• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Resilience ortenzi fp_fb_lg
 

Resilience ortenzi fp_fb_lg

on

  • 197 views

 

Statistics

Views

Total Views
197
Views on SlideShare
197
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Resilience ortenzi fp_fb_lg Resilience ortenzi fp_fb_lg Presentation Transcript

    • RISE:a method for the design of resilient infrastructuresand structures against emergenciesM. Ortenzi, Francesco Petrini*, F. Bontempi, L. Giuliani*Associate Researcher, francesco.petrini@uniroma1.itSapienza – University of RomeDepartment of Structural and Geotechnical EngineeringRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergencies
    • BackgroundThis paper originates from a European research proposal.Background2F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesOrganization:Groups involved: ~ 12 groups directly involved1 advisory board of 2-3 experts (not directly involved)Work packages: 7 technical work packages2 additional work package for coordination and disseminationEconomical estimation:Total budget: ~ 4.5 mil EUR (max. financing 3.5 mil EUR)Time schedule:Duration: 3 years (winter 2013 winter 2016)Expected Impacts:It is expected that action under this topic will improve the design of urban area and thus increasetheir security against and resilience to new threats. It is expected that it will lead to a systematicapproach to resilience enhancements for large urban built infrastructures beginning at the designstage.
    • BackgroundThis paper originates from a European research proposal.Background3F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesOrganization:Groups involved: ~ 12 groups directly involved1 advisory board of 2-3 experts (not directly involved)Work packages: 7 technical work packages2 additional work package for coordination and disseminationEconomical estimation:Total budget: ~ 4.5 mil EUR (max. financing 3.5 mil EUR)Time schedule:Duration: 3 years (winter 2013 winter 2016)Expected Impacts:It is expected that action under this topic will improve the design of urban area and thus increasetheir security against and resilience to new threats. It is expected that it will lead to a systematicapproach to resilience enhancements for large urban built infrastructures beginning at the designstage.
    • RISE conceptIntro
    • 5F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesResilience conceptDefinition (not univocal):A resilient community is defined as the one having the ability to absorb disasterimpacts and rapidly return to normal socioeconomic activity.MCEER (Multidisciplinary Center for Earthquake Engineering Research), (2006). “MCEER’s Resilience Framework”. Availableat http://mceer.buffalo.edu/research/resilience/Resilience_10-24-06.pdfNEHRP (National Earthquake Hazards Reduction Program), 2010. “Comments on the Meaning of Resilience”. NEHRPTechnical report. Available at http://www.nehrp.gov/pdf/ACEHRCommentsJan2010.pdfMCEER framework for resilience evaluation:Initial losses Recovery time, depending on:• Resourcefulness• RapidityDisaster strikesSystemicRobustness
    • 6F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesDefinition (not univocal):A resilient community is defined as the one having the ability to absorb disasterimpacts and rapidly return to normal socioeconomic activity.MCEER (Multidisciplinary Center for Earthquake Engineering Research), (2006). “MCEER’s Resilience Framework”. Availableat http://mceer.buffalo.edu/research/resilience/Resilience_10-24-06.pdfNEHRP (National Earthquake Hazards Reduction Program), 2010. “Comments on the Meaning of Resilience”. NEHRPTechnical report. Available at http://www.nehrp.gov/pdf/ACEHRCommentsJan2010.pdf(dQ/dt)L0TR(dQ/dt)0A R.I.S.E. focusesonL0 and (dQ/dt)0MCEER framework for resilience evaluation:Resilience is inversely proportional to the area A.R.I.S.E. – Concept (I)
    • 7F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesR.I.S.E. – Concept (II)----- = ordinary node= critical (active) nodein case of emergency-----= ordinary principal link(e.g. road)= ordinary alternative link(e.g. underground)= critical principal link= critical alternative linkSCHOOLHOSPITALHOUSEAGGRGATESPORTARENASHOPPINGCENTEREMBASSYOFFICEUNIV.CAMPUSHOUSEAGGRGATEFIREDEPTUrban developmentPLANTRepresentation of an urban area as a network of nodes and links- Nodes: relevant premises for urban activities, strategic and crowded buildings- Links: interconnections between them, transport and supply systems
    • 8F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesR.I.S.E. – Concept (II)SCHOOLHOSPITALHOUSEAGGRGATEMALLSHOPPINGCENTEREMBASSYOFFICEHOUSEAGGRGATEHOUSEAGGRGATEFIREDEPARTMENTPLANTEXAMPLE: CHAIN HAZARDTsunami after an Earthquake = flood action= earthquake action= blast action= fire actionActions due to different hazards= chainactions= concurrentactionsActions combination (multiple)accidental actions & multiple hazards
    • 9F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesHOSPITALPLANTSCHOOLEMB-ASSYOFFICEMALLHOUSEUrban areaRepresentation of an urban area as a network of nodes and links- Nodes: relevant premises for urban activities, strategic and crowded buildings- Links: interconnections between them, transport and supply systemsR.I.S.E. – Concept (III)Advantage of this model:-Accurate: describes single responsesof nodes and links (local level) in termof both SERVICEABILITY and INTEGRITY-Complete: accounts for INTERACTIONSbetween single structures or servicesand assesses the resilience of theinfrastructure as whole (network level)-Flexible: can be applied to alltypes of large-scale infrastructures
    • 10F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesL0(dQ/dt)0MESO- LEVEL: Contribute of the single premise(e.g. hospital, by considering the interrelationswith proximity elements)MACRO- LEVEL:- Convolution of the meso-level contributesdLiRepresentation of an urban area as a network of nodes and links- Nodes: relevant premises for urban activities, strategic and crowded buildings- Links: interconnections between them, transport and supply systemsR.I.S.E. – Concept (IV)Advantage of this model:-Accurate: describes single responsesof nodes and links (local level) in termof both SERVICEABILITY and INTEGRITY-Complete: accounts for INTERACTIONSbetween single structures or servicesand assesses the resilience of theinfrastructure as whole (network level)-Flexible: can be applied to alltypes of large-scale infrastructures-Multi-scale: resilience is evaluated atmeso- and macro-scale levels
    • 11F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesHOSPITALPLANTSCHOOLEMB-ASSYOFFICEMALLHOUSEUrban areaRepresentation of an urban area as a network of nodes and links- Nodes: relevant premises for urban activities, strategic and crowded buildings- Links: interconnections between them, transport and supply systemsR.I.S.E. – Concept (III)HospitalAdvantage of this model:-Accurate: describes single responsesof nodes and links (local level) in termof both SERVICEABILITY and INTEGRITY-Complete: accounts for INTERACTIONSbetween single structures or servicesand assesses the resilience of theinfrastructure as whole (network level)-Flexible: can be applied to alltypes of large-scale infrastructures-Multi-scale: resilience is evaluated atmeso- and macro-scale levels-Powerful: the analysis output be usedfor the analysis of larger scaleinfrastructures
    • 12F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesRISE – Concept resumeMCEER (Multidisciplinary Center for Earthquake EngineeringResearch), (2006). “MCEER’s Resilience Framework”.-- = ordinary node= critical node in case of emergency---= principal link (e.g. road)HOSPITALHOUSEAGGRGATEMALLSHOPPINGCENTEROFFICEHOUSEAGGRGATEFIREDEPARTMENTNUCLEARPLANTHOSPITALHOUSEAGGRGATEMALLSHOPPINGCENTEROFFICEHOUSEAGGRGATEFIREDEPARTMENTNUCLEARPLANT= earthquake action= blast action= fire actionRepresentation of a large infrastructure as a network of nodes and linksNodes: relevant premises of the infrastructure Links: local and access roads, pipelines and supply systemInitial lossesRecovery time:• Resourcefulness• RapidityDisasterstrikesAL0(dQ/dt)0LOCAL- LEVEL:Contributeof the singlepremise(e.g. hospital,by considering theinterrelations withproximity elements)NETWORK- LEVEL:- Convolution of the local-level contributesdLiQuantitative definition of Resilience (MCEER) R.I.S.E. Multiscale philosophyDisaster strikes --> Hazard scenario
    • 13RISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesRISE–FrameworkLoadNetwork Model forresilienceMulti-hazardScenariosLocalLevelNetworkLevelLocal resilience indicators Network resilience indicatorsASSESSMENTandMITIGATION(Analysisforeachnodeandlink)Scenario output before mitigationScenario output after mitigationResIStframework for resilience assessmentStructure performanceAB RecoveryE.g. Repair timeDamageActionDamage/Disservice% of rescuedAction valuesIMAIM100 %People safetyBQualityIndicatorStatus of nodes and links(no interaction)AQualityIndicatorInteractions effects (quality drop)BL0i TRiQuality (network level)Combination of local indicatorsIndicatorL0 TRResilience ∞ 1 /ACLocal resilience indicators are evaluated foreach node and Link and for each scenarioNetwork resilience indicators are evaluated foreach scenario---- = Output---- = commentQualityL0 = initial lossesTR = recovery timeInfrastructurerepresentationHazardAnalysisProtectionanalysisPerformanceanalysisResilience AssessmentNetworkLevel12 System Recovery functionD** Picture taken from:Decò A., Bocchini P., Frangopol D.M.. A probabilistic approach for the prediction of seismic resilience of bridges.Earthquake Engineering and Structural Dynamics, Wiley, DOI: 10.1002/eqe.2282Recoveryanalysis**3RISEframework for resilience assessment
    • Case-Study1
    • 15F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesCase study: an urban area under EarthquakeHospitalResidentialcomplexEnergy and watersupply infrastructure----- = ordinary node= critical (active) nodein case of emergency-----
    • 16F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesHospitalResidentialcomplexEnergy and watersupply infrastructure----- = ordinary node= critical (active) nodein case of emergency-----ZYX70mCase study: an urban area under Earthquake
    • 17F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesHospitalResidentialcomplexEnergy and watersupply infrastructure----- = ordinary node= critical (active) nodein case of emergency-----ZYX70mCase study: an urban area under Earthquake
    • 18F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesEnergy and water supply infrastructure: representationWUWDHYCBCRCURETAINING WALL UP (WU) RETAINING WALL DOWN (WD) HYDROELECTRIC POWER STATION (HY)CONDUIT UP (CU) CONDUIT ROSALBACONDUIT PAVONCELLI BIS12345671 2 34 5 67HYDRAULIC JUNCTIONELECTRICITYWATERInfrastructure plan view Individuation of the system/network components Representation of the systemOutputsLoadNetwork Model forresilienceMulti-hazardScenariosNetworkLevelLocal resilience indicators Network resilience indicatorsASSESSMENTandMITIGATION(Analysisforeachnodeandlink)Scenario output before mitigationScenario output after mitigationResIStframework for resilience assessmentStructure performanceAB RecoveryE.g. Repair timeActionDamage/Disservice% of rescuedAction valuesIMAIM100 %People safetyBQualityIndicatorStatus of nodes and links(no interaction)AQualityIndicatorInteractions effects (quality drop)BL0i TRiQuality (network level)Combination of local indicatorsIndicatorL0 TRResilience ∞ 1 /ACLocal resilience indicators are evaluated foreach node and Link and for each scenarioNetwork resilience indicators are evaluated foreach scenario---- = Output---- = commentQualityL0 = initial lossesTR = recovery timeInfrastructurerepresentationHazardAnalysisProtectionanalysisPerformanceanalysisResilience AssessmentNetwork12 System Recovery functionDRecoveryanalysis**3RISEframework for resilience assessmentLoadNetwork Model forresilienceMulti-hazardScenariosLocalLevelNetworkLevelLocal resilience indicators Network resilience indicatorsASSESSMENTandMITIGATION(Analysisforeachnodeandlink)Scenario output before mitigationScenario output after mitigationResIStframework for resilience assessmentStructure performanceAB RecoveryE.g. Repair timeDamageActionDamage/Disservice% of rescuedAction valuesIMAIM100 %People safetyBQualityIndicatorStatus of nodes and links(no interaction)AQualityIndicatorInteractions effects (quality drop)BL0i TRiQuality (network level)Combination of local indicatorsIndicatorL0 TRResilience ∞ 1 /ACLocal resilience indicators are evaluated foreach node and Link and for each scenarioNetwork resilience indicators are evaluated foreach scenario---- = Output---- = commentQualityL0 = initial lossesTR = recovery timeInfrastructurerepresentationHazardAnalysisProtectionanalysisPerformanceanalysisResilience AssessmentNetworkLevel12 System Recovery functionD** Picture taken from:Decò A., Bocchini P., Frangopol D.M.. A probabilistic approach for the prediction of seismic resilience of bridges.Earthquake Engineering and Structural Dynamics, Wiley, DOI: 10.1002/eqe.2282Recoveryanalysis**3RISEframework for resilience assessment
    • 19F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesEnergy and water supply infrastructure: scenariosFLOW REDUCTION (U)FLOW REDUCTION (R)ELECTRIC POWER INTERRUPTIONTOTAL FLOW INTERRUPTION (R+U)ConsequencescenariosLoadNetwork Model forresilienceMulti-hazardScenariosNetworkLevelLocal resilience indicators Network resilience indicatorsASSESSMENTandMITIGATION(Analysisforeachnodeandlink)Scenario output before mitigationScenario output after mitigationResIStframework for resilience assessmentStructure performanceAB RecoveryE.g. Repair timeActionDamage/Disservice% of rescuedAction valuesIMAIM100 %People safetyBQualityIndicatorStatus of nodes and links(no interaction)AQualityIndicatorInteractions effects (quality drop)BL0i TRiQuality (network level)Combination of local indicatorsIndicatorL0 TRResilience ∞ 1 /ACLocal resilience indicators are evaluated foreach node and Link and for each scenarioNetwork resilience indicators are evaluated foreach scenario---- = Output---- = commentQualityL0 = initial lossesTR = recovery timeInfrastructurerepresentationHazardAnalysisProtectionanalysisPerformanceanalysisResilience AssessmentNetwork12 System Recovery functionDRecoveryanalysis**3RISEframework for resilience assessmentLoadNetwork Model forresilienceMulti-hazardScenariosLocalLevelNetworkLevelLocal resilience indicators Network resilience indicatorsASSESSMENTandMITIGATION(Analysisforeachnodeandlink)Scenario output before mitigationScenario output after mitigationResIStframework for resilience assessmentStructure performanceAB RecoveryE.g. Repair timeDamageActionDamage/Disservice% of rescuedAction valuesIMAIM100 %People safetyBQualityIndicatorStatus of nodes and links(no interaction)AQualityIndicatorInteractions effects (quality drop)BL0i TRiQuality (network level)Combination of local indicatorsIndicatorL0 TRResilience ∞ 1 /ACLocal resilience indicators are evaluated foreach node and Link and for each scenarioNetwork resilience indicators are evaluated foreach scenario---- = Output---- = commentQualityL0 = initial lossesTR = recovery timeInfrastructurerepresentationHazardAnalysisProtectionanalysisPerformanceanalysisResilience AssessmentNetworkLevel12 System Recovery functionD** Picture taken from:Decò A., Bocchini P., Frangopol D.M.. A probabilistic approach for the prediction of seismic resilience of bridges.Earthquake Engineering and Structural Dynamics, Wiley, DOI: 10.1002/eqe.2282Recoveryanalysis**3RISEframework for resilience assessment
    • 20F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesWU FAILHYFAIL?CUFAIL?YWU + WD +HY+ CUTOTAL FLOWTOTAL FLOWTOTAL FLOWNO R + ECRFAIL?WUWU + WDWU + WD + HYWDFAIL?NNNYYNNNNCRFAIL?CRFAIL?CRFAIL?NO RNO RNO U + ENO U+ E + RNNNNYYYYFault-TreeanalysisCriticalseriesofcomponentsWUWDHYCBCRCURETAINING WALL UP (WU) RETAINING WALL DOWN (WD) HYDROELECTRIC POWER STATION (HY)CONDUIT UP (CU) CONDUIT ROSALBACONDUIT PAVONCELLI BIS12345671 2 34 5 67HYDRAULIC JUNCTIONELECTRICITYWATERInfrastructure plan view Individuation of the system/network components Representation of the systemOutputsEnergy and water supply infrastructure: scenariosLoadNetwork Model forresilienceMulti-hazardScenariosNetworkLevelLocal resilience indicators Network resilience indicatorsASSESSMENTandMITIGATION(Analysisforeachnodeandlink)Scenario output before mitigationScenario output after mitigationResIStframework for resilience assessmentStructure performanceAB RecoveryE.g. Repair timeActionDamage/Disservice% of rescuedAction valuesIMAIM100 %People safetyBQualityIndicatorStatus of nodes and links(no interaction)AQualityIndicatorInteractions effects (quality drop)BL0i TRiQuality (network level)Combination of local indicatorsIndicatorL0 TRResilience ∞ 1 /ACLocal resilience indicators are evaluated foreach node and Link and for each scenarioNetwork resilience indicators are evaluated foreach scenario---- = Output---- = commentQualityL0 = initial lossesTR = recovery timeInfrastructurerepresentationHazardAnalysisProtectionanalysisPerformanceanalysisResilience AssessmentNetwork12 System Recovery functionDRecoveryanalysis**3RISEframework for resilience assessmentLoadNetwork Model forresilienceMulti-hazardScenariosLocalLevelNetworkLevelLocal resilience indicators Network resilience indicatorsASSESSMENTandMITIGATION(Analysisforeachnodeandlink)Scenario output before mitigationScenario output after mitigationResIStframework for resilience assessmentStructure performanceAB RecoveryE.g. Repair timeDamageActionDamage/Disservice% of rescuedAction valuesIMAIM100 %People safetyBQualityIndicatorStatus of nodes and links(no interaction)AQualityIndicatorInteractions effects (quality drop)BL0i TRiQuality (network level)Combination of local indicatorsIndicatorL0 TRResilience ∞ 1 /ACLocal resilience indicators are evaluated foreach node and Link and for each scenarioNetwork resilience indicators are evaluated foreach scenario---- = Output---- = commentQualityL0 = initial lossesTR = recovery timeInfrastructurerepresentationHazardAnalysisProtectionanalysisPerformanceanalysisResilience AssessmentNetworkLevel12 System Recovery functionD** Picture taken from:Decò A., Bocchini P., Frangopol D.M.. A probabilistic approach for the prediction of seismic resilience of bridges.Earthquake Engineering and Structural Dynamics, Wiley, DOI: 10.1002/eqe.2282Recoveryanalysis**3RISEframework for resilience assessment
    • Interaction analysis2
    • LoadNetwork Model forresilienceMulti-hazardScenariosLocalLevelNetworkLevelLocal resilience indicators Network resilience indicatorsASSESSMENTandMITIGATION(Analysisforeachnodeandlink)Scenario output before mitigationScenario output after mitigationResIStframework for resilience assessmentStructure performanceAB RecoveryE.g. Repair timeDamageActionDamage/Disservice% of rescuedAction valuesIMAIM100 %People safetyBQualityIndicatorStatus of nodes and links(no interaction)AQualityIndicatorInteractions effects (quality drop)BL0i TRiQuality (network level)Combination of local indicatorsIndicatorL0 TRResilience ∞ 1 /ACLocal resilience indicators are evaluated foreach node and Link and for each scenarioNetwork resilience indicators are evaluated foreach scenario---- = Output---- = commentQualityL0 = initial lossesTR = recovery timeInfrastructurerepresentationHazardAnalysisProtectionanalysisPerformanceanalysisResilience AssessmentNetworkLevel12 System Recovery functionD** Picture taken from:Decò A., Bocchini P., Frangopol D.M.. A probabilistic approach for the prediction of seismic resilience of bridges.Earthquake Engineering and Structural Dynamics, Wiley, DOI: 10.1002/eqe.2282Recoveryanalysis**3RISEframework for resilience assessment22F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesLoadresilienceMulti-hazardScenariosLocalLevelNetworkLevelLocal resilience indicators Network resilience indicatorsASSESSMENTandMITIGATION(Analysisforeachnodeandlink)Scenario output before mitigationScenario output after mitigationframework for resilience assessmentStructure performanceAB RecoveryE.g. Repair timeDamageActionDamage/Disservice% of rescuedAction valuesIMAIM100 %People safetyBQualityIndicatorStatus of nodes and links(no interaction)AQualityIndicatorInteractions effects (quality drop)BL0i TRiQuality (network level)Combination of local indicatorsIndicatorL0 TRResilience ∞ 1 /ACLocal resilience indicators are evaluated foreach node and Link and for each scenarioNetwork resilience indicators are evaluated foreach scenario---- = Output---- = commentQualityL0 = initial lossesTR = recovery timeHazardAnalysisProtectionanalysisPerformanceanalysisResilience AssessmentNetworkLevel12 System Recovery functionD** Picture taken from:Decò A., Bocchini P., Frangopol D.M.. A probabilistic approach for the prediction of seismic resilience of bridges.Earthquake Engineering and Structural Dynamics, Wiley, DOI: 10.1002/eqe.2282Recoveryanalysis**3Critical series of components: retaining wallsWUWDHYCBCRCURETAINING WALL UP (WU) RETAINING WALL DOWN (WD) HYDROELECTRIC POWER STATION (HY)CONDUIT UP (CU) CONDUIT ROSALBACONDUIT PAVONCELLI BIS12345671 2 34 5 67HYDRAULIC JUNCTIONELECTRICITYWATERInfrastructure plan view Individuation of the system/network components Representation of the systemOutputs(0,0) (92,0)(92,29)(0,29)(0,54)(0,62) (28.5,62)(53,56)(63,45)(92,32)(92,34)Critical series of componentsFE model
    • 23F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesIndividual components: seismic fragility(0,0) (92,0)(92,29)(0,29)(0,54)(0,62) (28.5,62)(53,56)(63,45)(92,32)(92,34)record ID Earthquake Station Record/Component HP (Hz) LP (Hz) PGA (g)1 P1047 Kobe 1995/01/16 20:46 0 OKA KOBE/OKA-UP 0.05 null 0.0382P0189Imperial Valley 1979/10/1523:165052 Plaster City IMPVALL/H-PLS135 0.1 40 0.0573 P1047 Kobe 1995/01/16 20:46 0 OKA KOBE/OKA000 0.05 null 0.0814 Imperial Valley El_Centro#13 NGA_no_176_H-E13230 0.1385P0210Imperial Valley 1979/10/1606:585169 WestmorlandFire StaIMPVALL/F-WSM180 0.25 40 0.1716P0027 Hollister 1961/04/09 07:231028 Hollister CityHallHOLLISTR/B-HCH271 0.11 11 0.1967 Loma Prieta AndersonDam NGA_no_739_AND250 0.2448 LomaPrieta HollisterDiff.Array NGA_no_778_HDA165 0.2789 P0169Imperial Valley 1979/10/1523:166617 Cucapah IMPVALL/H-QKP085 0.05 null 0.30910 LomaPrieta WAHO NGA_no_811_WAH090 0.3699611 Kobe, Japan Nishi-Akashi NGA_no_1111_NIS000 0.5027512 Kobe, Japan Takatori 0.6112613 CHI-CHI CHY028 NGA_no_1197_CHY028-E 0.6530114 Loma Prieta AndersonDam NGA_no_739_AND250 0.683215 LomaPrieta HollisterDiff.Array NGA_no_778_HDA165 0.722816Imperial Valley 1979/10/1523:166617 Cucapah IMPVALL/H-QKP085 0.05 null0.803417 LomaPrieta WAHO NGA_no_811_WAH090 0.850918 Kobe, Japan Nishi-Akashi NGA_no_1111_NIS000 0.9049519 Kobe, Japan Takatori 1.1002620 CHI-CHI CHY028 NGA_no_1197_CHY028-E 1.17542EDP:1) Max bending moment in theconcrete wall2) Max drift3) Final driftIM: PGAMETHODOLOGY:Set of seismic recordsZhang J., Huo Y. (2009). Evaluating effectiveness and optimum design of isolation devices for highway bridges using thefragility function method. Engineering Structures 31; 1648-1660
    • 24F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesIndividual components: seismic fragility(0,0) (92,0)(92,29)(0,29)(0,54)(0,62) (28.5,62)(53,56)(63,45)(92,32)(92,34)EDP:1) Max bending momentin the concrete wall2) Max drift3) Final driftLS threshold values:1) WU=WD=850848.8 N*m2) WU=0.3m; WD=0.4m3) WU=0.3m; WD=0.4mWUWDP(EDP|IM)IM (g)WUIM (g)WDP(EDP|IM)
    • 25F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesInteractions on seismic fragilityLoadNetwork Model forresilienceMulti-hazardScenariosLocalLevelNetworkLevelLocal resilience indicators Network resilience indicatorsASSESSMENTandMITIGATION(Analysisforeachnodeandlink)Scenario output before mitigationScenario output after mitigationResIStframework for resilience assessmentStructure performanceAB RecoveryE.g. Repair timeDamageActionDamage/Disservice% of rescuedAction valuesIMAIM100 %People safetyBQualityIndicatorStatus of nodes and links(no interaction)AQualityIndicatorInteractions effects (quality drop)BL0i TRiQuality (network level)Combination of local indicatorsIndicatorL0 TRResilience ∞ 1 /ACLocal resilience indicators are evaluated foreach node and Link and for each scenarioNetwork resilience indicators are evaluated foreach scenario---- = Output---- = commentQualityL0 = initial lossesTR = recovery timeInfrastructurerepresentationHazardAnalysisProtectionanalysisPerformanceanalysisResilience AssessmentNetworkLevel12 System Recovery functionD** Picture taken from:Decò A., Bocchini P., Frangopol D.M.. A probabilistic approach for the prediction of seismic resilience of bridges.Earthquake Engineering and Structural Dynamics, Wiley, DOI: 10.1002/eqe.2282Recoveryanalysis**3RISEframework for resilience assessmentazardariosLocal resilience indicators Network resilience indicatorsScenario output after mitigatione performanceyair timeDamageActionDisservicealuesIMIMafetyQualityIndicatorStatus of nodes and links(no interaction)AQualityIndicatorInteractions effects (quality drop)BL0i TRiQuality (network level)Combination of local indicatorsIndicatorL0 TRResilience ∞ 1 /ACLocal resilience indicators are evaluated foreach node and Link and for each scenarioNetwork resilience indicators are evaluated foreach scenario---- = OutputQualityL0 = initial lossesTR = recovery timectionysismanceysisResilience AssessmentNetworkLevelSystem Recovery functionD** Picture taken from:Decò A., Bocchini P., Frangopol D.M.. A probabilistic approach for the prediction of seismic resilience of bridges.Earthquake Engineering and Structural Dynamics, Wiley, DOI: 10.1002/eqe.2282Recoveryanalysis**3IM (g)P(EDP|IM)WU WD+
    • 26F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesHospitalResidentialcomplexEnergy and watersupply infrastructure----- = ordinary node= critical (active) nodein case of emergency-----Case study: an urban area under EarthquakeDIRECT LOSSESINDIRECT LOSSES
    • Deterioration analysis3
    • 28F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesConsidered deteriorationsRECOVERYTIMEDETERIORATIONTIMEquality %t0 t1 timeFULLY FUNCTIONALDETERIORATIONΔQΔL
    • 29F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesPushover analysis0200400600800100012001 1.5 2 2.5 3 3.5 4 4.5Mmaxλdependence on concrete"C12-15 load g""C25-30 load g"0200400600800100012001 1.5 2 2.5 3 3.5 4 4.5Mmaxλdepedance on steel behaviour"50% steelload g""100% steelload g"MATERIALCONCRETE FROM C25/30 TO C12/15STEEL FROM 100% AREA TO 50% - 75%
    • 30F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.itRISE:amethodforthedesignofresilientinfrastructuresandstructuresagainstemergenciesConsidered deteriorationsC25/30 C12/15 50%steel 75%steelg 2.425 2.5 1.675 2.15g+0.2g 1.375 1.375 <1 1.1C25/30 C12/15 50%steel 75%steelg 2.425 2.5 1.675 2.15g+0.2g 1.375 1.375 <1 1.1BENDING MOMENT CURVATURE0.0001.0002.0003.000cls 25/30cls 12/1550% steel75% steelλ at first plasticityg g+0.2g
    • 31Performance-basedwinddesignoftallbuildingsequippedwithviscoelasticdampersConclusions• An effective multi-scale framework for resilience evaluation of the large scaleurban built infrastructure has been proposed.• The resilience of all large critical infrastructures is first assessed (local level ofnodes and link). The resilience of the whole system (network level) is evaluatedon the basis of the interdependencies between its components and of therepercussion of the failure of one component on the other elements.• Further investigations are required to assess the impact of differentassumptions in the analysis process, namely:• definition of appropriate analytical and probabilistic methodologies in order to dealwith multiple-hazard scenarios;• definition of appropriate methods for handling so-called “low-probability, high-consequence events”;• development of appropriate methods for the correct evaluation of the recoveryfunction;• improved evaluation of indirect losses occurring in urban developments inconsequence of natural disasters.F. Petrini. RISE: Resilient Infrastructures and Structures against EmergenciesICOSSAR 2013, Columbia University, New York, 16-20 June 2013francesco.petrini@uniroma1.it