• Save
Smart Grid Interoperability
Upcoming SlideShare
Loading in...5
×
 

Smart Grid Interoperability

on

  • 277 views

 

Statistics

Views

Total Views
277
Views on SlideShare
277
Embed Views
0

Actions

Likes
0
Downloads
3
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Smart Grid Interoperability Smart Grid Interoperability Document Transcript

  • Semantic Technologies for Standards Validation and Harmonization Using Semantic Technology to validate Smart Grid Models! Challenge! Approach! Technology! Architecture! How to reconcile vocabularies, Convert standard specification into concepts and relations among all RDF, OWL SPARQL  Query  Editor   the smart grid standards? Demonstrate a web app for easy TopBraid  Live  on  AWS   Overlapping, different and interrogation of the model by the sometimes contradictory standardization community Tomcat   vocabularies and definitions among Expose inconsistencies among Test Model: standards concepts in different standards to Amazon  Web  Server  (AWS)   ASHRAE/NEMA Facility Smart Grid harmonize terms Information Model (FSGIM) SPC 201P Opportunity! SAMPLE QUERY: To expose non-standard use of data types RESPONSE: SELECT  DISTINCT  ?cls  ?role  ?range  ?rootDatatypeOfRange   WHERE  {          ?cls  rdfs:subClassOf  ?restriction  .          ?restriction  owl:onProperty  ?role  .          ?restriction  owl:allValuesFrom  ?range  .          ?range  a  rdfs:Datatype  .          ?range  (rdfs:subClassOf)*  ?rootDatatypeOfRange  .          ?rootDatatypeOfRange  a  rdfs:Datatype  .          ?rootDatatypeOfRange  rdfs:subClassOf  rdfs:Resource  .          BIND  (afn:namespace(?rootDatatypeOfRange)  AS  ?rootNamespace)  .          FILTER  (((?rootNamespace  !=  "http://schema.omg.org/spec/UML/2.1/uml.xml#")  &&  (? rootNamespace  !=  "http://www.w3.org/2001/XMLSchema#"))  &&  (!fn:contains(?rootNamespace,   "primitive_data_types-­‐-­‐-­‐common_primitive_types_classes_and_enumerations#")))  .          FILTER  queries:isCoreComponentResource(?cls)  .   }   ORDER  BY  ?cls  Other interesting queries: Classes that are defined that nothing points to. Classes that share substantially the same properties. Impact! Future Work! Raise the quality of standards Examine the generality of the approach to other standards Reduce time to build standards STEVE RAY | SURBHI DANGI ! Examine more complex and subtle problems with standards ! Reduce cost for interoperability ! Build mappings using SPARQL inferences to existing RALPH HODGSON | GOKHAN SOYDAN | Reduce integration costs international standards for common concepts (ISO, W3C, IEC) ANKUR OBERAI! CARNEGIE MELLON UNIVERSITY SILICON VALLEY – Steve Ray | Christopher Oentojo! Challenge! Mobile health care devices remain independent silos of information App developers do not have the patience to adopt complex standards There is limited ability to coordinate or share data among devices from different vendors Approach! Build a lightweight, easy to implement ontology of data that maps to international standards, but is easy for most devices to support, to encourage adoption hsl = Healthcare Semantics Light (developed at CMU) subset = Subset of IEEE11073 – 10417/ 10415 / 10404 / 10407 / 10408 Impact ! Future Work ! Our ontology allows app developers to easily create apps that are interoperable with Map concepts to other ontologies (e.g. SUMO and UMBEL) healthcare devices, at little cost. Our work aims to contribute to the growing effort Migrate paper-based standards into a computer readable form that toward home healthcare supports inferencing and automated validation