Micro Robots

2,679 views
2,498 views

Published on

Published in: Education, Technology, Business
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,679
On SlideShare
0
From Embeds
0
Number of Embeds
23
Actions
Shares
0
Downloads
140
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Micro Robots

  1. 1. Micro Robots Sumit Tripathi Saket Kansara
  2. 2. Outline <ul><li>Introduction </li></ul><ul><li>Challenges </li></ul><ul><ul><li>Fabrication </li></ul></ul><ul><ul><li>Sensors </li></ul></ul><ul><ul><li>Actuators </li></ul></ul><ul><li>MEMS Micro robot </li></ul><ul><li>Applications </li></ul><ul><li>Future scope </li></ul>
  3. 3. Introduction <ul><li>Programmable assembly of nm-scale (~ 1-100 nm){μm-scale (~ 100 nm-100 μm)} components either by manipulation with larger devices, or by directed self-assembly. </li></ul><ul><li>Design and fabrication of robots with overall dimensions at or below the μm range and made of nm-scale {μm-scale} components. </li></ul><ul><li>Programming and coordination of large numbers (swarms) of such nanorobots. </li></ul>
  4. 4. FABRICATION <ul><li>Materials: </li></ul><ul><ul><li>Polymer actuators( Polypyrrole (PPy) actuators): </li></ul></ul><ul><ul><ul><ul><ul><li>Can be actuated in wet conditions or even in aqueous solution. </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Have reasonable energy consumption. </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Easily deposited by electrochemical methods </li></ul></ul></ul></ul></ul><ul><ul><li>Titanium-Platinum alloy </li></ul></ul><ul><ul><ul><ul><ul><li>Used to manufacture electrodes </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Corrosion resistant </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Titanium adhesive alloy, high fracture energy(4500 J/m2 or more) </li></ul></ul></ul></ul></ul><ul><ul><li>Silicon substrate: capability of bonding between two surfaces of same or different material </li></ul></ul><ul><ul><li>Carbon nanotubes: </li></ul></ul><ul><ul><ul><ul><ul><li>Assembly of aligned high density magnetic nanocores </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Flexible characteristics along the normal to the tube’s axis </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Extremely strong </li></ul></ul></ul></ul></ul><ul><ul><li>Biological proteins, bacteria etc. </li></ul></ul>Image: Berkeley University
  5. 5. Actuator-Rotary Nanomachine. The central part of a rotary nanomachine.(Figure courtesy of Prof. B. L. Feringa’s group (Univ of Groningen.) <ul><li>Power is supplied to these machines electrically, optically, or chemically by feeding them with some given compound. </li></ul><ul><li>Rotation due to orientation in favorable conformation </li></ul><ul><li>Subject to continuous rotation </li></ul>
  6. 6. Drawbacks of molecular machines of This Kind <ul><li>Moving back and forth or rotating continuously </li></ul><ul><li>Molecules used in these machines are not rigid </li></ul><ul><li>Wavelength of light is much larger than an individual machine . </li></ul><ul><li>Electrical control typically requires wire connections . </li></ul><ul><li>The force/torque and energy characteristics have not been investigated in detail. </li></ul>Rotary Nanomachine.
  7. 7. Motor run by Mycoplasma mobile Image credit: Yuichi Hiratsuka, et al. <ul><li>Bacterium moves in search of protein rich regions. </li></ul><ul><li>The bacteria bind to and pull the rotor. </li></ul><ul><li>Move at speeds of up to 5 micrometers per second. </li></ul><ul><li>Tracks are designed to coax the bacteria into moving in a uniform direction around the circular tracks. </li></ul>Protrusions
  8. 8. Motion of a Mycoplasma mobile -driven rotor . Image credit: Yuichi Hiratsuka, et al. <ul><li>Some Other Types: </li></ul><ul><li>Chlamyodomonas : Swim toward light (phototaxis) </li></ul><ul><li>Dictyostelium amoeba crawl toward a specific chemical substance (chemotaxis). </li></ul>Each rotor is 20 micrometers in diameter
  9. 9. Cantilever Sensors Department of Physics and Physical Oceanography, Memorial University, St. John’s, Newfoundland,Canada θ=Angle of incidence Φ=Azimuthal angle Nc is the surface normal to cantilever ξ = Angle of inclination of PSD
  10. 10. Cantilever Sensors <ul><li>Detection Mechanisms </li></ul><ul><li>Detect the deflection of a cantilever caused by surface stresses </li></ul><ul><li>Measure the shift in the resonance frequency of a vibrating cantilever </li></ul><ul><li>Drawbacks </li></ul><ul><li>Inherent elastic instabilities at microscopic level </li></ul><ul><li>Difficult to fabricate nanoscale cantilevers </li></ul>Image: L. Nicu, M. Guirardel, Y. Tauran, and C. Bergaud (a) cantilevers (b) bridges. Optical microscope images of SiNx:
  11. 11. Micro-Electro-Mechanical-System <ul><li>60 μm by 250 μm by 10 μm </li></ul><ul><li>Turning radius 160 μm </li></ul><ul><li>Speed over 200 μm/s </li></ul><ul><li>Average step size 12 nm </li></ul><ul><li>Ability to navigate complex paths </li></ul>
  12. 12. The state transition diagram of USDA Bruce R. Donald , Member, IEEE , Christopher G. Levey , Member, IEEE , Craig D. McGray , Member, IEEE , Igor Paprotny, and Daniela Rus
  13. 13. Configuration Space Bruce R. Donald , Member, IEEE , Christopher G. Levey , Member, IEEE , Craig D. McGray , Member, IEEE , Igor Paprotny, and Daniela Rus
  14. 14. Steering Arm subsystem <ul><li>Dimple dimension .75 μm </li></ul><ul><li>Disk radius 18 μm </li></ul><ul><li>Cantilever beam 133 μm long </li></ul><ul><li>Controls direction by raising and lowering the arm </li></ul><ul><li>Simultaneous operation with scratch drive </li></ul><ul><li>Control in the form of oscillating voltages </li></ul>Bruce R. Donald , Member, IEEE , Christopher G. Levey , Member, IEEE , Craig D. McGray , Member, IEEE , Igor Paprotny, and Daniela Rus
  15. 15. Control Waveforms <ul><li>Drive waveform actuates the robot </li></ul><ul><li>Forward waveform lowers the device voltage </li></ul><ul><li>Turning waveform increases the device voltage </li></ul>Bruce R. Donald , Member, IEEE , Christopher G. Levey , Member, IEEE , Craig D. McGray , Member, IEEE , Igor Paprotny, and Daniela Rus
  16. 16. Power delivery mechanism <ul><li>Uses insulated electrodes on the silicon substrate </li></ul><ul><li>Forms a capacitive circuit with scratch drive </li></ul><ul><li>Actuator can receive consistent power in any direction and position </li></ul><ul><li>No need of position restricting wires </li></ul>Bruce R. Donald , Member, IEEE , Christopher G. Levey , Member, IEEE , Craig D. McGray , Member, IEEE , Igor Paprotny, and Daniela Rus
  17. 17. Device Fabrication <ul><li>Surface micromachining process: </li></ul><ul><ul><ul><li>Consists of three layers of polycrystalline silicon, separated by two layers of phosphosilicate glass. </li></ul></ul></ul><ul><ul><ul><li>The base of the steering arm is curled so that the tip of the arm is approximately 7.5 μm higher than the scratch drive plate </li></ul></ul></ul><ul><ul><ul><li>Layer of tensile chromium is deposited to create curvature </li></ul></ul></ul>Bruce R. Donald , Member, IEEE , Christopher G. Levey , Member, IEEE , Craig D. McGray , Member, IEEE , Igor Paprotny, and Daniela Rus
  18. 18. Electrical Grids <ul><li>Consist of an array of metal electrodes on a silicon substrate. </li></ul><ul><li>Electrodes are insulated from the substrate by a 3 μm thicklayer of thermal silica </li></ul><ul><li>Coated with 0.5 of zirconium dioxide </li></ul><ul><ul><li>High-impedance dielectric coupling </li></ul></ul><ul><li>Silicon wafers: oxidized for 20 h at 1100C in oxygen </li></ul><ul><li>Wafers are patterned with the “Metal” pattern </li></ul><ul><li>Three metal layers are evaporated onto the patterned substrates </li></ul><ul><ul><li>Middle layer consists of gold-Conductive </li></ul></ul><ul><ul><li>Two layers of chromium-adhesion layers between the gold, the oxidized substrate, and the zirconium dioxide </li></ul></ul>Bruce R. Donald , Member, IEEE , Christopher G. Levey , Member, IEEE , Craig D. McGray , Member, IEEE , Igor Paprotny, and Daniela Rus
  19. 19. Some Other Kinds <ul><li>Piezoelectric motors for mm Robots </li></ul><ul><ul><ul><li>Not required to support an air gap </li></ul></ul></ul><ul><ul><ul><li>Mechanical forces are generated by applying a voltage directly across the piezoelectric film. </li></ul></ul></ul><ul><ul><ul><li>Ferroelectric thin films (typically 0.3-μm), intense electric fields can be established with fairly low voltages. </li></ul></ul></ul><ul><ul><ul><li>High torque to speed ratios. </li></ul></ul></ul><ul><li>μ Robots Driven by external Magnetic fields Include a permanent magnet </li></ul><ul><ul><ul><li>Can be remotely driven by external magnetic fields </li></ul></ul></ul><ul><ul><ul><li>Suitable for a mobile micro robot working in a closed space. </li></ul></ul></ul><ul><ul><ul><li>Pipe line inspection and treatment inside human body. </li></ul></ul></ul>Anita M. Flynn, Lee S. Tavrow, Stephen F. Bart and Rodney A. Brooks MIT Artificial Intelligence Laboratory
  20. 20. Applications <ul><li>See and monitor things never seen before </li></ul><ul><li>Medical applications such as cleaning of blood vessels with micro-robots </li></ul><ul><li>Military application in spying </li></ul><ul><li>Surface defect detection </li></ul><ul><li>Building intelligent surfaces with controllable (programmable) structures </li></ul><ul><li>Tool for research and education </li></ul>Micro robot interacting with blood cells
  21. 21. Future Scope
  22. 22. Future Scope <ul><li>Realization of ‘Microfactories’ </li></ul><ul><li>Self assembling robots </li></ul><ul><li>Use in hazardous locations for planning resolution strategies </li></ul><ul><li>Search in unstructured environments, surveillance </li></ul><ul><li>Search and rescue operations </li></ul><ul><li>Space application such as the ‘Mars mission’ </li></ul><ul><li>Self configuring robotics (change shape) </li></ul><ul><li>Micro-machining </li></ul>
  23. 23. Acknowledgements <ul><li>B. L. Feringa, “In control of motion: from molecular switches to molecular motors,” Acc. Chem. Res., vol. 34, no. 6, pp. 504–513, June 2001. </li></ul><ul><li>H. C. Berg, Random Walks in Biology. Princeton, NJ: Princeton Univ. Press, 1993. </li></ul><ul><li>http://www.physorg.com/news79873873.html </li></ul><ul><li>K.R. Udayakumar, S.F. Bart, A.M. Flynn, J.Chen, L.S. Tavrow, L.E. Cross, R.A. Brooks and D.J.Ehrlich, “Ferroelectric Thin Film Ultrasonic Micromotors”Fourth IEEE Workshop on Micro Electro Mechanical Systems, Nara, Japan, Jan. 30 - Feb. 2, 1991. </li></ul><ul><li>JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 1, FEBRUARY 2006 1An Untethered, Electrostatic, Globally Controllable MEMS Micro-Robot Bruce R. Donald, Member, IEEE, Christopher G. Levey, Member, IEEE, Craig D. McGray, Member, IEEE,Igor Paprotny, and Daniela Rus </li></ul><ul><li>K.W. Markus, D. A.Koester, A. Cowen, R. Mahadevan,V. R. Dhuler,D.Roberson, and L. Smith, “MEMS infrastructure: The multi-user MEMSprocesses (MUMPS),” in Proc. SPIE—The Int. Soc. Opt. Eng., Micromach.,Microfabr. Process Technol., vol. 2639, 1995, pp. 54–63. </li></ul>
  24. 24. THANK YOU

×