVE ACIDIFIED HAVING ABSORBED ABOUT A THIRD OF THE CO2 EMITTED.
  • 4. Total and per capita GHG emissions in various country (source: UNFCCC, EEA, DIW Berlin, World Bank ) Total emissions Per capita emissions (Mt CO2eq) (t CO2eq/year) 1990 2010 2010 Australia 259 583 26.8 Canada 421 681 20.2 4,844 6,479 21.1 186 24.1 USA Arabia Saudita 160 EU 3,152 Sud Africa 291 Cina (+ Hong Kong) India 2,389 595 4,565 9.0 589 11.9 10,102 7.6 2856 2.4
  • 5. Background: Agriculture-related GHG Emitting Activities 25% of total GHG emissions in 2004 Source: Smith, et al., 2007
  • 6. The potential role of agriculture in mitigating climate change • Agriculture is expected to contribute 18% of total GHG emission reductions Other Sources of expected GHG emission reductions Source: Smith, et al., 2007. • Together with better forest management, the two sources are 33% of the total abatement potential
  • 7. What is Climate-Smart Agriculture? CSA is agriculture that • increases yields (poverty reduction & food security), • makes yields more resilient in the face of worsening weather conditions (adaptation), and • transforms the farm into a solution to the climate change problem (mitigation). (World Bank , 2012)
  • 8. WORLD ARABLE LAND PER PERSON 1961-2010 0,4 0,37 0,35 0,32 ha / person 0,3 0,27 0,24 0,25 0,23 0,20 0,2 0,15 0,1 0,05 0 1961 1970 1980 1990 2000 Source: World Bank (Development Indicators Tables) 2010
  • 9. Land grabbing: the race for food • The population growth, the environmental constraints for food production and the consequences of climate change are elements that compose a scenario of a new food scarcity. • At present, many companies and governments are willing to pay billions to buy or rent large arable land areas, nominally catalogued as virgins, marginal or depopulated; Countries with developing or in transition economies, are increasinlgy well inclined to sell it. • China (20% of world population) has recently established a 50 years lease agreement of 3 million hectares of agricultural land with Ukraine, for cultivation and pigs farming. It’s the largest lease agreement concluded by China to the exploitation of farmland abroad .
  • 10. Soil fertility Organic matter in South Italy 0,8 - 1,3%
  • 11. % Sostanza Organica 4,5 3,8 Inizio della coltivazione Gestione convenzionale 3.2 Gestione sostenibile Inversione della tendenza Frazione della SO labile 2.6 Frazione della SO duratura 1.9 0 20 40 60 Anni dall’inizio della coltivazione Rielaborato da WBGU Special Report: The Accounting of Biological Sinks and Sources Under the Kyoto Protocol 80
  • 12. CO2 Emission in Italy (Source: EEA 2004) (Total annual 580.7 Mt) Industry 50.6% Urban (Transport, waste + Other ) 40.0% Agriculture 9.4% 2011 GREENHOUSE GAS SOURCE AND SINK CATEGORIES 1. Energy 2. Industrial Processes 3. Solvent and Other Product Use 4. Agriculture 5. Land Use, Land-Use Change and Forestry(5) 6. Waste 7. Other Total (including LULUCF)(5) CO2 equivalent (Gg) 404.443,53 31.640,92 1.656,28 33.530,43 -30.590,07 17.520,85 NA 458.201,95 Source: NIR 2011 (UNFCCC CRF)
  • 13. convenzionale Sostenibile Soil management Compost (15 t ha-1) Mineral N if necessary Fertilization Pruning material Mineral fertilizers
  • 14. increase C input limit C output
  • 15. increase C input carbon sources internal external cover crops pruning material senescent leaves stabilised manure compost Biochar, others
  • 16. use polygenic organic material!!!
  • 17. biochar Biochar is charcoal obtained by pyrolysis of biomass in a low/no oxigen environment. It is a stable solid, rich in carbon and can remain in soil for thousands of years. Biochar can be used as •carbon sink •soil amendment
  • 18. COMPOST Contribution Chemical Properties Umidity pH C org Organic Acids C/N Density Conducibility Salinity Clorides N tot P tot Na K Other Carbon resource %C Compost 44,06 Quantity (Tons/ha) dry matter (Tons/ha) C tot (Tons/ha) 15,84 11,00 4,85 % % C dm % d.m. Kg/dm3 µS/cm meq/100gr mg/Kg %N d.m. % P d.m. mg/Kg d.m. mg/Kg d.m. 25,64 8,1 44,6 20 14,9 1,3 2700 22,7 2580 3,5 0,4 2059 11000
  • 19. Residue quality based on different quality index methods (Praveen-Kumar et al., 2003) Residue quality C/N Lignin/N highly decomposable < 18 <5 moderate 18-27 5-7 slow 28-60 7.5-15 least > 60 > 15
  • 20. cost for unit of fertilizzer in the compost unità fertilizzanti distribuite con il compost Mineral fertilizers P K 228 N compost total average cost N 33,8 P2O5 130,8 K20 392,6 total € 67,95 € 10,07 € 38,98 € 117,00 € 0,30 € 310,22 € 158,81 € 76,11 € 545,14 € 1,39 The cost of the Compost is 7.8 €/t Se si considera il costo di trasporto (Veneto) il costo per unità fertilizzante arriva ad 1,67euro
  • 21. ….. Carbon balance CO2 = DM × 0,45 × 3,67 (Norby et al., 2004) Carbon Input Net Carbon allocated in soil Carbon output (respiration roots e microbics) suolo Critical point to measure
  • 22. CARBON BALANCE
  • 23. Chambers for soil respiration measurements Closed chamber taking measurements
  • 24. Measuring CO2 flux… (photo: nrel.colostate.edu) Eddy covariance Chamber-based methods (static or mobile)
  • 25. EDDY COVARIANCE TOWER GPP = Global Primary Productivity Reco = Respiration Ecosystem NEE = Net Exchange Ecosystem Tagliavini, 2011
  • 26. limit C output Reduction of natural CO2 emissions from soil heterotrophic and autotrophic soil respiration soil water availability soil temperatures soil microbiological fertility factors which affect soil respiration
  • 27. effect of soil water availability
  • 28. limit C output how to control soil respiration??? use of localized irrigation methods use of biotechnological techniques (biopolymers able to catalyze oxidative polimerization of organic molecules – IRON PORPHYRIN) use of soil management techniques to limit soil mineralization
  • 29. mean (2001-2008) Annual Net Primary Productivity (CO 2eq, t ha-1 year-1) Net Primary Productivity (NPP) Above Ground NPP Yield 1 Olive permanent structures Pruning material Senescent leaves2 Spontaneous vegetation epigean biomass Below Ground NPP Olive root biomass3 Spontaneous vegetation root biomass4 Total NPP 1 2 3 4 Sustainable Conventional System System -1 CO2 eq (t ha year-1 ) 28.38 11.03 9.06 3.99 0.60 0.60 6.11 4.84 1.60 1.60 11.01 - 10.43 7.68 5.51 5.51 2.75 - -38.81 -16.55 calculated according to Almagro et al. (2010). estimated according to Sofo et al. (2005). estimated as the 50% of the annual biomass production of olive trees (Cannell, 1985). estimated as 20% of the above-ground part (Celano et al., 2003).
  • 30. CO2eq emissions and stock variations in the 2 systems Total emissions Anthropogenic Fertilizers, pesticides Farm operations and transport Pruning residues burning Soil respiration1 Total NPP Difference Sustainable Conventional System System -1 CO2eq (t ha year-1) +25.42 +27.37 +2.42 +1.53 +23.00 - 38.81 -13.39 +4.84 +21.00 - 16.55 +10.82 elaborated from data reported by Almagro et al. (2009) and Testi et al. (2008) 1
  • 31. CO2 Balance in the Orchard Sustainable Oil yield 1552 Kg -8.62 Kg CO2 equivalent/Kg oil Conventional Oil yield 672 Kg +17.59 Kg CO2 equivalent/Kg oil
  • 32. Kg of CO2 per L of Extra Vergin Oil Sustain. Conven. CO2 in orchard -8.62 +17.59 CO2 in Mill +0.13 +0.13 Packing +1.81 +1.81 Balance -6.68 +19.53
  • 33. CO2 Balance in a Mature Peach Orchard -180 -160 -140 -120 -100 -80 -60 -40 -20 0 +20 +40 2004 2005 2006 Sustainable 2007 2008 Conventional 2009
  • 34. To increase the Carbon content in the soil of one hectare of orchard (30 cm depth) from 1% to 2% are necessary about 10 years and the soil will fix about 15 t ha -1 year-1 of CO2
  • 35. The increase of carbon in the soil of olive trees: 20002006 (sustainable management without compost). 2006 Carbonio Organico (%) 2.0 1.5 2000 1.0 Equivalent of about…. 0.5 0.0 1 0-5 cm 2 5-10 cm 3 10-30 cm 61 t ha-1 of CO2 4 30-60 cm In the top 30 cm of soil
  • 36. Carbon accumulated in plant structures: 12- 20 t ha-1 Carbon (45-75 t ha-1 CO2) In 15 years
  • 37. ….vantaggio economico GESTIONE SOSTENIBILE CO C C 2 CO CO O2 O2 2 GESTIONE convenzionale 2 CO 2 CO 2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 CO2 ???? Euro per t CO2
  • 38. Generi più rappresentati di funghi e di Streptomyces Sostenibile Aspergillus Streptomices Phaeoacremonium Convenzionale Aspergillus Mucor Penicillium Armillaria Cladosporium Acremonium Alternaria Phaeoacremonium Rosellinia Phyalophora Cylindrocarpon Microdochium Rosellinia Mucor Cladosporium
  • 39. Maggior numero di funghi (e anche di batteri, non mostrati qui) nel sistema sostenibile (diluizione 10-2) Sostenibile Convenzionale
  • 40. …….as intestinal flora for humans……………
  • 41. roots with ifes and spores of glomus intraradices (10 X).
  • 42. SUSTAINABLE SOIL MANAGEMENT AND soil water holding capacity
  • 43. Inerbito sustainable profondità Depth cm(cm) 0-10 cm a 0-10 a 10-20 Regolari Irregolari Allungati a 20-30 a 30-40 a 40-50 0 2 10-20 cm 6 Lavorato 8 4 10 12 Macroporosità (% ) a profondità (cm) Depth cm 0-10 b 10-20 Regolari b 20-30 Irregolari Allungati b 30-40 0-10 cm ab 40-50 0 2 4 6 Macroporosità (%) 8 Macroporosity % 10 12 10-20 cm
  • 44. Tesi Ksat (Guelph) (mm d ) Classe di Conducibilità satura (Rossi Pisa 1997) Inerbito (tubo) 160 media Lavorato (tubo) 13 molto bassa -1
  • 45. ETo - Precipitazioni (mm) 200 deficit = 855 mm 160 120 ET0 80 40 precipitazioni 0 apr giu ago ott dic feb mesi dell'anno Massimizzare l’immagazzinamento delle acque meteoriche nel suolo esplorato dalle radici
  • 46. Agire su scala aziendale per ridurre l’incidenza della componete BLUE BLUE WF GREEN WF GREY WF BLUE WF GREEN WF GREY WF • Aumentare la capacità di immagazzinamento idrico da parte del suolo • Migliorare l’assorbimento/trasporto da parte della pianta (es. micorrizze) • Integrare attuali conoscenze di fisiologia del trasporto idrico e dello stress idrico • Migliorare la gestione dei “contenitori”
  • 47. Soil Water Content – SWC (mm) TOP POSITION 29-03-2007 Soil layer (cm) SS CS 31-03-2008 Δ SS CS Δ 0-50 108.6 85.6 23.0 110.9 102.1 8.8 50-100 115.7 59.2 56.5 110.0 91.2 18.8 100-150 104.3 39.0 65.3 111.1 90.3 20.8 150-200 80.1 41.1 110.1 80.9 29.1 442.0 364.5 77.5 39.0 total 0-200 408.7 222.8 185.9 SS: Sustainable System CS: Conventional System
  • 48. S. Giuliano’s Dam
  • 49. reservoir sedimentation erosion erosion reservoir dam S. Giuliano Dam (Basilicata Region) Reduction of the maximum volume (110Mm3) capacity of about 30 Mm3 in 50 years
  • 50. Agriculture: reasons for otpimism • It is probably still possible to increment the area of cultivated lands, without damages for the enviromnent • Technologies and science can help to increase resource use efficiency in agriculture (water, fertilizers, pesticides, energy) and biotechnologies can be used in a smart way, to ameliorate genetics of cultivated plants and control roots-soil biological processes. • Food scarcity problem can be also reduced through changes in dietary habits (eg: introduction of high efficiency foods) and eliminating food losses and waste (per capita food waste by consumers in Europe and North-America is 95-115 kg/year).
  • 51. Le Norme
  • 52. Agreenment s.r.l. Spin Off Accademico Università degli Studi della Basilicata www.agreenment.it
  • 53. Il gruppo di lavoro: C. Xiloyannis B. Dichio V. Nuzzo G. Celano G. Montanaro G. Tataranni A. Sofo A. Palese E. Lardo A. Mininni A. Tuzio A. Fiore
  • 54. Definizione • Il Carbon Footprint è l’ammontare totale delle emissioni di diossido di carbonio (CO2) e di altri gas serra (GHG) associati alla realizzazione di un prodotto o servizio. • L’analisi e la quantificazione della Carbon Footprint sono delle azioni fondamentali per prevenire l’incremento dei volumi di CO2 presenti nell’atmosfera.
  • 55. Introduction New Viticulture role SOIL CONSERVATION Celano et al., 2002; Sofo et al., 2005 TERRITORY AND BIODIVERSITY PROTECTION Palese et al., 2004 Xiloyannis et al., 2003 Compost Distribution More C “Sink” Reducing loss of O.M. ORGANIC MATTER = SOIL QUALITY
  • 56. Annual global carbon emissions during the past 50 years (billions metric tons per year) 380 ppm 8 360 6 340 5 4 320 3 Atmosphere CO2 7 280 2 1 1957 today Source: National Geographic. Oct 2007 - IPCC
  • 57. Limits of the green revolution • To increase the surface of cultivated lands is still possible, but not indefinitely • It is necessary to increase the production rate per unit of land, through the introduction of new technologies. • The main limit of the first green revolution was that poverty and corruption blocked the expansion of new technologies on which the revolution is based, having as consequence an excessive depletion of natural resources.