Your SlideShare is downloading. ×
0
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Inverter
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Inverter

1,703

Published on

inverter

inverter

Published in: Education
0 Comments
5 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,703
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
5
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Inverter (Konverter DC – AC) Pekik Argo Dahono
  • 2. Penggunaan Inverter • Pengendalian motor ac • UPS • Catu daya ac • Ballast elektronik • Microwave heating • Static VAR generators • FACTS (Flexible AC Transmission System) • Filter daya aktif • Penyearah
  • 3. Variable Speed Drives SourceAC rectifierDiode inverterPWM LinkDC MotorAC
  • 4. Uninterruptibe AC Power Supplies chargerBattery Bettery Inverter Filter SwitchBypassStatic SwitcheMaintenancMechanical LoadsCritical source normalAC generator Standby
  • 5. Basic Concepts oV E L oI dE dI Inverter oV Lo XjI E E E Lo XjI Lo XjI oV oV E Lo XjI oV lagging 0PF 1PF leading 0PF 1PF oI oI oI oI
  • 6. Properties of Ideal Inverters • DC input is free of ripple • AC output is sinusoidal or has a controllable waveshape
  • 7. Klasifikasi Inverter 1) Menurut jumlah fasa - satu-fasa - banyak fasa 2) Menurut sumber dc: - sumber tegangan - sumber arus 3) Menurut metoda komutasi: - komutasi paksa - komutasi natural 4) Menurut metoda pengaturan gelombang ac: - gelombang persegi - pulse amplitude modulation (PAM) - pulse width modulation (PWM) 5) Menurut jumlah level gelombang keluaran: - dua level - banyak level
  • 8. Inverter Satu-Fasa dE   1S 1D 2S 2D ov Load oi 1N 1N 2N di dE 1S 1D 2S 2D dE Load u0 ov oi dE 1S 1D 2S 2D Load 3S 3D 4S 4D u v ov oi
  • 9. Inverter Center-Tap dE   1S 1D 2S 2D ov Load oi 1N 1N 2N di dE N N 1 2 dE N N 1 2 0 ov oi di
  • 10. Inverter Center-Tap dE N N 1 2 dE N N 1 2 0 ov oi di dE   1S 1D 2S 2D ov Load oi 1N 1N 2Ndi dE   1S 1D 2S 2D ov Load oi 1N 1N 2Ndi dE   1S 1D 2S 2D ov Load oi 1N 1N 2Ndi dE   1S 1D 2S 2D ov Load oi 1N 1N 2Ndi
  • 11. Inverter Center-Tap BebanBeban
  • 12. Analisis Tegangan Output Inverter Center-Tap       kVV E N N tdtE N N V tkVv k dd nk k / 22 sin 22 sin2 :Tegangan 1 1 22/ 0 1 2 1 12            
  • 13. Inverter Center-Tap • Sederhana • Komponen minimum • Harus pakai trafo • Cocok untuk daya rendah (< 1 kW) • Cocok untuk tegangan dc yang rendah • Pengaturan tegangan dilakukan dengan menggunakan trafo ferroresonance.
  • 14. Half-Bridge Inverter 1S 1D 2S 2D 2 dE Load u0 ov oi 2 dE 1di 2di 2 dE 0 ov oi 2 dE 1Si 1Di 1di
  • 15. Analisis Tegangan Output Inverter Half-Bridge       kVV Etdt E V tkVv k d d nk ko / 2 sin 2 sin2 :Tegangan 1 2/ 01 12            
  • 16. Inverter Thyristor Beban Beban
  • 17. Inverter Thyristor Beban Beban
  • 18. Inverter Full-Bridge 2 dE 2 dE 0 2 dE 2 dE 0 0 dE dE uov vov uvv uvi  1S 2S 4S 3S 4S di 1S 1D 2S 2D Load 3S 3D 4S 4D u v ov oi dE 2 dE 2 dE 0 di
  • 19. Inverter Full-Bridge                2/7cos 7 22 2/5cos 5 22 2/3cos 3 22 2/cos 22 2/cos 22 sin 22 sin2 7 5 3 1 2/ 2/ 12                d d d d ddk nk ko EV EV EV EV kE k tdtkEV tkVv          
  • 20. Inverter Tiga-Fasa         uowowuwovovwvououv vouowownwouovovnwovououn wovouonownvnun nownwonovnvonounuo vvvvvvvvv vvvvvvvvvvvv vvvvvvv vvvvvvvvv     2 3 1 2 3 1 2 3 1 3 1 0 1S 1D 2S 2D udE 2 dE 2 dE 0 di 3S 3D 4S 4D v 5S 5D 6S 6D w n Load
  • 21. Inverter Tiga-Fasa 2 dE 2 dE 0 0 0 0 0 2 dE 2 dE 2 dE 2 dE 3 2 dE 3 dE 3 dE 3 2 dE dE dE uov vov wov unv uvv
  • 22. Inverter Tiga-Fasa     dll nk nk kphun phkph dph nk kphuo EV tkVv kVV EV tkVv     6 :fasaantarTegangan sin2 netral-ke-fasaTegangan / 2 sin2 nol-ke-fasaTegangan 1, 3 12 , 1,, 1, 12 ,            
  • 23. Simulation
  • 24. Simulated Result
  • 25. Teknik PWM 1. Sampling Based PWM: • Natural sampling (Carrier Based) • Regular sampling 2. Programmed PWM: • Eliminated Harmonics • Minimum Harmonics
  • 26. Teknik PWM 1S 2 dE Load0 ov oi 2 dE 1di 2di 1D 2S 2D u   o 2 dE 0 2 dE uov If fc/fr integer, the technique is called synchronous otherwise asynchronous
  • 27. Regular Sampling 2 dE 0 2 dE uov
  • 28. Simulation
  • 29. Simulation Results
  • 30. Analisis Tegangan Keluaran nverter PWM Satu-Fasa                                      1 0 1 cossinsin 2 sin 2 sin sin 2 coscos cos ./ 22 12 2 n s dd o r d n ssss d n n snoo sON r ddd s OFFON o tnkn k EE kv kv n n E C tdtntdtn E C tnCvv TT v EEE T TT v               makaJika :FourierDeret manayang :teganganrata-rataNilai 0 0 2 dE 2 dE  rv car ONT sT
  • 31. Simulation result under nonsinusoidal reference
  • 32. Analisis Tegangan keluaran • Maximum peak output voltage is Ed/2. This value is less than the fundamental component of square-wave output voltage. • The output current waveform is almost sinusoidal when the switching frequency is high. • Because the switching frequency is high, the switching losses are also high.
  • 33. Analisis Riak 0 2 dE  2 dE r uv carrier ot 1t 2t 3t 4t sT 1ToT oT ui ~ uv                                       434 311 1 for for2 for 1~ Thus, ~ ~~ 2 1 2 2 Then ~ and~assumeusLet :equationtageOutput vol ttttt L v ttttt L v E T L v ttttt L v dtvv L i dt id LiRvvv e dt id LiR E T TE vv iiivvv e dt di LRiv uo uo d o uo oo uo uouou u uuououo u u u d s ONd ruo uuuuououo u u uuo
  • 34. Analisis Riak             2 0 2 , 22 1 ~ 2 1~ ~1~ sin 2 1 2 1 2 1 2 12 dII dti T I kv v T T v T T uavu Tt t u s u r u r s r u s o so o :rippleofvalueRMS :rippleofvaluesquareMean
  • 35. Programmed PWM ganjil.Untukn n n E b n n E a M k k kd n M k k kd n                   2 1 2 1 sin)1( 2 cos)1(1 2    
  • 36. Teknik PWM Untuk Inverter Satu-Fasa Full-Bridge 2 dE 2 dE uov vov uvv 1S 1D 2S 2D Load 3S 3D 4S 4D u v ov oi dE 2 dE 2 dE 0 di   o   o 1S 2S 3S 4S
  • 37. Three-Phase PWM Inverter 1S 1D 2S 2D udE 2 dE 2 dE 0 di 3S 3D 4S 4D v 5S 5D 6S 6D w n Load
  • 38. Teknik PWM Inverter Tiga-Fasa r uv r vv r wv uov vov uvv r w d wo r v d vo r u d uo uowowu wovovw vououv d wo d wo r w d vo d vo r v d uo d uo r u v E v v E v v E v vvv vvv vvv E v E vcarv E v E vcarv E v E vcarv 2 2 2 22 22 22          ELSETHENIF ELSETHENIF ELSETHENIF
  • 39. Simulation
  • 40. Simulation Results
  • 41. Teknik PWM Inverter Tiga-Fasa n Load 0 uov vov wov wi vi ui
  • 42. Teknik PWM Inverter Tiga-Fasa     PWMvectorSpace- PWMousDiscontinu - :popularmostThe              3sin 4 3sin 6 sin sin sin 3 2 3 2 k s k s skv skv skv o o o r w o r v o r u
  • 43. Simulation Result
  • 44. Switching Function Concept       functionswitchingphase-to-phaseis ELSETHENIF ELSETHENIF ELSETHENIF otherwisethen signalONanreceivesdeviceswitchinguppertheIF uv dwuduwuGwGwu dvwdwvwGvGvw duvdvuvGuGuv dwwGdvvGduuG ww r w vv r v uu r u s EsEssvvv EsEssvvv EsEssvvv EsvEsvEsv sscarv sscarv sscarv ss         01 01 01 .01
  • 45. Current-Type Inverters R L e C 1S u 2S 3S v 4S 6S w 5S dI 0 u 1S 2S u v w R L e 3S v 4S 5S 6S w dE Current-Type Inverter Voltage-Type Inverter
  • 46. Autosequential Commutation Current-Source Inverters Motor Induction dI dv
  • 47. Current-Source Inverter with Individual Commutation dI dv Bridge Auxiliary Bridge Main Motor Induction
  • 48. Current-Source Inverter with Fourth-Leg Commutation dI dv
  • 49. Duality Between Voltage-Type and Current-Type Inverters 0 d v uuo Esv  d v vvo Esv  d v wwo Esv  ui vi wi u v w R L e u v w C G j d i uvuv Isi  d i vwvw ISi  d i wuwu Isi  ui vi wi
  • 50. Duality Between Voltage-Type and Current-Type Inverters r uvi r vwi r wui 0 1 i uvs 0 1 1 i vs i vws 0 1 r uv r vv r wv 0 1 v us 0 1 1 v uvs v vs 0 1
  • 51. Current-Type Inverters .continuitycurrentsorceensuretodevices switchinglowerandupperofpaironeON-turnthenzeroareandallIF signal.ONanreceivesS6norS5neitherIFand signal,ONanreceivesS6THENIFsignal,ONanreceivesS5THENIF signal.ONanreceivesS4norS3neitherIFand signal,ONanreceivesS4THENIFsignal,ONanreceivesS3THENIF signal.ONanreceivesS2norS1neitherIFand signal,ONanreceivesS2THENIFsignal,ONanreceivesS1THENIF ELSETHENIF ELSETHENIF ELSETHENIF i w i v i u i w i w i w i v i v i v i u i u i u i wu i vw i w i vw i uv i v i uv i wu i u i wu i wu r wu i vw i vw r vw i uv i uv r uv sss s ss s ss s ss sssssssss sscari sscari sscari ,, 0 11 0 11 0 11 01 01 01          
  • 52. Current-Type Inverters • At present, voltage-type inverters are more popular than current-type inverters. • Current-type inverters are commonly used as PWM rectifiers. • Advances on superconductor will increase the use of current-type inverters. • At present, several manufacturers introduce reverse- blocking devices on one module. • Current-type inverters are introduced for medium voltage ac drives because the input and output currents are almost sinusoidal, inherently four-quadrants, and short- circuit proof.
  • 53. Space-Vector PWM   3/2 2 3 2 j coboaoo ea avvavv    :definitionvectorVoltage 100011 101001 010 110 111000
  • 54. Space Vector PWM     21 1 2 2 21 2 2 1 1 21 sincos3 2 3 sin 3 3 3 3 sin 3 1 3 2 cos ttTt E V Tt E V Tt E T t V E T t E T t V v T t v T t v T t v vbvaVev so d s d s d s d s d s zero s o ss r o jr o               dEv 3 2 1   3/ 2 3 2 j deEv   r ov  
  • 55. Space Vector PWM aphase bphase cphase 2 ot 1t 2t 2 ot 0 0 0
  • 56. Two-Level Inverters • High-voltage applications need high-voltage switching devices. • Series connection of switching devices are difficult to control. • Output waveforms can only be improved at the expense of switching losses. • High-voltage applications may need bulky and expensive transformers. 2 dE 2 dE u0 1S 2S
  • 57. Diode clamped multilevel inverters 2 dE 2 dE u0 1S 2S 1D 2D 3S 4S 0 1D u 1S 2S 3S 4S 4 dE 2D 3D 4D 5D 6D 5S 6S 7S 8S 4 dE 4 dE 4 dE Three-level inverter Five-level inverter
  • 58. Flying capacitor inverters 2 dE u 1S 2S 3S 4S dE Three level inverters Five level 2 dE u 1S 2S 3S 4S dE 4 3 dE 4 dE 5S 6S 7S 8S
  • 59. Cascade connection of single-phase inverters u 1S 2S v 3S 4S dE 1S 2S v 3S 4S dE u 1S 2S 3S 4S dE Three level inverter Five level inverter

×