Your SlideShare is downloading. ×
NUMEROS PRIMOS
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

NUMEROS PRIMOS

3,628

Published on

Estudio de los divisores de un número I

Estudio de los divisores de un número I

0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
3,628
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
115
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. NUMEROS PRIMOS Estudio de los divisores de un número I Nivel I Sean los números: 3 2 4 a) 1 d) 4 3 A = 2 . 15 Sean los números: 4 2 3 2 B=2 .5 .7 1. ¿Cuántos divisores primos tiene "A.B"? b) 3 e) 6 c) 4 2. ¿Cuántos divisores más tiene "A", respecto a "B" ? a) 24 d) 33 b) 27 e) 36 c) 30 3. ¿Cuántos divisores compuestos tiene "B"? a) 20 d) 23 b) 21 e) 24 c) 22 4. ¿Cuántos divisores simples tiene "A"? a) 1 d) 4 b) 2 e) 5 c) 3 c) 10 b) 13 e) 16 a) 10 d) 13 b) 11 e) 24 b) 24 e) 42 4 a) 1 d) 4 c) 12 b) 77 e) 76 a) 15 d) 105 c) 30 b) 38 e) 44 c) 75 a) 4 d) 7 c) 40 c) 14 • Enunciado (preguntas del 6 al 10) 2 6 ? c) 19 2. ¿Cuántos divisores primos tiene el número: B 2 3 = 10 . 21 ? c) 3 b) 30 e) 120 c) 60 x b) 5 e) 8 3 c) 6 2 x 7. El número: B = 2 . 3 . 5 ; tiene 60 divisores en total. Calcular el valor de "x". a) 3 d) 6 1. ¿Cuántos divisores tiene el número: A = 2 . b) 17 e) 23 b) 2 e) 5 4 Nivel II a) 15 d) 21 2 6. El número: A = 2 . 3 ; tiene 30 divisores en total. Calcular el valor de "x". 10. ¿Cuántos divisores más tiene "B", respecto de "A"? a) 36 d) 42 c) 48 5. En el ejercicio anterior, ¿cuántos divisores en total tiene "C"? 9. ¿Cuántos divisores compuestos tiene "B"? a) 80 d) 17 b) 36 e) 144 = 15 . 6 ? 8. ¿Cuántos divisores tiene "A"? a) 12 d) 36 a) 12 d) 90 4. ¿Cuántos divisores primos tiene el número: C 4 5. Hallar la suma de los divisores simples de "B". a) 12 d) 15 b) 9 e) 17 7. Hallar la suma de los divisores simples de "B". 3 A=2 .3 .5 a) 2 d) 5 a) 8 d) 12 c) 3 3. En el ejercicio anterior, ¿cuántos divisores tiene el número "B"? B = 2 . 21 6. Hallar la suma de los divisores primos de "A". • Enunciado (preguntas del 1 al 5) b) 2 e) 5 b) 4 e) 7 c) 5 x 8. El número: C = 6 . 5 ; tiene un total de 20 divisores. Hallar el valor de "x". a) 2 d) 5 b) 3 e) 6 c) 4 x 9. El número: D = 2 . 15 ; tiene un total de 32 divisores. Hallar "x"
  • 2. a) 2 d) 5 b) 3 e) 6 c) 4 x 10. El número: E = 2 . 6 ; tiene 20 divisores. Hallar "x". a) 1 d) 4 b) 2 e) 5 c) 3 Nivel III x 1. El número: F = 10 . 15; tiene 24 divisores. Hallar "x". a) 1 d) 4 b) 2 e) 5 c) 3 x 2. El número: G = 2 . 72; tiene 18 divisores en total. Hallar "x" a) 1 d) 4 b) 2 e) 5 c) 3 a) 40 d) 46 b) 42 e) 48 c) 44 6. ¿Cuántos divisores simples tiene "D"? a) 1 d) 4 b) 2 e) 5 c) 3 7. ¿Cuántos divisores tiene el producto de "A" y "B"? a) 370 d) 382 b) 374 e) 386 Sean los números: 2 x x 8. Dado el número: A = 12 . 20 Hallar "x", si el número "A" tiene 81 divisores. a) 1 d) 4 b) 2 e) 5 c) 3 x x tiene 54 ? a) 21 d) 27 b) 24 e) 42 c) 32 3 A = 3 . 75 n+3 10. El número: A = 11 . 7 . 2 divisores. Hallar "n" 4 B = 2 . 36 . 72 C = 8 . 12 . 45 D = 20 . 42 . 152 3. ¿Cuántos divisores tiene "A"? b) 12 e) 24 c) 378 9. El número 24 tiene 21 divisores, ¿cuántos • Enunciado (preguntas del 23 al 27) a) 10 d) 18 5. ¿Cuántos divisores compuestos tiene "C"? a) 1 d) 4 c) 15 b) 2 e) 5 tiene 48 c) 3 Estudio de los divisores de un número II 4. ¿Cuántos divisores primos tiene "B"? a) 1 d) 4 b) 2 e) 5 c) 3 Nivel I 1. El producto de los cinco primeros números primos es: a) 1250 d) 625 b) 929 e) 1230 c) 2310 2. ¿Cuántos números comprendidos entre 10 y 20 sólo tiene dos divisores? a) 2 d) 3 b) 4 e) 5 c) 6 3. Hallar la suma de los números primos comprendidos entre 10 y 50. a) 319 d) 305 b) 321 e) 297 c) 311 4. Hallar la suma de los cinco primeros números compuestos. a) 37 d) 130 b) 45 e) 170 c) 63 5. ¿De cuántas formas se puede expresar el número 27 como la suma de dos números primos? a) 0 d) 3 b) 1 e) 6 c) 2 6. ¿Cuál es el menor número que sumado o restado de 71 da como resultado un número primo? a) 2 d) 16 b) 8 e) 10 c) 12 7. ¿Cuántos divisores tiene el mayor número par de dos cifras? a) 2 d) 8 b) 4 e) 9 c) 6 8. ¿Cuántos divisores primos tiene el número 4200?
  • 3. 5. Si la D.C. de un número impar "N" es: N = a) 5 d) 4 b) 3 e) 2 9. ¿Cuántos números exactamente a 45? a) 2 d) 4 4 3 c c) 6 compuestos b) 3 e) 6 a .b .5 Dar el menor valor de "a + b + c". dividen c) 5 b) 4 e) 16 a) 95 d) 84 c) 12 1. ¿Cuántos divisores tiene el mayor número impar de tres cifras? b) 4 e) 9 2. ¿Cuántos números exactamente a 240? a) 2 d) 8 b) 4 e) 9 c) 6 compuestos dividen b) 10 e) 3 b) 20 e) 28 c) 125 a) 24 d) 33 b) 28 e) 36 c) 30 b) 12 e) 18 b) 6 e) 20 c) 8 3. Si un número posee 12 divisores y es el menor posible, indicar la suma de las cifras de dicho número. a) 4 d) 7 b) 5 e) 8 c) 9 4. Hallar el menor número que tiene 15 divisores, si sus factores son 2 y 3. 8. ¿Cuántos divisores de 820 son múltiplos de 4? a) 4 d) 8 a) 4 d) 12 c) 16 a) 72 d) 108 b) 48 e) 144 2 5. Si: A = 10 . 5 . 11 calcular " ". c) 54 tiene 70 divisores, 12 c) 16 c) 9 4. Un número es descompuesto en tres factores primos diferentes cuyos exponentes son 1; 2 y 3 respectivamente. ¿Cuántos divisores tiene el número? a) 6 d) 32 b) 115 e) 72 9. ¿Cuántos divisores tiene la diferencia de: 4 3. Hallar la cantidad de divisores no primos del número 9999. a) 6 d) 12 c) 13 7. ¿Cuántos divisores tiene 1800? Nivel II a) 2 d) 8 b) 11 e) 9 e) 8 2. Si "a", "b" y "c" son números primos, tal que: a + b + c = 14; calcule cuántos divisores posee: a2 + b2 + c2. 6. Hallar la suma de los divisores primos del mayor número de cuatro cifras. 10. ¿Cuántos divisores tiene 120? a) 8 d) 18 a) 6 d) 7 d) 16 c) 24 10 -4 ? a) 48 d) 88 b) 22 e) 46 c) 84 10. Si 12 tiene 63 divisores compuestos, calcular "x". b) 4 e) 7 c) 5 Nivel III 1. Hallar cuántos divisores de 1840 no son múltiplos de 23. a) 20 b) 10 c) 12 b) 2 e) 5 c) 3 6. Si la descomposición canónica del número "N" es n+1 x a) 3 d) 6 a) 1 d) 4 b a .(a + 1) , calcular la suma de los divisores primos de "N", sabiendo que en total tiene 64 divisores. a) 10 d) 5 b) 12 e) 17 c) 13 7. Al descomponer canónicamente el número 2925, indicar la máxima diferencia de dos factores primos de dicho número. a) 10 d) 8 b) 3 e) 5 c) 16
  • 4. 8. Si el numeral 200 tiene "x" divisores y 225 tiene "y" divisores, halle "x - y". a) 1 d) 4 b) 2 e) 5 c) 3 9. Calcular la suma de los números primos que dividen exactamente a 660. a) 17 d) 23 b) 19 e) 30 c) 21 10. Sea: A = {22; 23; 24; 25; 27; 28}, ¿cuál de los elementos de "A" tiene más divisores? a) 23 d) 24 b) 28 e) 26 c) 27 Nivel I 1. ¿Cuál es el mayor número que divide en forma exacta a 88 y 154? b) 11 e) 1 c) 2 2. ¿Cuál es el mayor número posible, tal que al dividir a 36; 45 y 60 nos da siempre resto igual a cero? a) 6 d) 5 b) 2 e) 4 c) 3 3. ¿Cuántos divisores comunes tienen los números 18 y 36? a) 2 d) 10 b) 6 e) 8 a) 240 d) 80 b) 60 e) 40 c) 4 c) 120 5. ¿Cuál es el menor número tal que dividido entre 6; 5 y 8 da residuo igual a 3? a) 73 d) 123 b) 83 e) 103 c) 58 6. ¿Cuál es el menor número que al dividirlo entre 7; 5 y 4, siempre da residuo 2?. Da como respuesta la suma de sus cifras. a) Menos de 6 b) 6 d) 8 e) Más de 8 MAXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO I a) 22 d) 4 4. ¿Cuál es el menor entero positivo tal que dividido por 24; 20 y 15 se obtiene siempre cero como residuo? c) 7 7. ¿Qué número es tal que al dividirlo entre 4; 5 y 12, siempre da como residuo 3, si es que el número está entre 200 y 300? a) 223 d) 263 b) 257 e) 243 b) 11 e) 14 c) 12 9. ¿Cuál será la menor longitud de una varilla que se puede dividir en pedazos de 8; 9 ó 15 cm de longitud sin que sobre ni falte nada? a) 240 d) 400 b) 100 e) 156 a) 10 d) 38 b) 18 e) 12 c) 24 Nivel II 1. Un padre da a un hijo S/.80; a otro S/.75 y a otro S/.60 para repartir entre los pobres, de modo que todos den a cada pobre la misma cantidad. ¿Cuál es la mayor cantidad que podrán dar a cada pobre? a) S/.5 d) 8 b) 10 e) 7 c) 2 2. Del problema anterior, ¿cuántos fueron los pobres socorridos? a) 30 d) 42 b) 18 e) 50 c) 43 c) 247 8. ¿Qué número es tal que al dividirlo entre 6; 14; 15 y 4, siempre da como residuo 3, si es que el número está entre 3 000 y 3 500?. Da como respuesta la suma de sus tres últimas cifras. a) 10 d) 13 10. Dos cintas de 36 m y 48 m de longitud se quieren dividir en pedazos iguales y de la mayor longitud posible. ¿Cuál será la longitud de cada pedazo? c) 360 3. Elena visita a Samuel cada 5 días, a José cada 3 días, y a Alberto cada 4 días. La primera vez que le tocó visitar a todos ellos fue el 1 de abril. ¿Qué fecha caerá la segunda vez que volverá a visitar a todos? a) 1 de junio b) 2 de junio c) 30 de mayo d) 29 de junio e) 31 de mayo 4. Un alumno observador nota que cada 3 días pasa frente al colegio un vendedor de fruta, cada 6 días pasa un vendedor de helado, y cada 8 días pasa un vendedor de gaseosas. Si hoy pasaron todos juntos, ¿dentro de cuántos días como mínimo volverán a pasar otra vez los tres juntos? a) 12 b) 8 c) 16
  • 5. d) 24 e) 48 5. Al dividir un terreno rectangular en cuadrados iguales, se hizo de tal manera que el lado de cada cuadrado sea de la mayor longitud posible, y sin que sobre terreno. Si el ancho del terreno es de 320 m y su largo es de 520 m, ¿cuántos cuadrados se obtuvieron? a) 160 d) 104 b) 80 e) 40 c) 96 6. Al dividir un terreno rectangular en cuadrados iguales, se hizo de tal manera que el lado de cada cuadrado sea de la mayor longitud posible, y sin que sobre terreno. Si el largo del terreno es de 810 m y su ancho es de 684 m, ¿cuál es el área de cada uno de los cuadrados? a) 324 m2 d) 36 b) 400 e) 18 c) 289 7. Si tengo tres tablas, cuyas longitudes son 195; 165 y 210 cm, y quiero partirlas en pedazos iguales, sin que sobre nada, y de tal forma que los pedazos sean lo más grandes posibles, ¿cuántos pedazos se obtienen en total? a) 35 d) 38 b) 36 e) 39 c) 37 8. En una caja hay 36 caramelos de menta, 90 caramelos de limón y 60 caramelos de fresa. Si los reparto a mis amigos, de tal manera que a cada uno le toque el mismo número de caramelos de cada clase, ¿a cuántos amigos como máximo le podré repartir? a) 2 d) 5 b) 3 e) 6 c) 4 9. Si el número de naranjas que tiene un vendedor se cuenta de 15 en 15, de 18 en 18, y de 24 en 24 siempre sobra 11. Hallar el número de naranjas, si es el menor posible. a) 360 d) 391 b) 351 e) 350 b) 33 e) 36 b) 31 e) 25 c) 30 4. En el ejercicio anterior, ¿cuántos postes se emplearon? c) 371 a) 12 d) 13 10. Un profesor observó que si junta a los alumnos del salón en grupos de 6, sobran 4; si los agrupa de a 9, sobran 7; y si los junta de a 4, le sobran 2. ¿Cuántos alumnos hay en dicho salón, si no pasan de 40? a) 32 d) 35 a) 32 m d) 28 c) 34 b) 14 e) 15 c) 16 5. Se quiere construir un cubo compacto el más pequeño posible, con ladrillos cuyas dimensiones son 15; 8 y 12 cm respectivamente. ¿Cuántos ladrillos se utilizarán? a) 30 d) 33 b) 18 e) 31 c) 40 Nivel III 1. ¿Cuál es la menor capacidad posible de un tanque de agua, si un caño lo llena a 45 litros por minuto, y otro, por separado, a 36 litros por minuto, y en cada caso lo hace en un número exacto de minutos? a) 90 litros d) 180 b) 70 e) 360 c) 120 2. Si tengo dos tablas, cuyas longitudes son 96 y 104.cm, y quiero partirlas en pedazos iguales, sin que sobre nada, y de tal forma que los pedazos sean lo más grandes posibles, ¿cuánto medirá cada pedazo? a) 2 cm d) 8 b) 4 e) 12 6. Se trata de formar un cubo con ladrillos cuyas dimensiones son: 20; 15 y 6 cm. ¿Cuántos ladrillos son necesarios para formar el cubo más pequeño posible? a) 10 d) 18 b) 17 e) 14 c) 20 7. Se tiene cuatro barras de longitudes 280; 420; 480 y 600 cm. Se quiere dividir en pequeños trozos de igual longitud. ¿Cuál es el menor número de trozos que se pueden obtener? a) 90 d) 62 b) 89 e) 38 c) 74 c) 6 3. Se tiene un terreno de forma triangular, cuyas dimensiones son 120; 150 y 210 m. Se quiere cercar ubicando postes equidistantes en todo el contorno. ¿Cuál debe ser la distancia entre poste y poste, para emplear la menor cantidad posible de postes? 8. Un joven llevaba huevos al mercado cuando se le cayó la cesta. ¿Cuántos huevos llevaba? le preguntaron. No lo sé que al contarlos en grupos de 2; 3; 4 y 5 sobraron 1; 2; 3 y 4 respectivamente. ¿Cuántos huevos tenía el joven? a) 23 d) 74 b) 67 e) 63 c) 59
  • 6. d) 3 9. Para llenar una tina, se extrae el agua de un estanque; Julio puede llenar la tina sacando agua con un balde de 3 litros, siempre lleno, sin que le sobre ni le falte agua; María puede hacer lo mismo, pero con un balde de 4 litros. ¿Cuántos litros de agua tiene la tina, si es lo más pequeña posible? a) 2 litros d) 12 b) 3 e) 18 c) 6 10. Un comerciante tiene tres barriles de vino de 144; 180 y 216 litros, y se le ocurre repartir este vino en recipientes iguales, de la mayor cantidad posible cada uno, y que esté contenidos exactamente en los tres barriles. ¿Cuántos litros debe contener cada recipiente? a) 72 litros b) 36 d) 24 e) 60 c) 18 4. Hallar el MCD de los números 1 890; 900 y 3 528. a) 6 d) 3 a) 10 d) 13 1. Determinar el MCM de 36; 24 y 63. a) 320 d) 504 b) 620 e) 576 c) 560 2. Hallar la suma del MCD y MCM de 36 y 180. a) 194 d) 216 b) 196 e) 224 c) 208 3. ¿Cuántos divisores comunes tienen 12 y 16? a) 0 b) 1 c) 2 b) 11 e) 14 a) 20 d) 60 b) 30 e) 16 c) 12 c) 40 c) 1 620 8. Si el MCD de 45A y 63B es igual a 36, hallar el MCD de 25A y 35B. b) 4 e) 24 c) 20 9. Hallar la cantidad de divisores del MCD de 180 y 240. a) 10 d) 13 b) 11 e) 14 c) 12 b) 180 e) 90 b) 6 e) 9 cifras son c) 3 c) 7 2. Determinar cuántos números de dos cifras son divisores comunes de 770 y 1 210. a) 8 d) 3 b) 1 e) 4 3. Si: MCM (A; B) = 91 125 c) 2 n 2 Calcular "n", si se cumple: A = 5 .9 y 2 n B = 5 .9 a) 8 d) 3 b) 1 e) 4 c) 2 4. Si: MCD (2A; 2B) = 18 Hallar: MCD (9A; 9B) a) 9 d) 81 b) 18 e) 27 c) 168 5. Si: MCD (6A; 14B) = 48 Hallar: MCD (15A; 35B) a) 24 d) 110 b) 120 e) 240 c) 60 6. Calcular la cantidad de divisores comunes de: 10 4 10. El MCM de dos números es 180 y su MCD es 3. Si uno de los números es 12, ¿cuál es el otro? a) 24 d) 45 1. ¿Cuántos números de tres múltiplos comunes de 18 y 42? a) 5 d) 8 7. Si el MCD de 36k; 54k y 90k es 1 620, hallar el menor de los números. b) 4 860 e) 90 Nivel II c) 2 6. El MCD de 24k; 60k y 84k es 96. Calcular el MCM de (k+2) y (k-2). a) 10 d) 32 Nivel I b) 12 e) 18 5. Halle la suma de cifras del MCM de 120 y 210. a) 8 100 d) 3 240 MAXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO II e) 4 10 A = 2 .5 .6 5 2 5 10 B = 5 .7 .8 .9 30 9 C = 2 .3 .35 a) 640 d) 320 b) 120 e) 50 c) 180
  • 7. 7. Hallar el valor de "n" en los números: n n A = 15.40 ; B = 15 .40 para que el MCM tenga 200 divisores. a) 8 d) 3 b) 1 e) 4 c) 2 8. Hallar el valor de "n" en los números: n n A = 48.75 ; B = 35.72 para que el MCD tenga 140 divisores. a) 18 d) 13 b) 12 e) 40 5 4 8 c) 20 3 5 7 9. Si: A = 2 .3 .10 ; B = 2 .3 .10 ; calcule la cantidad de divisores comunes que poseen "A" y "B". a) 780 d) 600 b) 440 e) 36 c) 500 10. Si el producto de dos números es 24192 y su MCD es 8, calcule el MCM de dichos números. a) 24 192 d) 324 b) 3 024 e) 124 c) 1 024 Nivel III 1. El largo de un rectángulo excede al ancho en 6 m. ¿Cuánto mide su perímetro en metros, si el ancho es igual al MCD de 20; 24 y 32? a) 26 d) 24 b) 28 e) 56 c) 32 2. Hemos dividido tres barras cuyas longitudes son 360; 480 y 540 m en trozos de igual longitud los más largos posibles. Se desea conocer cuántos trozos se han obtenido. a) 26 d) 24 b) 28 e) 27 c) 23 a) 43 d) 42 3. Frank tiene tres bolsas de caramelos, la primera con 280, la segunda con 320 y la tercera con 440. Si desea dividirlas en bolsitas con igual cantidad de caramelos, ¿cuántas bolsitas se llenará como mínimo? a) 26 d) 24 b) 28 e) 27 c) 40 a) 36 d) 24 b) 48 e) 56 c) 72 5. Un ciclista demora 36 segundos en dar una vuelta por un círculo cerrado, un segundo ciclista demora 24 segundos en dar también una vuelta, ¿cada cuántos segundos vuelven a encontrarse? a) 72 d) 84 b) 144 e) 96 c) 48 6. ¿Cuántas cajas cúbicas como máximo se podrán utilizar para empaquetar 12000 barras de jabón cuyas dimensiones son 20; 15 y 12cm de modo que todas estén completamente llenas? a) 50 d) 200 b) 100 e) 400 c) 120 7. Se tienen tres recipientes con 100; 180 y 120 litros de este combustible. Si se desea envasar todo esto en prácticas galoneras, ¿cuál es el menor número de galoneras que se necesita de manera que no falte ni sobre combustible en ningún recipiente? c) 41 8. Es necesario llenar cuatro cilindros de capacidad 50; 75; 100; 80 galones respectivamente. ¿Cuál es la mayor capacidad del balde que se puede usar para llenarlos con cantidades exactas de baldes? a) 7 d) 5 4. Se dispone de ladrillos cuyas dimensiones son 10×15×20. ¿Cuál es el menor número de estos ladrillos para formar un cubo compacto? b) 39 e) 20 b) 6 e) 9 c) 8 9. Se requiere cortar un tubo de 48 cm y uno de 54 cm en pedazos del mayor tamaño posible, de manera que todos midan lo mismo y sin que sobre tubo. ¿De qué tamaño serán los pedazos? a) 16 d) 6 b) 8 e) 12 c) 9 10. Tres omnibuses de una empresa interprovincial viajan, el primero cada seis días, el segundo cada ocho días y el tercero cada 10 días. Si cierto día salen los tres juntos, ¿después de cuánto tiempo volverán a salir juntos? a) 120 b) 112 c) 140 d) 80 e) 240
  • 8. Magnitudes proporcionales RAZONES: 1. Si: y A + B = 30 Hallar el valor de "A" b) 9 c) 18 a) 20 d) 12 e) 8 2. Si: y A - B = 12 Hallar "A + B" a) 15 b) 4 c) 28 d) 16 e) 44 3. Si: y a2 + b2 = 100 Hallar "a + b" a) 28 b) 11 c) 9 d) 14 b) 12 c) 7 d) 42 e) 50 e) 17 5. Las edades de David y Jorge son entre sí como 8 es a 9. Si David tiene 32 años, ¿cuántos años tiene Jorge? a) 33 b) 34 c) 35 d) 36 e) 38 6. Dos números están en relación de 2 a 3. Si se aumenta 15 a uno de ellos y 10 al otro se obtienen cantidades iguales. ¿Cuál es el mayor? a) 15 b) 10 c) 12 d) 20 b) 45 c) 25 d) 30 e) 40 e)8 7. En una caja hay caramelos de fresa y limón. Si por cada caramelo de fresa hay 3 caramelos de limón, ¿cuántos caramelos de fresa hay, si en total hay 80 caramelos en la caja? c) 36 d) 16 e) 54 9. Se tienen dos recipientes con agua: "A" y "B". En el primero hay 20 litros y en el segundo el doble. Si del primer recipiente se pasan 5 litros al segundo, entonces el número de litros que quede en el recipiente "A" es al número de litros que ahora hay en "B" como: a) 1 es a 3 d) 2 es a 5 4. Si: y 2a + 3b = 111 Calcular "b - a" a) 3 b) 20 8. La razón aritmética de las edades de Frank y Aldo es 20 y su razón geométrica es 9/4. Hallar la edad de Frank. Nivel I a) 6 a) 18 b) 2 es a 3 e) 2 es a 1 c) 1 es a 2 b) 5 a 9 e) 20 c) 8 c) 10 b) 20 c) 14 e) 21 d) 16 e) 42 3. La razón de las edades de César y Luis es 5/4 y dentro de dos años sus edades sumarán 31 años. ¿Qué edad tiene César? a)15 b) 12 c) 17 a) 15 d) 12 e) 24 b) 12 c) 10 d) 8 e) 16 6. Dos números son entre sí como 7 es a 3. Si su razón aritmética es 120, hallar el número mayor. 7. Dos números son entre sí como 4 es a 7. Si su suma es 88, hallar su diferencia. a) 10 d) 70 2. Si: y b - a = 18 Hallar "a + b" a) 30 c) 15 b) 32 c) 16 d) 18 e) 36 8. La razón geométrica de dos números es 3/5. Si se aumenta 46 unidades a uno de ellos y 78 al otro se obtendrían cantidades iguales. Dar la suma de cifras del número menor. 1. Si: y A + B = 100 Hallar el valor de "B" b) 7 b) 18 5. La suma de las edades de dos hermanos es 42 años. Si su razón geométrica es 5/2, hallar la edad del hermano menor dentro de 4 años. a) 24 Nivel II a) 30 a) 10 a) 100 b) 120 c) 150 d) 180 e) 210 10. Si las edades de Pilar y Gaby hoy son 19 y 7 años, determinar la razón aritmética dentro de 8 años. a) 9 a 5 d) 12 4. Las edades de Juan y Norma son 32 y 24 años respectivamente. ¿Dentro de cuántos años sus edades estarán en la relación de 7 a 6? d) 14 e) 30 b) 12 c) 8 d) 7 e) 16 9. Las edades de Juan y Arturo son 12 y 18 años respectivamente. ¿Dentro de cuántos años la razón de sus edades será 9/11? a)10 b) 12 c) 15 d) 18 e) 20 Nivel III 1. En una caja hay 150 cuadernos, 90 de pasta roja y el resto de pasta azul. ¿Cuántos cuadernos rojos se deben retirar para poder
  • 9. afirmar que por cada 5 cuadernos rojos hay 4 azules? a) 15 b) 20 c) 25 d) 30 e) 35 2. En una fábrica trabajan 240 personas y se observa que por cada 4 hombres hay 1 mujer. ¿Cuántas mujeres deben contratarse de tal forma que se tenga 3 hombres por cada 2 mujeres? a) 50 b) 60 c) 70 d) 75 e) 80 3. La razón geométrica de las velocidades de "A" y "B" es 4/3. Si en 10 minutos "A" recorre 200 m, ¿cuánto recorrerá "B" en media hora? a) 300 b) 450 c) 600 d) 150 e) 360 4. Francesca nació 8 años antes que Gaby y hace 6 años sus edades estaban en la misma relación que los números 9 y 5. Si dentro de "n" años la razón de sus edades será 5/4, hallar "n". a15 b) 12 c) 20 d) 18 e) 16 5. A un evento deportivo asistieron 4 hombres por cada 5 mujeres y 3 mujeres por cada 7 niños. Si en total asistieron 1860 personas, hallar la razón aritmética entre el número de hombres y el número de niños. a) 540 b) 360 c) 480 d) 690 e) 510 6. En una caja hay 280 bolas de tres colores distintos. Si se observa que por cada 2 bolas azules hay 5 blancas y por cada 3 blancas hay 7 verdes, ¿cuántas bolas verdes hay? a) 135 b) 145 c) 155 d ) 175 e) 196 7. Si Frank le da a Aldo 10 m de ventaja para una carrera de 100 m y Aldo le da a Freddy una ventaja de 20 m para una carrera de 180 m, ¿cuántos metros de ventaja debe dar Frank a Freddy para una carrera de 200 m? a) 40 m b) 30 c) 50 d) 45 e)55 8. Lo que cobra y lo que gasta diariamente una persona suman S/.60, y lo que gasta y lo que cobra está en la relación de 2 a 3. ¿En cuánto tiene que disminuir el gasto diario para que dicha relación sea de 3 a 5? a) S/.4,2 d) S/.4,8 b) S/.2,4 e) S/.6,8 c) S/.4,5 9. En una fábrica embotelladora se tiene tres máquinas "A", "B" y "C"; por cada 7 botellas que produce la máquina "A", la máquina "B" produce 5 y por cada 3 botellas que produce la máquina "B", la máquina "C" produce 2. En un día la máquina "A" produjo 4400 botellas más que "C". ¿Cuántas botellas produjo la máquina "B" ese día? a) 5 000 b) 2 000 d) 8 000 e) 6 000 c)4 000 10. En una asamblea estudiantil de 2970 estudiantes se presentó una moción. En una primera votación por cada 4 votos a favor habían 5 en contra. Pedida la reconsideración se vio que por cada 8 votos a favor habían 3 en contra. ¿Cuántas personas cambiaron de opinión? * No hubo abstenciones. a) 915 b) 812 c) 810 d) 840 e) 816 PROPORCIONES Nivel I 1. Hallar la media diferencial de 18 y 22. a) 14 b) 18 c) 16 d) 20 e) 22 2. Hallar la media proporcional de 36 y 64. a) 12 b) 16 c) 48 d) 10 e) 9 3. Hallar la tercera diferencial de 52 y 40. a) 28 b) 26 c) 24 d) 22 e) 20 4. Hallar la tercera proporcional de 40 y 60. a) 20 b) 40 c) 60 d) 80 e) 90 5. Hallar la cuarta diferencial de 25; 17 y 32. a) 20 b) 22 c) 24 d) 26 e) 28 6. Hallar la cuarta proporcional de 35; 5 y 42. a) 10 b) 9 c) 8 d) 7 e) 6 7. En una proporción geométrica continua, la suma de los términos extremos es 29 y su diferencia es 21. ¿Cuál es la media proporcional? a) 5 b) 10 c) 15 d) 20 e) 8 8. En una proporción geométrica continua, la suma de los extremos es 45 y la diferencia de los mismos es 27. Hallar la media proporcional. a) 42 b) 45 c) 18 d) 32 e) 15
  • 10. 9. En una proporción geométrica continua, el producto de los cuatro términos es 4096. Hallar la media proporcional. a) 12 a) 3 6. En una proporción geométrica continua el producto de los cuatro términos es 625. Hallar la suma de los términos medios. 3. En una proporción aritmética continua la media diferencial es 18 y uno de los extremos es 10, hallar el otro extremo. a) 5 a) 18 b) 4 c) 8 d) 6 e) 12 10. En una proporción geométrica continua cuya razón es 2/3; la media proporcional es 36. Hallar la suma de los extremos de la proporción. a) 72 b) 10 c) 48 c) 15 d) 10 d) 20 e) 9 e) 8 a) 12 b) 15 b) 21 c) 18 c) 26 d) 27 d) 32 e) 30 e) 36 c) 52 d) 78 e) 42 1. En una proporción geométrica uno de los extremos es 9 y la media proporcional es 36. Hallar el otro extremo. a) 142 b) 145 c) 118 d) 132 e) 144 2. En una proporción aritmética continua, se sabe que la suma de los medios es 18 y el segundo consecuente es 5. Calcular la diferencia de los extremos. b) 4 c) 8 d) 6 e) 12 3. En una proporción geométrica discreta los antecedentes son 12 y 3 y la cuarta proporcional es 2. Determinar la suma de todos los términos de esta proporción. 7. En una proporción geométrica los extremos suman 75 y su diferencia es 15. Hallar el producto de los medios. 4. La suma de los extremos de una proporción geométrica es 36 y su diferencia es 4. Hallar el producto de los términos medios. a) 1 400 d) 1 350 b) 60 Nivel II a) 3 b) 16 a) 160 b) 240 c) 180 d) 144 e) 320 b) 1 450 e) 1 440 c) 1 300 8. En una proporción geométrica continua, la suma de los extremos es 60 y la diferencia de los mismos es 48. Hallar la media proporcional. a) 5 b) 10 c) 15 d) 20 e) 18 9. En una proporción geométrica continua, el primer término es 1/9 del cuarto término. Si la suma de los medios es 72, hallar la diferencia de los extremos. a) 20 b) 92 c) 24 d) 96 e) 25 5. En una proporción geométrica continua los extremos son entre sí como 9 es a 4 y su razón aritmética es 15. Hallar la media proporcional. a) 18 b) 15 c) 21 d) 24 e) 32 6. Hallar la cuarta proporcional de 4; 7 y 12. Dar como respuesta la suma de cifras de dicho número. a) 1 b) 5 c) 21 d) 2 e) 3 10. En una proporción geométrica continua, los términos extremos están en la relación de 4 a 9, siendo su suma 65. Hallar la media proporcional. 7. Determinar la media proporcional de una proporción geométrica continua, sabiendo que la suma de los términos extremos es 130 y su diferencia es 120. Indicar la cifra mayor de dicha media proporcional. 4. Si los antecedentes de una proporción geométrica continua son 9 y 6, halle la tercera proporcional. a) 20 a) 1 a) 3 1. Hallar la cuarta proporcional de 9; 12 y 15. 8. El producto de los cuatro términos de una proporción es 176 400. Si el primero de estos términos es 12, ¿cuál es el cuarto término? a) 20 a) 15 a) 20 b) 22 b) 4 c) 24 c) 8 d) 26 d) 6 e) 25 e) 12 5. En una proporción geométrica continua el producto de los extremos es 144. Hallar la media proporcional. b) 30 c) 60 d) 80 e) 90 Nivel III b) 27 c) 24 d) 16 e) 30 2. Hallar la media proporcional de 8 y 18. b) 5 b) 25 c) 4 c) 21 d) 2 d) 32 e) 3 e) 35
  • 11. 9. En una proporción geométrica continua el mayor de los términos es 25 y el término intermedio es 20. Hallar la suma de los cuatro términos. 6. Una secretaria escribe a máquina a razón de 180 palabras por minuto. ¿A qué hora terminará con un dictado de 5 400 palabras, si comenzó a las 9:52 a.m.? a) 75 b) 92 c) 81 d) 105 e) 115 a) 10:42 d) 10:22 Nivel I 1. Un grupo de 5 jardineros iban a podar un jardín en 6 horas. Sólo fueron 3 jardineros. ¿Qué tiempo emplearán en podar el jardín? b) 9 c) 10 d) 8 e) 14 2. El precio de 2 docenas de naranjas es S/.24. ¿Cuál será el precio de 18 naranjas? a) 12,20 d) 14,40 b) 15,30 e) 10,50 c) 16,20 3. Se vendió los 5/9 de un terreno en $2500, ¿en cuánto se venderá la otra parte? a) $ 2 000 d) 1 500 b) 1 800 e) 2 250 c) 1 750 4. Un terreno se vende por partes, los 2/5 se vendieron en $ 30 000. ¿En cuánto se vendería 1/3 del terreno? a) $ 28 000 d) 27 500 b) 16 000 e) 25 000 c) 22 000 b) 5 c) 6 a) 7 d) 3 e) 5 b) 6 c) 8 d) 6 e) 8 8. Un grupo de gallinas tiene maíz para 18 días; después de 3 días, se sacrifica a la tercera parte. ¿Cuántos días durará el maíz para las restantes? a) 24 b) 26 c) 20 d) 22 e) 21 a) 37,5 d) 22,5 a) 45 a) 2,50 d) 25 e) 23 10. El anfitrión de una fiesta calculó que para sus 40 invitados tendría licor durante 4 horas. Pero resultó que después de 1 hora que comenzó la fiesta, llegaron a un mismo tiempo 20 amigos de su promoción. ¿Qué tiempo más durará el licor? b) 3 c) 2 d) 2 e) 2 Nivel II 1. Un pintor emplea 45 minutos en pintar una pared cuadrada de 3 metros de lado. ¿Qué tiempo empleará en pintar otra pared de 4 metros de lado? d) 72 e) 76 b) 43,5 e) 24,5 c) 17,2 b) 42 c) 36 d) 48 e) 40 4. Un grupo de 9 peones pueden cavar una zanja en 4 días. ¿Cuántos peones más se deberían contratar, para cavar la zanja en sólo 3 días? a) 21 c) 22 c) 80 3. Si 18 obreros pueden terminar una obra en 65 días, ¿cuántos obreros se requieren para terminarla en 26 días? a) 12 b) 24 b) 81 2. Un ciclista recorre 75 m cada 3 segundos, ¿cuántos kilómetros recorrerá en 1/4 de hora? 9. En el hogar de los Petizos, hay desayuno para 24 niños durante 20 días. Después de 5 días, se retiraron 9 niños. Calcular el número de días que habrá desayuno para los restantes. a) 3 5. Un automóvil consume 3 galones de gasolina cada 120 km. ¿Cuántos galones consumirá para recorrer una distancia de 180 km? A )6 c) 10:28 7. Un grupo de amigos disponía de S/. 360 para gastar vacacionando durante 4 días. ¿Para cuántos días les alcanzarían S/.630? REGLA DE TRES SIMPLE a) 12 h b) 10:18 e) 10:24 a) 75 b) 3 c) 6 d) 9 e) 15 5. Por pintar todas las caras de un cubo, se cobró S/.15. ¿Cuánto se cobrará por pintar sólo dos de sus caras? b) 5 c) 7,50 d) 4,50 e) 6 6. Tres de cada 576 encendedores que se fabrican resultan defectuosos; ¿cuántos encendedores, sin defecto, habrán en un lote de 2 880 encendedores? a) 2 877 d) 2 865 b) 2 875 e) 2 855 c) 2 868 7. Si 36 naranjas cuestan 18 soles, ¿cuánto se pagará por tres decenas de naranjas? a) 7 b) 10 c) 12 d) 15 e) 16 8. Un grupo de 9 secretarias se comprometió en hacer un trabajo de mecanografía en 6
  • 12. horas. Después de 2 horas de trabajo, se retiran 3 secretarias. ¿En cuántas horas más, del tiempo acordado, terminarán el trabajo las secretarias que quedan? a) 3 b) 1,5 c) 2 d) 3,5 e) 2,5 9. Un burro atado a una soga de 4 m demora 6 horas en comer el pasto que está a su alcance. ¿Qué tiempo hubiera empleado en comer el pasto a su alcance, si la soga fuera de 6 m? días se podría alimentar adicionalmente el destacamento? a) 30 b) 7 c) 13 d) 15 c) 18 d) 20 e) 24 2. Con 20 obreros se podría terminar una obra en 10 días. Si trabajaran 5 obreros más, ¿cuántos días tardarían en terminar la misma obra? a) 4 b) 6 c) 8 d) 10 e) 12 3. Los 3/8 de una obra se pueden hacer en 15 días, ¿en cuántos días se terminará lo que falta de la obra? a) 20 b) 25 e) 50 b) 18 c) 27 d) 20 e) 10 6. Si cierto número de sastres hacen 30 ternos, y tres sastres menos hacen 12 ternos, ¿cuántos ternos harán tres sastres? 1. Para recorrer los 4 lados de un rectángulo de tres metros de largo y dos de ancho, una hormiga demora 8 minutos. ¿Cuántos minutos tardará la misma hormiga en recorrer los lados de otro rectángulo de 9 metros de largo y 6 de ancho? b) 15 d) 80 e) 14 Nivel III a) 12 c) 90 5. Un ingeniero debidamente preparado tiene un rendimiento promedio de 90%. Si éste puede formular y evaluar un proyecto en 15 días, ¿en cuántos días podría hacer el mismo trabajo otro ingeniero con un rendimiento del 50%? a) 9 a) 10 b) 60 c) 30 d) 28 e) 22 4. Con una ración de tres veces por día un destacamento se alimenta durante 60 días. Si se reduce a dos raciones diarias, ¿cuántos a) 5 b) 10 c) 15 d) 18 e) 24 7. Un tornillo perfora 3/10 de milímetro en 25 vueltas, ¿cuántas vueltas necesitará para perforar 4,5 milímetros? a) 375 b) 357 c) 537 d) 527 e) 735 8. Si las 3/4 partes de una obra se pueden hacer en 15 días, ¿en cuántos días se haría la obra entera? a) 5 b) 10 c) 15 d) 20 e) 25 9. Un fusil automático ligero puede disparar 6 balas en 2 segundos, ¿cuántas balas disparará en un minuto? a)149 b)181 c)180 d) 151 e) 150 10. Dos engranajes de 30 y 36 dientes están en contacto. Si el primero da 42 RPM, halla cuántas RPM dará el segundo engranaje. a)25 b) 35 c) 45 d) 38 e) 28 REGLA DE TRES COMPUESTA Nivel I 1. Tres alumnos pueden resolver 20 problemas en 5 horas. ¿Cuántas horas se demorarán 5 alumnas de igual rendimiento en resolver 40 problemas de la misma dificultad? a) 3 b) 5 c) 6 d) 10 e) 12 2. Si 20 máquinas pueden hacer 5 000 envases en 50 días, ¿en cuántos días 50 máquinas pueden hacer 10 000 envases? a) 10 b) 20 c) 30 d) 40 e) 50 3. Si tres gatos comen tres ratones en tres horas, ¿cuántos ratones comerán 9 gatos en dos horas? a) 9 b) 6 c) 4 d) 3 e) 2 4. Cinco sastres pueden hacer 10 ternos en 8 días, trabajando dos horas diarias. ¿En cuántos días 10 sastres podrán hacer 50 ternos, si trabajan 5 horas diarias? a) 8 b) 10 c) 12 d) 5 e) 4 5. Si 7 monos comen en 14 días 7 plátanos, ¿en cuántos días 14 monos comerán 28 plátanos? a) 1 b) 7 c) 14 d) 21 e) 28 6. Dieciséis señoras pueden confeccionar 40 camisas en 20 días, trabajando 9 horas diarias. ¿En cuántos días 40 señoras podrían confeccionar 50 camisas, si trabajan 6 horas diarias? a) 6 b) 10 c) 15 d) 18 e) 20
  • 13. 7. En 12 días, 8 obreros hicieron 2/3 de una obra. ¿En cuántos días más harán el resto de la obra? a) 12 b) 8 c) 3 d) 6 e) 9 3. Si 20 obreros pueden arar un terreno cuadrado de 20 m de lado en 5 h, ¿en cuántas horas podrán arar otro terreno cuadrado de 40 m de lado, 50 obreros? a) 2 b) 4 c) 8 d) 10 e) 20 8. Si con 6 máquinas se pueden hacer 250 pares de zapatos en dos días, trabajando 5 h/d; para hacer en la misma cantidad de días 1 000 zapatos trabajando 6 h/d, ¿cuántas máquinas se necesitarán? 4. Tres hombres, trabajando 8 h/d, han hecho 80 m de una obra en 10 días. ¿Cuántos días necesitarán 5 hombres, trabajando 6 h/d, para hacer 60 m de la misma obra? a) 2 a) 2 b) 5 c) 6 d) 10 e) 20 9. Cinco balones de gas se utilizan para el funcionamiento de 8 cocinas durante 10 días. Si se tienen 10 cocinas, ¿para cuántos días alcanzarán 20 balones de gas? a) 8 b) 16 c) 32 d) 20 e) 10 10. Doce obreros pueden hacer una obra en 20 días. Si 6 de ellos aumentan su rendimiento en un 50%; ¿en cuántos días harán la obra? a) 8 b) 12 c) 16 d) 20 e) 18 Nivel II 1. Si 20 obreros pueden hacer un cuarto de una obra en 10 días, ¿en cuántos días 50 obreros harán lo que falta de la obra, sabiendo que esta última parte tiene el doble de dificultad que la primera? a) 5 b) 6 c) 12 d) 18 e) 24 2. Si 4 máquinas pueden fabrican 200 envases de un litro en 5 h, ¿en cuántas horas 5 máquinas pueden fabricar 500 envases de dos litros? a) 20 b) 30 c) 40 d) 25 e) 10 b) 3 c) 6 d) 10 b) 14 c) 16 d) 10 e) 6 6. Dos hombres han cobrado S/. 350 por un trabajo realizado por los dos. El primero trabajó durante 20 días a razón de 9 h/d y recibió S/. 150. ¿Cuántos días a razón de 6 h/d trabajó el segundo? a) 18 b) 20 c) 30 d) 40 a) 10 e) 28 a) 3 a) 50 e) 50 8. Un terreno rectangular de 2 m de ancho y 5 m de largo, 20 obreros lo pueden pintar en 5 horas. ¿En cuántas horas 10 obreros podrán c) 9 d) 12 e) 20 b) 40 c) 30 d) 20 e) 10 1. En 25 días, 12 obreros han hecho los 3/5 de una obra. Si se retiran dos obreros, ¿cuántos días emplearán los que quedan para terminar la obra? a) 10 e) 24 b) 6 Nivel III a) 7 d) 15 d) 40 10. Si 20 obreros en 40 días pueden hacer 200 m de una carretera, ¿cuántos obreros en la mitad del tiempo anterior podrían hacer la mitad de lo que se hizo anteriormente, en un terreno cuya dureza es el doble que la del terreno anterior? a) 21 c) 14 c) 30 9. Se emplean 12 hombres durante 6 días para cavar una zanja de 30 m de largo, 8 de ancho y 2 de alto, trabajando 6 h/d. Si se emplea el doble del número de hombres durante 9 días, para cavar otra zanja de 20 m de largo, 12 de ancho y 3 de alto, ¿cuántas horas diarias han trabajado? 7. Una cuadrilla de 15 hombres se compromete en terminar en 14 días una obra. Al cabo de 9 días solo han hecho los 3/7 de la obra, ¿con cuántos hombres tendrán que reforzar la cuadrilla para terminar la obra en el tiempo fijado? b) 9 b) 20 e) 5 5. Una guarnición de 1 600 hombres tienen víveres para 10 días a razón de 3 raciones diarias por cada hombre. ¿Cuántos días durarán los víveres, si se refuerzan con 400 hombres y cada hombre toma 2 raciones diarias? a) 12 pintar otro terreno de 8 m de largo y 5 m de ancho? b) 20 c) 18 d) 19 e) 24 2. Si 6 leñadores de 80% de eficiencia pueden construir un albergue en 20 días, ¿cuántos días se demorarán 8 leñadores de 75% de eficiencia para construir el mismo albergue?. b) 12 c) 15 d) 16 e) 18 3. Si 40 hombres pueden cavar una zanja de 200 m3 en 12 días, ¿cuántos hombres se necesitan para cavar otra zanja de 150 m3 en 10 días?
  • 14. a) 18 a) 36 b) 32 c) 38 d) 40 e) 45 4. Doce agricultores se demoran 10 días de 8 horas diarias en sembrar 240 plantones. ¿Cuántos plantones podrán sembrar ocho de estos agricultores en 15 días de 9 horas diarias? a)280 b)270 c)300 d)320 e)350 5. Una empresa posee 4 máquinas de 70% de rendimiento, que producen 2000 artículos cada 8 días. Si se quiere implementar otra sección con 3 máquinas de 80% de rendimiento, ¿cuántos artículos producirá en 14 días? a) 1 800 d) 3 000 b) 2 200 e) 3 600 b) 32 c) 24 d) 30 e) 28 c) 24 d) 30 e) 28 10. Un edificio puede ser pintado por 16 obreros en cierto tiempo, ¿cuántos obreros se necesitarán para pintar 1/4 del edificio en un tiempo que es los 2/7 del anterior? a) 10 b) 12 c) 15 d) 14 e) 18 TANTO PORCIENTO a) 18 b) 34 c) 36 d) 40 e) 42 8. Una empresa constructora puede pavimentar 800 m de una carretera en 25 días empleando 15 obreros. ¿Cuántos días emplearán 20 obreros de esta misma empresa para pavimentar 640 m de una carretera en un terreno del doble de dificultad? e) 60 8. En una población de 24 600 habitantes, el 63% son menores de 18 años. ¿Cuántos menores de 18 años hay en dicha población? b) 32 a)100 a) 32 d) 40 a) 18 1. De 56, el 25% es: b) 14 c) 12 d) 7 e) 9 2. ¿Qué % de 192 es 144? a) 66 b) 72 c) 80 d) 75 b)320 c)360 e) 63 d)310 e)300 4. 64, de 320, ¿qué % es? a) 25 b) 20 c) 30 d) 32 e) 22 5. El 25% más de 360 es: a)480 b)420 c)500 b) 25 a) 15 498 d) 15 844 d)450 e)560 6. ¿Qué % menos es 240 de 300? c) 75 d) 21 b) 15 948 e) 14 945 e)22 c) 16 248 9. En una tienda, se venden camisas a S/.15 cada una, pero si se desea una docena, descuentan el 20%. ¿Cuánto se pagará por 3 docenas de camisas? b)512 c)460 d)450 e)432 10. Una empresa encuestadora, manifiesta que en el horario que pasan cierto programa 3 de cada 5 televisores encendidos sintonizan dicho programa. ¿Qué % representa dicha sintonía? a) 45 b) 37,5 3. 240 es el 80% de: a)280 a) 20 a)423 Nivel I 7. En una guarnición hay 120 soldados que tienen víveres para 30 días, recibiendo cada uno 3 raciones diarias de comida. Si estos mismos víveres se repartieran a 150 soldados recibiendo cada uno dos raciones diarias, ¿cuántos días durarán los víveres? c) 10 7. Si Rosa Elvira ganaba S/.520 y ahora gana S/.650, ¿en qué % aumentó su sueldo? c) 2 400 d)180 e)240 b) 20 9. Cinco carpinteros pueden fabricar 25 sillas ó 10 mesas en 24 días de 8 horas diarias, ¿cuántos días de 7 horas diarias emplearán 6 carpinteros para fabricar 15 sillas y 8 mesas? 6. Seis monos comen 12 plátanos en 6 minutos. ¿Cuántos plátanos comerán 12 monos en 30 minutos? b)120 c)150 a) 80 c) 40 d)33,3 e) 60 Nivel II 1. Una casa está valorizada en $ 64 000. Para comprarla se pide el 15% de cuota inicial y el resto en 8 letras mensuales iguales. ¿Cuál es el pago mensual de cada letra? a) 5 200 c) 5 800 e) 6 200 b) 8 600 d) 6 800 2. Un anciano padre dispone en su testamento la repartición de su fortuna entre sus tres hijos, el primero recibirá el 36%, el segundo recibirá el 24% y el tercero recibirá el resto.
  • 15. Si la fortuna asciende a $ 75 000, ¿cuánto recibirá el tercer hijo? a) 27 000 c) 30 000 e) 36 000 b) 25 000 d) 32 000 3. Un vendedor recibe una comisión de 20% sobre la venta de cierta mercadería. Si sus ventas fueron de S/.640, ¿cuánto recibirá de comisión? a)120 b)128 c)162 d)96 e)108 4. A inicios del mes, una familia gastaba $ 120. Si la inflación durante dicho mes fue de 4,5%, ¿cuánto gastará dicha familia a fines de mes? a) 124,50 c) 122,50 e) 132 b) 125,40 d) 145,20 5. Una compañía "A" tiene 32% menos de capital, que una compañía "B". Si el capital de "A" es de $ 340 000, ¿cuál es el capital de "B"? a) 450 000 c) 550 000 e) 480 000 b) 850 e)265 c) 255 7. La población en cierta ciudad fue de 65 200 habitantes. Si la tasa de mortalidad fue de 8%, ¿cuántos fallecidos hubo en dicha ciudad? a) 5 214 d) 5 416 a) 25% de S/.72 b) 20% de S/.75 c) 60% de S/.36 d) 50% de S/.42 e) 75% de S/.60 a) 68 b) 93 c) 82 d) 46 e) 86 5. Aumentos sucesivos de 10%, 20% y 30% equivalen a un único aumento de: a) 60 b) 66,6 c) 72 d) 71,6 e) 73,3 9. Una empresa tiene al año una ganancia bruta de $ 6 240 000. Invierte 30% en salarios, 12% en mejorar su infraestructura, 38% en la adquisición de bienes y el resto en publicidad. ¿Cuánto invirtió en publicidad? a) 1 248 000 c) 1 240 000 e) 1 824 000 4. Dos descuentos sucesivos del 28% y 75% equivalen a un único descuento de: b) 1 324 000 d) 1 428 000 6. Si el lado de un cuadrado se incrementa en 10%, ¿en qué % se incrementa su área? a)10 b) 20 c) 100 d) 21 e) 42 7. El largo de un rectángulo aumenta en 20% y su ancho disminuye en 10%. ¿Qué variación porcentual tiene su área? a) aumenta en 16 % b) aumenta en 8 % c) disminuye en 12 % d) aumenta en 15 % e) disminuye en 9 % Nivel III b) 5 126 e) 5 621 c)5 216 1. En lugar de descontar sucesivamente el 10% y luego el 20% a un artículo cuyo valor es S/.360, se puede hacer un único descuento de: 8. La base de un triángulo aumenta en 25%. ¿En qué % debe disminuir su altura, para que el área no varíe? a) 38 b) 500 000 d)560 000 6. El 15% del 20% de 8 500, es: a) 2 550 d)205 8. Me deben el 15% de S/.540 y me pagan el 20% de S/.300. Entonces, me deben aún: a)25 b) 30 c) 28 d) 26,6 e) 32 b)22,5 c) 17 d) 19 e) 20 2. En un gran almacén de ropa, se ofrecen descuentos sucesivos del 20% y 30% en el departamento de lencería. ¿Cuál sería el descuento único? 9. Se mezclan 12 g de una sustancia "A" y 18 g de una sustancia "B", ¿cuántos gramos de "A" se deben añadir a la mezcla, para que el % sea de 50%? a) 44 a) 12 b) 50 c) 64 d) 54 e) 36 b) 9 c) 8 d) 6 e) 4 3. Un empleado gana S/.500. Si se le aumenta el 20% y luego se le descuenta el 20% de su nuevo sueldo, entonces el empleado recibirá: 10. Se tiene 15 litros de alcohol al 20%. ¿Cuántos litros de agua se deben agregar para rebajar el alcohol al 10%? a)420 a) 12 b)520 c)460 d)480 e)560 b)15 c) 10 d) 9 e) 18
  • 16. del mismo artículo y logra así la venta. Entonces Gumersindo: APLICACIONES COMERCIALES DEL TANTO PORCIENTO Nivel I a) Ni ganó ni perdió c) Perdió el 20% e) Perdió el 4% b) Ganó el 20% d) Ganó el 4% 1. ¿A cómo debo vender lo que me costó S/.150 para ganar el 30%? 8. Se vendió un escritorio en S/.240, ganando el 20% del costo. ¿Cuál es el precio del escritorio? a)180 a)180 b)190 c)195 d)200 e)210 2. ¿A cómo debo vender lo que me costó S/.270 para ganar el 10% del precio de venta? a)300 b)310 c)292 d)297 e)350 3. ¿A cómo debo vender lo que me costó S/. 160 para ganar el 10% del precio de costo, más el 20% del precio de venta? a)200 b)220 c)240 d)260 e)280 4. ¿A cómo debo vender lo que me costó S/.270 para ganar el 20% del precio de costo, más el 10% del precio de venta, más S/.18? a)350 b)360 c)380 d)400 e)420 5. ¿A cómo debo vender lo que me costó S/.180 para ganar el 30%? a)230 b)231 c)232 d)233 e)234 6. ¿A cómo debo vender lo que me costó S/.360 para ganar el 10% del precio de venta? a)396 b)400 c)420 d)380 e)450 7. Gumersindo decide aumentar en 20% el precio a un artículo. Pasados diez días, como nadie compra, disminuye en 20% el precio b)196 c)200 d)216 e)220 9. Se vendió un escritorio en S/.240, ganando el 20% del precio de venta. ¿Cuánto costó el escritorio? a)192 b)180 c)196 b)7,1 c)6,5 d)7,8 e)6,7 Nivel II 1. Si compré un televisor en $240 y lo quiero vender ganando el 30% del costo, ¿cuál es el precio de venta? a)288 b)312 c)324 d)272 e)252 2. Frank vendió su bicicleta en $150 ganando el 25% de lo que le costó. ¿Cuánto pagó Frank por la bicicleta? a)100 b)120 c)90 a)180 b)200 c)220 d)240 e)250 5. ¿A qué precio se debe vender un reloj que costó S/.255 y se quiere ganar el 15% del precio de venta? a)320 b)306 c)340 d)300 e)310 6. Un mayorista vende computadoras en $ 700, ganando el 20% del precio de venta. ¿Cuál es el precio de costo de cada computadora? a) 560 b)540 c)504 d)480 e)490 d)200 e)205 10. En cierto negocio, se vendió en S/.600 lo que había costado S/.560, ¿qué % del costo se ganó? (Aproximadamente) a)8,2 4. Al vender una cocina en $ 170 se perdió el 15% del costo. ¿Cuál fue el precio de costo? d)110 e)125 3. ¿Qué tanto por ciento del costo se pierde, cuando se vende en S/.104, lo que había costado S/.160? a)25% b)30% c)32% d)35% e)40% 7. Se vendió un artículo en S/. 450 ganándose el 25% del costo. ¿Cuál sería el precio de venta, si se quiere ganar el 40% del costo? a) S/.520 d) 480 b) 540 e) 490 c) 504 8. Se vende dos filmadoras en $ 720 cada una. En una de ellas se gana el 20% del costo y en la otra se pierde el 20%. ¿Cuánto se ganó o perdió en esta venta? a) se ganó $ 60 b) se perdió $ 60 c) se ganó $ 80 d) se perdió $ 80 e) no se ganó ni perdió 9. Al precio de costo de un artículo se le recarga el 25%, ¿cuál es el mayor tanto por ciento de rebaja que se puede hacer sobre este precio para no perder? a)15% b)17% c)25% d)20% e)18% 10. Para fijar el precio de venta de un artículo se aumenta su costo en 40% y al momento de venderlo se hace una rebaja del 10% del
  • 17. precio fijado. ¿Qué tanto por ciento del precio de costo se gana finalmente? a)30% b)20% c)24% d)25% e)26% Nivel III 1. El costo de fabricación de un producto es S/.260. Si se vendió dicha mercadería en S/.600, ¿qué % de la venta se ganó? (Aproximadamente) a) 79,4% d) 86,4% b) 84,6% e) 80,6% c) 82,1% 2. El dueño de una tienda compra mercadería por S/.420. Si vendió dicha mercadería en S/.600, ¿qué % de la venta ganó? a) 27 b) 33 c) 30 d) 26,6 e) 32 3. Se adquirió un lote de camisas por S/.120. Si se quiere vender ganando el 10% del costo, ¿cuál será dicho precio de venta? a) 132 b) 144 c) 142 d) 148 e)160 4. Una persona compró un reloj en S/.69. Como tenía necesidad urgente de dinero, tuvo que vender el reloj perdiendo el 15% de la venta. ¿Cuál fue el precio de venta? a) 62 b) 48 c) 58 d) 52 e) 60 5. Se vendió un artículo en S/.450 ganándose el 25% del costo. ¿Cuál sería el precio de venta, si se quiere ganar el 50% del costo? a) 520 b) 540 c) 504 d) 480 e) 490 6. ¿Qué tanto por ciento del costo se pierde, si una bicicleta que costó $ 140 se vende en $ 119? a) 10 b) 12 c) 30 d) 18 e) 15 7. Para fijar el precio de venta de un artículo, se aumentó el costo en un 40%, pero al vender se hizo una rebaja del 20%. ¿Qué tanto por ciento del costo se ha ganado? a) 10 b) 12 c) 14 d) 16 e) 20 8. El precio de venta de un objeto es de S/.897, el comerciante ganó en esta operación el 15%. Si el beneficio neto fue de S/.97, calcular los gastos que se producen en la venta. a) 10 b) 15 c) 20 d) 25 e) 30 9. Hace un mes un artículo costaba S/.5 y ahora cuesta S/.7. ¿En qué tanto por ciento ha aumentado el precio del artículo? a) 40% d) 42% b) 60% e) 54% c) 45% 10. En una tienda de abarrotes el 40% es arroz, el 30% es azúcar y el resto es fideos. Si se consume el 20% de arroz y el 70% de azúcar, ¿en qué tanto por ciento disminuyó la bodega? a) 33% d) 36% b) 30% e) 29% b) 26% e) 35% a) 48,8% d) 46,9% b) 47,7% e) 0,8% c) 49,6% 13. Si con “W” soles se pueden comprar 80 artículos más que con el 75% de “W”, ¿cuántos artículos se pueden comprar con el 75% del 50% de la mitad del 45% de “W”? a) 26 d) 25 b) 28 e) 27 c) 24 14. Un comerciante disminuye el precio de sus artículos en un 20%. ¿En qué tanto por ciento deberá aumentar el volumen de sus ventas, para que su ingreso bruto aumente en un 30%? a) 18,3% d) 48,3% b) 60,5% e) 46% c) 62,5% 15. Después de realizar dos descuentos sucesivos del 25% y 20% se vende un artículo en S/.540. ¿A cuánto equivale el descuento? a) S/.360 d) 310 b) 280 e) 260 c) 420 c) 28% 11. Si se vende un artículo en S/.10, ganando el 5% del precio de costo, ¿qué tanto por ciento se hubiese ganado si se hubiese vendido en S/.12? a) 24% d) 36% sucesivos del 20%, 20% y 20%. ¿Cuánto se ahorrará si escoge la mejor oferta? c) 28% 12. En una compra que se realiza hay opción para escoger entre los descuentos sucesivos del 30%, 20% y 10% o los descuentos SUERTE AMIGO (A) Oscar A. Acosta Verástegui

×