Does God play dice ?

744 views
633 views

Published on

An presentation that tries to explain the uniformity in chaos .. or vice versa ..

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
744
On SlideShare
0
From Embeds
0
Number of Embeds
17
Actions
Shares
0
Downloads
23
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Одной из идей, выросших из открытия фрактальной геометрии была идея нецелых значений для количества измерений в пространстве. Конечно, мы не можем осознать четырехмерные вещи, хотя Lucky Tesseract и активно работает в этом направлении. Мандельброт назвал нецелые измерения такие как 2.76 фрактальными измерениями. Обыкновенная евклидова геометрия утверждает, что пространство ровное и плоское. Свойства такого пространства такого пространства задают точки, линии, углы, треугольники, кубы, сферы, тетраэдры и т. д. Мандельброт верил, что действительный ландшафт пространства не ровный и что в нашем мире нет ничего, что было бы совершенно плоским, круглым, то есть все фрактально. Следовательно объект, имеющий точно 3 измерения невозможен. Вот почему концепция фрактального измерения была нужна для измерения степени неровности вещей. Например посмотрите на лист бумаги (предположим, что он двумерный), скомканный в шар. Разве он двумерный? Нет, так как у него есть длина, ширина и высота. Но он не может быть и трехмерным, потому что он сделан из одного бесконечно тонкого листа и, к тому же, он не полностью однородный. Итак, его фрактальная размерность приблизительно равна 2.5. Но его нормальная размерность, так же называемая Евклидовой размерностью будет равна 3. Все фракталы, особенно фрактальные кривые, имеют фрактальные размерности. Мандельброт часто использовал пример того, что береговая линия Англии имеет бесконечную длину. Попытайтесь наложить нитку на береговую линии Англии на атласе. Затем сделайте то же самое с мореходной картой. Удивительно, но величина последнего измерения будет гораздо больше. Затем поезжайте в Англию и измерьте ее береговую линию метровой полкой. Эта длина будет еще длинней Продолжайте этот процесс до тех пор, пока у вас в руках не окажется чертежная линейка, которой вы можете измерить береговую линию частичка за частичкой, атом за атомом. Конечно идея этого непрактичного эксперимента в том, что расстояния должны быть соизмеримы по масштабу, положению и деталям. Позже Мандельброт определил, что фрактальная размерность береговой линии Англии составляет 1.25. Многие объекты в природе (например человеческое тело) состоят из множества фракталов, смешанных друг с другом, причем каждый фрактал имеет свою размерность отличную от размерности остальных. Например, двумерная поверхность человеческой сосудистой системы изгибается, ветвится, скручивается и сжимается так, что ее фрактальная размерность равна 3.0. Но если бы она была разделена на отдельные части, фрактальная размерность артерий была бы только 2.7, тогда как бронхиальные пути в легких имели бы фрактальную размерность 1.07.
  • Теперь давайте посмотрим, как это в действительности происходит. Используя фрактал, называемый Деревом Пифагора, не рассматриваемого здесь (который, кстати, не изобретен Пифагором и никак не связан с теоремой Пифагора) и Броуновского движения (которое хаотично), давайте попытаемся сделать имитацию реального дерева. Упорядочение листьев и веток на дереве довольно сложно и случайно и, вероятно не является чем-то достаточно простым, что может эмулировать короткая программа из 12 строк. Для начала нужно сгенерировать Дерево Пифагора . Результат напоминает те старые детсадовские рисунки… Так что давайте сделаем ствол толще. На этой стадии Броуновское движение не используется. Вместо этого, каждый отрезок линии теперь стал линией симметрии прямоугольника, который становится стволом, и веток снаружи.
  • Вместо этого, каждый отрезок линии теперь стал линией симметрии прямоугольника, который становится стволом, и веток снаружи. Но результат все еще выглядит слишком формальным и упорядоченным. Дерево еще не смотрится как живое. Попробуем применить некоторые из тех знаний в области детерминированных фракталов, которые мы только что приобрели.
  • Теперь можно использовать Броуновское движение для создания некоторой случайной беспорядочности, которая изменяет числа, округляя их до двух разрядов. В оригинале были использованы 39 разрядные десятичные числа. Результат не выглядит как дерево. Вместо этого, он выглядит как хитроумный рыболовный крючок!
  • Может быть округление до 2 разрядов было слишком уж много? Снова применяем Броуновское движение, округленное на этот раз до 7 разрядов. Результат по-прежнему выглядит как рыболовный крючок, но на этот раз в форме логарифмической спирали!
  • Так как левая сторона (содержащая все нечетные числа) не производит эффект крючка, случайные беспорядочности, произведенные Броуновским движением применяются дважды ко всем числам с левой стороны и только один раз к числам справа. Может быть этого будет достаточно чтобы исключить или уменьшить эффект логарифмической спирали. Итак, числа округляются до 24 разрядов. На этот раз, результат — приятно выглядящая компьютеризированная хаотическая эмуляция реального дерева.
  • Разветвления трубочек трахей, листья на деревьях, вены в руке, река, бурлящая и изгибающаяся, рынок ценных бумаг — это все фракталы. От представителей древних цивилизаций до Майкла Джексона, ученые, математики и артисты, как и все остальные обитатели этой планеты, были зачарованы фракталами и применяли из в своей работе. Программисты и специалисты в области компьютерной техники так же без ума от фракталов, так как фракталы бесконечной сложности и красоты могут быть сгенерированы простыми формулами на простых домашних компьютерах. Открытие фракталов было открытием новой эстетики искусства, науки и математики, а так же революцией в человеческом восприятии мира.
  • Слово “ Фрактал ” — это что-то, о чем много людей говорит в наши дни, от физиков до учеников средней школы. Оно появляется на обложках многих учебников математики, научных журналов и коробках с компьютерным программным обеспечением. Цветные картинки фракталов сегодня можно найти везде: от открыток до футболок. За последние два десятка лет количество производимых в месяц единиц продукции, связанной с фракталами, увеличилось от нескольких десятков до многих тысяч! Итак, что это за цветные формы, которые мы видим повсюду вокруг? Говоря простым языком, фрактал — это геометрическая фигура, определенная часть которой повторяется снова и снова, изменяясь в размерах. Отсюда следует принцип самоподобия. Все фракталы подобны самим себе, то есть они похожи на всех уровнях. Существует много типов фракталов, причем здесь описываются довольно большое их количество Однако фракталы — не просто сложные фигуры, сгенерированные компьютерами. Все, что кажется случайным и неправильным может быть фракталом. Теоретически, можно сказать, что все что существует в реальном мире является фракталом, будь то облако или маленькая молекула кислорода.
  • Фракталы всегда ассоциируются со словом хаос. Я лично, определил бы фракталы, как частички хаоса.. Фракталы проявляют хаотическое поведение, благодаря которому они кажутся такими беспорядочными и случайными. Но если взглянуть достаточно близко, можно увидеть много аспектов самоподобия внутри фрактала. Например, посмотрите на дерево, затем выберите определенную ветку и изучите ее поближе. Теперь выберите связку из нескольких листьев. Для ученых, занимающихся фракталами (которых иногда называют хаологами), все эти три объекта представляются идентичными. Слово хаос наводит большинство людей на мысли о чем-то беспорядочном и непредсказуемом. На самом деле, это не совсем так. Итак насколько хаотичен хаос? Ответ таков, что хаос, в действительности, достаточно упорядочен и подчиняется определенным законам. Проблема состоит в том, что отыскание этих законов может быть очень сложным. Цель изучения хаоса и фракталов — предсказать закономерность в системах, которые могут казаться непредсказуемыми и абсолютно хаотическими. Система — это набор вещей, или область изучения, причем некоторые из обычных систем, которые хаологи любят изучать включают облачные образования, погода, движение водных потоков, миграции животных, и множество других аспектов из жизни матери природы. Так что, в конце концов, может быть, весь мир вокруг нас фрактален!
  • Для многих хаологов, изучение хаоса и фракталов не просто новая область познания, которая объединяет математику, теоретическую физику, искусство и компьютерные технологии — это революция. Это открытие нового типа геометрии, той геометрии, которая описывает мир вокруг нас и которую можно увидеть не только в учебниках, но и в природе и везде в безграничной вселенной. Пионером в этой новой области познания, которого многие называют отцом фракталов был Франко-Американский математик Профессор Бенуа Б. Мандельброт ( Benoit B . Mandelbrot ). В середине 1960х после десятилетий обучения и научной деятельности, Мандельброт разработал то, что он назвал фрактальная геометрия или геометрия природы (об этом он написал свой бестселлер — Фрактальная геометрия природы). Целью фрактальной геометрии был анализ сломанных, морщинистых и нечетких форм. Мандельброт использовал слово фрактал, потому что это предполагало осколочность и фракционность этих форм. Сегодня Мандельброт и другие ученые, такие как Клиффорд А. Пикковер ( Clifford A . Pickover ), Джеймс Глейк ( James Gleick ) или Г. О. Пейтген ( H . O . Peitgen ) пытаются расширить область фрактальной геометрии так, чтобы она могла быть применена практически ко всему в мире, от предсказания цен на рынке ценных бумаг до совершения новых открытий в теоретической физике
  • Фракталы находят все большее и большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Вот несколько примеров: КОМПЬЮТЕРНЫЕ СИСТЕМЫ Наиболее полезным использованием фракталов в компьютерной науке является фрактальное сжатие данных. В основе этого вида сжатия лежит тот факт, что реальный мир хорошо описывается фрактальной геометрией. При этом, картинки сжимаются гораздо лучше, чем это делается обычными методами (такими как jpeg или gif ). Другое преимущество фрактального сжатия в том, что при увеличении картинки, не наблюдается эффекта пикселизации (увеличения размеров точек до размеров, искажающих изображение). При фрактальном же сжатии, после увеличения, картинка часто выглядит даже лучше, чем до него. МЕХАНИКА ЖИДКОСТЕЙ Изучение турбулентности в потоках очень хорошо подстраивается под фракталы. Турбулентные потоки хаотичны и поэтому их сложно точно смоделировать. И здесь помогает переход к из фрактальному представлению, что сильно облегчает работу инженерам и физикам, позволяя им лучше понять динамику сложных потоков. При помощи фракталов также можно смоделировать языки пламени. Пористые материалы хорошо представляются в фрактальной форме в связи с тем, что они имеют очень сложную геометрию. Это используется в нефтяной науке. ТЕЛЕКОММУНИКАЦИИ Для передачи данных на расстояния используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес. ФИЗИКА ПОВЕРХНОСТЕЙ Фракталы используются для описания кривизны поверхностей. Неровная поверхность характеризуется комбинацией из двух разных фракталов. МЕДИЦИНА Биосенсорные взаимодействия Биения сердца БИОЛОГИЯ Моделирование хаотических процессов, в частности при описании моделей популяций.
  • Does God play dice ?

    1. 1. DOES GOD PLAY DICE??????
    2. 2. CHAOS THEORY Susse Chandrasekaran
    3. 3. WHAT IS CHAOS????? CHAOS ( kā'ŏs ' ) Noun A lack of order or regular arrangement: clutter, confusedness, confusion, derangement, disarrangement, disarray, disorder, disorderedness, disorderliness, disorganization, jumble, mess, mix-up, muddle, muss, scramble, topsy-turviness, tumble. - Websters The term "CHAOS" really has nothing with whether or not a system is frenzied or wild . In fact, a chaotic system can actually evolve in a way which appears smooth and ordered
    4. 4. "A chaotic system is defined as one that shows sensitivity to initial conditions. That is, any uncertainty in the initial state of the given system, no matter how small, will lead to rapidly growing errors in any effort to predict the future behavior…In other words, the system is chaotic. Its behavior can be predicted only if the initial conditions are known to an infinite degree of accuracy, which is impossible."   - Gollub and Solomon A CHAOTIC SYSTEM
    5. 5. "A chaotic system is defined as one that shows sensitivity to initial conditions. That is, any uncertainty in the initial state of the given system, no matter how small, will lead to rapidly growing errors in any effort to predict the future behavior…In other words, the system is chaotic. Its behavior can be predicted only if the initial conditions are known to an infinite degree of accuracy, which is impossible."   - Gollub and Solomon A CHAOTIC SYSTEM
    6. 6. When was chaos first discovered? The first true experimenter in chaos was a meteorologist, named Edward Lorenz . In 1960, he was working on the problem of weather prediction. He had a computer set up, with a set of twelve equations to model the weather One day in 1961, he wanted to see a particular sequence again. To save time, he started in the middle of the sequence, instead of the beginning. He entered the number off his printout and left to let it run. When he came back an hour later, the sequence had evolved differently. Instead of the same pattern as before, it diverged from the pattern, ending up wildly different from the original
    7. 7. A CHAOTIC SYSTEM In the original sequence, the number was .506127, and he had only typed the first three digits .506
    8. 8. THE BUTTERFLY EFFECT This effect came to be known as the Butterfly Effect . The amount of difference in the starting points of the two curves is so small that it is comparable to a butterfly flapping its wings. The flapping of a single butterfly's wing today produces a tiny change in the state of the atmosphere. Over a period of time, what the atmosphere actually does diverges from what it would have done. So, in a month's time, a tornado that would have devastated the Indonesian coast doesn't happen. Or maybe one that wasn't going to happen, does. This phenomenon, common to chaos theory, is also known as SENSITIVE DEPENDENCE ON INITIAL CONDITIONS
    9. 9. THE WATER WHEEL At the top, water drips steadily into containers hanging on the wheel's rim. Each container drips steadily from a small hole. If the stream of water is slow, the top containers never fill fast enough to overcome friction, but if the stream is faster, the weight starts to turn the wheel. The rotation might become continuous. Or if the stream is so fast that the heavy containers swing all the way around the bottom and up the other side, the wheel might then slow, stop, and reverse its rotation, turning first one way and then the other.
    10. 10. THE LORENZ ATTRACTOR. The equations for this system also seemed to give rise to entirely random behavior. However, when he graphed it, a surprising thing happened. The output always stayed on a curve, a double spiral. There were only two kinds of order previously known: a steady state, in which the variables never change, and periodic behavior, in which the system goes into a loop, repeating itself indefinitely. Lorenz's equations were definitely ordered - they always followed a spiral. They never settled down to a single point, but since they never repeated the same thing, they weren't periodic either. He called the image he got when he graphed the equations THE LORENZ ATTRACTOR.
    11. 12. Benoit Mandelbrot Benoit Mandelbrot believed that fractals were found nearly everywhere in nature, at places such as coastlines, mountains, clouds, aggregates, and galaxy clusters. He currently works at IBM's Watson Research Center and is a professor at Yale University. He has been awarded the Barnard Medal for Meritorious Service to Science, the Franklin Medal, the Alexander von Humboldt Prize, the Nevada Medal, and the Steinmetz Medal for his works One of the areas he was studying was cotton price fluctuations. No matter how the data on cotton prices was analyzed, the results did not fit the normal distribution. Mandelbrot eventually obtained all of the available data on cotton prices, dating back to 1900. When he analyzed the data with IBM's computers, he noticed an astonishing fact…………………….
    12. 13. The numbers that produced aberrations from the point of view of normal distribution produced symmetry from the point of view of scaling. Each particular price change was random and unpredictable. But the sequence of changes was independent on scale: curves for daily price changes and monthly price changes matched perfectly. Incredibly, analyzed Mandelbrot's way, the degree of variation had remained constant over a tumultuous sixty-year period that saw two World Wars and a depression.
    13. 14. KOCH CURVE Helge von Koch, captured this idea in a construction called the Koch curve. To create a Koch curve, imagine an equilateral triangle. To the middle third of each side, add another equilateral triangle. The Koch curve brings up an interesting paradox. Each time new triangles are added to the figure, the length of the line gets longer. However, the inner area of the Koch curve remains less than the area of a circle drawn around the original triangle. Essentially, it is a line of infinite length surrounding a finite area. Keep on adding new triangles to the middle part of each side, and the result is a Koch curve A magnification of the Koch curve looks exactly the same as the original. It is another self-similar figure.
    14. 15. KOCH CURVE
    15. 16. Cantor took a line segment of length x . He decided then it would be fun to take out the middle third as his first step in building his little object. Then, he divided the remaining segments by three as well, taking out the middle thirds of those. CANTORS DUST Then he repeated it once more . . . . . . . . . . . . . . . And so on till…
    16. 17. <ul><li>Follwing this to ad infinitum two startling facts became apparent: </li></ul><ul><ul><li>If one kept doing that forever, he wouldn't end up with a finite set of zero-dimensional. There would be an infinite number of them, and they weren't really points but bits of a line segment cut to lengths of infinite smallness. </li></ul></ul><ul><ul><li>This random collection of points was not a one-dimensional line either, as we'd begun by cutting it up, and infinite iteration of that process would never yield anything capable of having length (a one-dimensional measurement). </li></ul></ul><ul><li>So in a lower dimension Cantor's Dust (as it came to be known) was infinite when measured, but in the next possible step up it had a one-dimensional measure of zero. </li></ul>CANTORS DUST
    17. 18. FAILURE OF DIMENSIONS Lorentz ,Mandelbort ,Cantor and Koch had made one thing painfully clear The convenctional method of measurement i.e whole dimesions cannot measure everything
    18. 19. FRACTAL DIMENSIA Fractal dimensia is not just a part science, but one that helps Everyman to see the same world differently. Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor does lightning travel in a straight line Benoit Mandelbrot Fractal comes from the word fractional. A fractional dimension is impossible to conceive, but it does make sense. The Koch curve is rougher than a smooth curve or line, which has one dimension. Since it is rougher and more crinkly, it is better at taking up space. However, it's not as good at filling up space as a square with two dimensions is, since it doesn't really have any area. So it makes sense that the dimension of the Koch curve is 1.26 somewhere in between the two.
    19. 20. Fractal dimension: hidden dimensions <ul><li>Mandelbrot called not intact dimensions – fractal dimensions (for example 2.76) </li></ul><ul><li>Euclid geometry claims that space is straight and flat. </li></ul><ul><li>Object which has 3 dimensions correctly is impossible </li></ul><ul><li>Examples: Great Britain coastline, human body </li></ul>
    20. 21. FRACTAL = BIFORCATION Fractal has come to mean any image that displays the attribute of self-similarity. The bifurcation diagram of the population equation is fractal. The Lorenz Attractor is fractal. The Koch curve is fractal. A scientist by the name of Feigenbaum was looking at the bifurcation diagram again. He was looking at how fast the bifurcations come. He discovered that they come at a constant rate. He calculated it as 4.669 . In other words, he discovered the exact scale at which it was self-similar. Make the diagram 4.669 times smaller, and it looks like the next region of bifurcations. He decided to look at other equations to see if it was possible to determine a scaling factor for them as well. Much to his surprise, the scaling factor was exactly the same. Not only was this complicated equation displaying regularity, the regularity was exactly the same as a much simpler equation. He tried many other functions, and they all produced the same scaling factor, 4.669.
    21. 22. The Mandelbrot fractal set is the simplest nonlinear function, as it is defined recursively as f(x)=x^(2+c). After plugging f(x) into x several times, the set is equal to all of the expressions that are generated. The plots below are a time series of the set, meaning that they are the plots for a specific c. They help to demonstrate the theory of chaos, as when c is -1.1, -1.3, and -1.38 it can be expressed as a normal, mathematical function, whereas for c = -1.9 you can't. In other words, when c is -1.1, -1.3, and -1.38 the function is deterministic, whereas when c = -1.9 the function is chaotic. MANDELBORT SET
    22. 23. Time Series for c = -1.1 Time Series for c = -1.3
    23. 24. Time Series for c = -1.38 Time Series for c = -1.9
    24. 25. MANDELBORT SET The most famous fractal image is also one of the most simple.The equation is simple: z=z 2 +c . To see if a point is part of the Mandelbrot set, just take a complex number z. Square it, then add the original number. Square the result, then add the original number. Repeat that ad infinitum, and if the number keeps on going up to infinity, it is not part of the Mandelbrot set. If it stays down below a certain level, it is part of the Mandelbrot set. The Mandelbrot set is the innermost section of the picture, and each different shade of gray represents how far out that particular point is. One interesting feature of the Mandelbrot set is that the circular humps match up to the bifurcation graph. The Mandelbrot fractal has the same self-similarity seen in the other equations. In fact, zooming in deep enough on a Mandelbrot fractal will eventually reveal an exact replica of the Mandelbrot set, perfect in every detail.
    25. 27. EYECANDY
    26. 28. Tree simulation using Brownian motion and fractal called Pythag or Tree <ul><li>Order of leaves and branches is complicated and random, BUT can be emulated by short program of 12 rows. </li></ul><ul><li>Firstly, we need to generate Pythag or Tree. </li></ul>
    27. 29. Tree simulation using Brownian motion and fractal called Pythag or Tree <ul><li>On this stage Brownian motion is not used. </li></ul><ul><li>Now, every section is the centre of symmetry </li></ul><ul><li>Instead of lines are rectangle s. </li></ul><ul><li>But it still looks like artificial </li></ul>
    28. 30. Tree simulation using Brownian motion and fractal called Pythag or Tree <ul><li>Now Brownian motion is used to make randomization </li></ul><ul><li>Numbers are rounded-up to 2 rank instead of 39 </li></ul>
    29. 31. Tree simulation using Brownian motion and fractal called Pythag or Tree <ul><li>Rounded-up to 7 rank </li></ul><ul><li>Now it looks like logarithmic spiral. </li></ul>
    30. 32. Tree simulation using Brownian motion and fractal called Pythag or Tree <ul><li>To avoid spiral we use Brownian motion twice to the left and only once to the right </li></ul><ul><li>Now numbers are rounded-up to 24 rank </li></ul>
    31. 33. Fractals and world around <ul><li>Branching, leaves on trees, veins in hand, curving river, stock exchange – all these things are fractals. </li></ul><ul><li>Programmers and IT specialists go crazy with fractals. Because, in spite of its beauty and complexity, they can be generated with easy formulas. </li></ul><ul><li>Discovery of fractals was discovery of new art aesthetics, science and math, and also revolution in humans world perception . </li></ul>
    32. 34. What are fractals in reality? <ul><li>Fractal – geometric figure definite part of which is repeating changing its size => principle of self-similarity. </li></ul><ul><li>There are a lot of types of fractals </li></ul><ul><li>Not just complicated figures generated by computers. </li></ul><ul><li>Almost everything which seems to be casual could be fractal, even cloud or little molecule of oxygen . </li></ul>
    33. 35. How chaos is chaotic? <ul><li>Fractals – part of chaos theory. </li></ul><ul><li>Chaotic b ehaviour , so they seem disorderly and casual . </li></ul><ul><li>A lot of aspects of self-similarity inside fractal. </li></ul><ul><li>Aim of studying fractals and chaos – to predict regularity in systems, which might be absolutely chaotic. </li></ul><ul><li>All world around is fractal-like </li></ul>
    34. 36. Geometry of 21 st century <ul><li>Pioneer, father of fractals was Franco-American professor Benoit B. Mandelbrot. </li></ul><ul><li>1960 “ Fractal geometry of nature ” </li></ul><ul><li>Purpose was to analyze not smooth and broken forms. </li></ul><ul><li>Mandelbrot used word “ fractal ” , that meant factionalism of these forms </li></ul><ul><li>Now Mandelbrot, Clifford A . Pickover, James Gleick, H . O . Peitgen are trying to enlarge area of fractal geometry, so it can be used practical all over the world, from prediction of costs on stock exchange to new discoveries in theoretical physics. </li></ul>
    35. 37. Practical usage of fractals and chaos <ul><li>Computer systems (Fractal archivation, picture compressing without pixelization) </li></ul><ul><li>Liquid mechanics </li></ul><ul><ul><li>Modulating of turbulent stream </li></ul></ul><ul><ul><li>Modulating of tongues of flame </li></ul></ul><ul><ul><li>Porous material has fractal structure </li></ul></ul><ul><li>Telecommunications (antennas have fractal form) </li></ul><ul><li>Surface physics (for description of surface curvature) </li></ul><ul><li>Medicine </li></ul><ul><ul><li>Biosensor interaction </li></ul></ul><ul><ul><li>Heart beating </li></ul></ul><ul><li>Biology (description of population model) </li></ul>
    36. 38. PRESENTED BY : Susse Chandrasekaran
    37. 39. <ul><li>&quot;Bach to Chaos: Chaotic Variations on a Classical Theme&quot;, Science News, Dec. 24, 1994, pg. 428. </li></ul><ul><li>Gleick, James, Chaos - Making a New Science, Penguin Books Ltd, Harmondsworth, Middlesex, 1987. </li></ul><ul><li>Lowrie, Peter, personal interview over the Internet, May 17, 1995. </li></ul><ul><li>Rae, Kevin, &quot;Chaos&quot;, unpublished paper, submitted to Professor Gould, Modern Physics class, Claremont McKenna College, December 5, 1994. </li></ul><ul><li>Stewart, Ian, Does God Play Dice? The Mathematics of Chaos, Penguin Books Ltd, Harmondsworth, Middlesex, 1989. </li></ul>REFERENCES:
    38. 40. QUEIRIES
    39. 41. THANK YOU

    ×