
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
A methodology to evaluate the kinetic stability of molecular nanostructures is presented based on the assumption of the independent and random nature of thermal vibrations, calculated at the density functional theory (DFT) level of theory using the harmonic approximation [1]. The kinetic stability (KS) is directly correlated to the cleavage probability for the weakest bond of a given molecular geometry. The application of the presented method to a selection of fullerenes (see Fig. 1) and carbon nanotubes yields clear correlation to their experimentally observed relative isomer abundances.
Moreover, we present good agreement of harmonic vibrational eigenmodes between DFT and the computationally more efficient densityfunctional tightbinding (DFTB) method [24]. Thus, DFTBbased KS calculations allow the estimation of kinetic stability for more than 100,000 isomers of the fullerenes C20C100. We found that the experimentally observed isomer abundances, as recorded for instance by mass spectroscopic investigations, are reasonably well reproduced by the Boltzmannweighted kinetic stabilities of the cage isomers. This result suggests a mechanism of fullerene formation involving cage destruction, such as recently predicted by quantum chemical molecular dynamics (QM/MD) simulations [56].
Rerefences:
[1] A. S. Fedorov et al., Phys. Rev. Lett., 107, 175506 (2011).
[2] H. A. Witek et al., J. Chem. Phys., 121, 5163 (2004).
[3] E. Małolepsza et al., Chem. Phys. Lett., 412, 237 (2005).
[4] H. A. Witek et al., J. Chem. Phys., 125, 214706 (2006).
[5] S. Irle et al., J. Phys. Chem. B, 110, 14531 (2006).
[6] B. Saha et al., J. Phys. Chem. A, 115, 22707 (2011).
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment