• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Monad Transformers In The Wild
 

Monad Transformers In The Wild

on

  • 1,629 views

 

Statistics

Views

Total Views
1,629
Views on SlideShare
1,608
Embed Views
21

Actions

Likes
5
Downloads
27
Comments
0

1 Embed 21

https://twitter.com 21

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Monad Transformers In The Wild Monad Transformers In The Wild Presentation Transcript

    • MONADTRANSFORMERSIn The Wild
    • speakerdeck.com/u/jrwest/p/monad-transformers
    • TWITTER: @_JRWEST GITHUB.COM/JRWESTBLOG.LOOPEDSTRANGE.COM
    • SF SCALA May 2012* http://marakana.com/s/scala_typeclassopedia_with_john_kodumal_of_atlassian_video,1198/index.html
    • trait Monad[F[_]] extends Applicative[F] { def flatMap[A, B](fa: F[A])(f :A=>F[B]):F[B] }* monad type class* flatMap also called bind, >>=
    • def point[A](a: => A): M[A] def map[A,B](ma: M[A])(f: A => B): M[B] def flatMap[A,B](ma: M[A])(f: A => M[B]): M[B]* the functions we care about* lift pure value, lift pure function, chain “operations”
    • scala> import scalaz.Monad scala> import scalaz.std.option._ scala> val a = Monad[Option].point(1) a: Option[Int] = Some(1) scala> Monad[Option].map(a)(_.toString + "hi") res2: Option[java.lang.String] = Some(1hi) scala> Monad[Option].bind(a)(i => if (i < 0) None else Some(i + 1)) res4: Option[Int] = Some(2)* explicit type class usage in scalaz seven
    • scala> import scalaz.syntax.monad._ import scalaz.syntax.monad._ scala> Option(1).flatMap(i => if (i < 0) None else Some(i+1)) res6: Option[Int] = Some(2) scala> 1.point[Option].flatMap(...) res7: Option[Int] = Some(2)* implicit type class usage in scalaz7 using syntax extensions
    • “A MONADIC FOR COMPREHENSION IS AN EMBEDDED PROGRAMMING LANGUAGE WITH SEMANTICS DEFINED BY THE MONAD”* “one intuition of monads” - john
    • MULTIPLE EFFECTSComposition
    • Option[A]* it may not exist
    • SIDE NOTE: SEMANTICS* to an extent, you can “choose” the meaning of a monad* Option -- anon. exceptions -- more narrowly, the exception that something is not there. Validation - monad/not monad - canmean different things in different contexts
    • IO[Option[A]]* but side-effects are needed to even look for that value
    • IO[Validation[Throwable,Option[A]]* and looking for that value may throw exceptions (or fail in some way)
    • IO[(List[String], Validation[Throwable,Option[A])]* and logging what is going on is necessary
    • MULTIPLE EFFECTSA Problem
    • MONADS DO NOT COMPOSE* the problem in theory (core issue)
    • “COMPOSE”?
    • FUNCTORS DO COMPOSE* as well as applicatives
    • trait Functor[F[_]] { def map[A, B](fa: F[A])(f :A=>B):F[B]}
    • def composeFunctor[M[_],N[_]](implicit m: Functor[M], n: Functor[N]) = new Functor[({type MN[A]=[M[N[A]]]})#MN] { def map[A,B](mna: M[N[A]])(f: A => B): M[N[B]] = ... }* generic function that composes any two functors M[_] and N[_]
    • def composeFunctor[M[_],N[_]](implicit m: Functor[M], n: Functor[N]) = new Functor[({type MN[A]=[M[N[A]]]})#MN] { def map[A,B](mna: M[N[A]])(f: A => B): M[N[B]] = { M.map(mna)(na => N.map(na)(f)) } }
    • scala> Option("abc").map(f) res1: Option[Int] = Some(3) scala> List(Option("abc"), Option("d"), Option("ef")).map2(f) res2: List[Option[Int]] = List(Some(3), Some(1), Some(2))* can compose functors infinitely deep but...* scalaz provides method to compose 2, with nice syntatic sugar, easily (map2)
    • def notPossible[M[_],N[_]](implicit m: Monad[M], n: Monad[N]) = new Monad[({type MN[A]=[M[N[A]]]})#MN] { def flatMap[A,B](mna: M[N[A]])(f: A => M[N[B]]): M[N[B]] = ... }* cannot write the same function for any two monads M[_], N[_]
    • IT ! def notPossible[M[_],N[_]](implicit m: Monad[M], n: Monad[N]) = Y new Monad[({type MN[A]=[M[N[A]]]})#MN] { R def flatMap[A,B](mna: M[N[A]])(f: A => M[N[B]]): M[N[B]] = ... } T* best way to understand this is attempt to write it yourself* it won’t compile
    • http://blog.tmorris.net/monads-do-not-compose/* good resource to dive into this in more detail* some of previous slides based on above* provides template, in the form of a gist, for trying this stuff out
    • STAIR STEPPING* the problem in practice*http://www.flickr.com/photos/caliperstudio/2667302181/
    • val a: IO[Option[MyData]] = ... val b: IO[Option[MyData]] = ...* have two values that require we communicate w/ outside world to fetch* those values may not exist (alternative meaning, fetching may result in exceptions that are anonymous)
    • for { data1 <- a data2 <- b } yield { data1 merge data2 // fail }* want to merge the two pieces of data if they both exist
    • for { // weve escaped IO, fail d1 <- a.unsafePerformIO d2 <- b.unsafePerformIO } yield d1 merge d2* don’t want to perform the actions until later (don’t escape the IO monad)
    • for { od1 <- a for { od2 <- b od1 <- a } yield (od1,od2) match { od2 <- b case (Some(d1),Some(d2) => } yield for { Option(d1 merge d2) d1 <- od1 case (a@Some(d1),_)) => a d2 <- od2 case (_,a@Some(d2)) => a case _ => None } yield d1 merge d2 }* may notice the semi-group here* can also write it w/ an applicative* this is a contrived example
    • BUT WHAT IF... def b(data: MyData): IO[Option[MyData]* even w/ simple example, this minor change throws a monkey wrench in things
    • for { ):   readRes <- readIO(domain)   res <- readRes.fold(    success = _.cata(     some = meta => if (meta.enabledStatus /== status) { writeIO(meta.copy(enabledStatus = status)) } else meta.successNel[BarneyException].pure[IO],      none = new ReadFailure(domain).failNel[AppMetadata].pure[IO]     ),     failure = errors => errors.fail[AppMetadata].pure[IO]   ) } yield res* example of what not to do from something I wrote a while back
    • MULTIPLE EFFECTSA Solution
    • case class IOOption[A](run: IO[Option[A]])define type that boxes box the value, doesn’t need to be a case class, similar to haskell newtype.
    • new Monad[IOOption] { def point[A](a: => A): IOOption[A] = IOOption(a.point[Option].point[IO]) def map[A,B](fa: IOOption[A])(f: A => B): IOOption[B] = IOOption(fa.run.map(opt => opt.map(f))) def flatMap[A, B](fa: IOOption[A])(f :A=>IOOption[B]):IOOption[B] = IOOption(fa.run.flatMap((o: Option[A]) => o match { case Some(a) => f(a).run case None => (None : Option[B]).point[IO] })) }* can define a Monad instance for new type
    • val a: IOOption[MyData] = ... val b: IOOption[MyData] = ... val c: IOOption[MyData] = for { data1 <- a data2 <- b } yield { data1 merge data2 } val d: IO[Option[MyData]] = c.runcan use new type to improve previous contrived example
    • type MyState[A] = State[StateData,A] case class MyStateOption[A](run: MyState[Option[A]])* what if we don’t need effects, but state we can read and write to produce a final optional value and some new state* State[S,A] where S is fixed is a monad* can define a new type for that as well
    • new Monad[MyStateOption] { new Monad[IOOption] { def map[A,B](fa: MyStateOption[A])(f: A => B): MyStateOption[B] = def map[A,B](fa: IOOption[A])(f: A => B): IOOption[B] = MyStateOption(Functor[MyState].map(fa)(opt => opt.map(f))) IOOption(Functor[IO].map(fa)(opt => opt.map(f))) def flatMap[A, B](fa: MyStateOption[A])(f :A=>IOOption[B]) = def flatMap[A, B](fa: IOOption[A])(f :A=>IOOption[B]) = MyStateOption(Monad[MyState]].bind(fa)((o: Option[A]) => o match { IOOption(Monad[IO]].bind(fa)((o: Option[A]) => o match { case Some(a) => f(a).run case Some(a) => f(a).run case None => (None : Option[B]).point[MyState] case None => (None : Option[B]).point[IO] })) })) } }* opportunity for more abstraction* if you were going to do this, not exactly the way you would define these in real code, cheated a bit using {Functor,Monad}.apply
    • case class OptionT[M[_], A](run: M[Option[A]])define a new type parameterized * -> * and *.
    • case class OptionT[M[_], A](run: M[Option[A]]) { def map[B](f: A => B)(implicit F: Functor[M]): OptionT[M,B] def flatMap[B](f: A => OptionT[M,B])(implicit M: Monad[M]): OptionT[M,B] }* define map/flatMap a little differently, can be done like previous as typeclass instance but convention is to define the interfaceon the transformer and later define typeclass instance using the interface
    • case class OptionT[M[_], A](run: M[Option[A]]) { def map[B](f: A => B)(implicit F: Functor[M]): OptionT[M,B] = OptionT[M,B](F.map(run)((o: Option[A]) => o map f)) def flatMap[B](f: A => OptionT[M,B])(implicit M: Monad[M]): OptionT[M,B] = OptionT[M,B](M.bind(run)((o: Option[A]) => o match { case Some(a) => f(a).run case None => M.point((None: Option[B])) })) }* implementations resemble what has already been shown
    • new Monad[IOOption] { case class OptionT[M[_], A](run: M[Option[A]]) { def map[A,B](fa: IOOption[A])(f: A => B): IOOption[B] = def map[B](f: A => B)(implicit F: Functor[M]): OptionT[M,B] = OptionT[M,B](F.map(run)((o: Option[A]) => o map f)) IOOption(Functor[IO].map(fa)(opt => opt.map(f))) def flatMap[B](f: A => OptionT[M,B])(implicit M: Monad[M]) = def flatMap[A, B](fa: IOOption[A])(f :A=>IOOption[B]) = OptionT[M,B](M.bind(run)((o: Option[A]) => o match { IOOption(Monad[IO]].bind(fa)((o: Option[A]) => o match { case Some(a) => f(a).run case Some(a) => f(a).run case None => M.point((None: Option[B])) })) case None => (None : Option[B]).point[IO] } })) }* it the generalization of what was written before
    • type FlowState[A] = State[ReqRespData, A] val f: Option[String] => FlowState[Boolean] = (etag: Option[String]) => { val a: OptionT[FlowState, Boolean] = for { // string <- OptionT[FlowState,String]      e <- optionT[FlowState](etag.point[FlowState]) // wrap FlowState[Option[String]] in OptionT      matches <- optionT[FlowState]((requestHeadersL member IfMatch))    } yield matches.split(",").map(_.trim).toList.contains(e) a getOrElse false // FlowState[Boolean] }* check existence of etag in an http request, data lives in state* has minor bug, doesn’t deal w/ double quotes as written* https://github.com/stackmob/scalamachine/blob/master/core/src/main/scala/scalamachine/core/v3/WebmachineDecisions.scala#L282-285
    • val reqCType: OptionT[FlowState,ContentType] = for {       contentType <- optionT[FlowState]( (requestHeadersL member ContentTypeHeader) )       mediaInfo <- optionT[FlowState]( parseMediaTypes(contentType).headOption.point[FlowState] ) } yield mediaInfo.mediaRange* determine content type of the request, data lives in state, may not be specified* https://github.com/stackmob/scalamachine/blob/master/core/src/main/scala/scalamachine/core/v3/WebmachineDecisions.scala#L772-775
    • scala> type EitherTString[M[_],A] = EitherT[M,String,A] defined type alias EitherTString scala> val items = eitherT[List,String,Int](List(1,2,3,4,5,6).map(Right(_))) items: scalaz.EitherT[List,String,Int] = ...* adding features to a “embedded language”
    • for { i <- items } yield print(i) // 123456 for { i <- items _ <- if (i > 4) leftT[List,String,Unit]("fail") else rightT[List,String,Unit](()) } yield print(i) // 1234* adding error handling, and early termination to non-deterministic computation
    • MONADTRANSFORMERS In General
    • MyMonad[A]
    • NAMING CONVENTION MyMonadT[M[_], A]* transformer name ends in T
    • BOXES A VALUE run: M[MyMonad[A]* value is typically called “run” in scalaz7* often called “value” in scalaz6 (because of NewType)
    • A MONAD TRANSFORMER IS A MONAD TOO* i mean, its thats kinda the point of this whole exercise isn’t it :)
    • def optTMonad[M[_] : Monad] = new Monad[({type O[X]=OptionT[M,X]]})#O) { def point[A](a: => A): OptionT[M,A] = OptionT(a.point[Option].point[M]) def map[A,B](fa: OptionT[M,A])(f: A => B): OptionT[M,B] = fa map f def flatMap[A, B](fa: OptionT[M,A])(f :A=> OptionT[M,B]): OptionT[M, B] = fa flatMap f }* monad instance definition for OptionT
    • HAS INTERFACE RESEMBLING UNDERLYING MONAD’S INTERFACE* can interact with the monad transformer in a manner similar to working with the actual monad* same methods, slightly different type signatures* different from haskell, “feature” of scala, since we can define methods on a type
    • case class OptionT[M[_], A](run: M[Option[A]]) { def getOrElse[AA >: A](d: => AA)(implicit F: Functor[M]): M[AA] = F.map(run)((_: Option[A]) getOrElse default) def orElse[AA >: A](o: OptionT[M,AA])(implicit M: Monad[M]): OptionT[M,AA] = OptionT[M,AA](M.bind(run) { case x@Some(_) => M.point(x) case None => o.run }}
    • MONADTRANSFORMERSStacked Effects
    • TRANSFORMER IS A MONAD TRANSFORMER CAN WRAP ANOTHER TRANSFORMER* at the start, the goal was to stack effects (not just stack 2 effects)* this makes it possible
    • type VIO[A] = ValidationT[IO,Throwable,A] def doWork(): VIO[Option[Int]] = ... val r: OptionT[VIO,Int] = optionT[VIO](doWork())* wrap the ValidationT with success type Option[A] in an OptionT* define type alias for connivence -- avoids nasty type lambda syntax inline
    • val action: OptionT[VIO, Boolean] = for { devDomain <- optionT[VIO] {     validationT(        bucket.fetch[CName]("%s.%s".format(devPrefix,hostname))        ).mapFailure(CNameServiceException(_))    } _ <- optionT[VIO] { validationT(deleteDomains(devDomain)).map(_.point[Option]) } } yield true* code (slightly modified) from one of stackmob’s internal services* uses Scaliak to fetch hostname data from riak and then remove them* possible to clean this code up a bit, will discuss shortly (monadtrans)
    • KEEP ON STACKIN’ ON* don’t have to stop at 2 levels deep, our new stack is monad too* each monad/transformer we add to the stack compose more types of effects
    • “ORDER” MATTERS* how stack is built, which transformers wrap which monads, determines the overall semantics of the entire stack* changing that order can, and usually does, change semantics
    • OptionT[FlowState, A] vs. StateT[Option,ReqRespData,A]* what is the difference in semantics between the two?* type FlowState[A] = State[ReqRespData,A]
    • FlowState[Option[A]] vs. Option[State[ReqRespData,A]* unboxing makes things easier to see* a state action that returns an optional value vs a state action that may not exist* the latter probably doesn’t make as much sense in the majority of cases
    • MONADTRANS The Type Class* type classes beget more type classes
    • REMOVING REPETITION === MORE ABSTRACTION* previous examples have had a repetitive, annoying, & verbose task* can be abstracted away...by a type class of course
    • optionT[VIO](validationT(deleteDomains(devDomain)).map(_.point[Option])) eitherT[List,String,Int](List(1,2,3,4,5,6).map(Right(_))) resT[FlowState](encodeBodyIfSet(resource).map(_.point[Res]))* some cases require lifting the value into the monad and then wrap it in the transformer* from previous examples
    • M[A] -> M[N[A]] -> NT[M[N[_]], A]* this is basically what we are doing every time* taking some monad M[A], lifting A into N, a monad we have a transformer for, and then wrapping all of that in N’s monadtransformer
    • trait MonadTrans[F[_[_], _]] {   def liftM[G[_] : Monad, A](a: G[A]): F[G, A] }* liftM will do this for any transformer F[_[_],_] and any monad G[_] provided an instance of it is defined for F[_[_],_]
    •  def liftM[G[_], A](a: G[A])(implicit G: Monad[G]): OptionT[G, A] =     OptionT[G, A](G.map[A, Option[A]](a)((a: A) => a.point[Option]))* full definition requires some type ceremony* https://github.com/scalaz/scalaz/blob/scalaz-seven/core/src/main/scala/scalaz/OptionT.scala#L155-156
    • def liftM[G[_], A](ga: G[A])(implicit G: Monad[G]): ResT[G,A] =       ResT[G,A](G.map(ga)(_.point[Res]))* implementation for scalamachine’s Res monad* https://github.com/stackmob/scalamachine/blob/master/scalaz7/src/main/scala/scalamachine/scalaz/res/ResT.scala#L75-76
    • encodeBodyIfSet(resource).liftM[OptionT] List(1,2,3).liftM[EitherTString] validationT(deleteDomains(devDomain)).liftM[OptionT]* cleanup of previous examples* method-like syntax requires a bit more work: https://github.com/scalaz/scalaz/blob/scalaz-seven/core/src/main/scala/scalaz/syntax/MonadSyntax.scala#L9
    • for { media <- (metadataL >=> contentTypeL).map(_ | ContentType("text/plain")).liftM[ResT]    charset <- (metadataL >=> chosenCharsetL).map2(";charset=" + _).getOrElse("")).liftM[ResT]    _ <- (responseHeadersL += (ContentTypeHeader, media.toHeader + charset)).liftM[ResT]    mbHeader <- (requestHeadersL member AcceptEncoding).liftM[ResT]    decision <- mbHeader >| f7.point[ResTFlow] | chooseEncoding(resource, "identity;q=1.0,*;q=0.5") } yield decision* https://github.com/stackmob/scalamachine/blob/master/core/src/main/scala/scalamachine/core/v3/WebmachineDecisions.scala#L199-205
    • MONADTRANSFORMERS In Review
    • STACKING MONADS COMPOSES EFFECTS* when monads are stacked an embedded language is being built with multiple effects* this is not the only intuition of monads/transformers
    • CAN NOT COMPOSE MONADS GENERICALLY* cannot write generic function to compose any two monads M[_], N[_] like we can for any two functors
    • MONAD TRANSFORMERS COMPOSE M[_] : MONAD WITH ANY N[_] : MONAD* can’t compose any two, but can compose a given one with any other
    • MONAD TRANSFORMERS WRAP OTHER MONAD TRANSFORMERS* monad transformers are monads* so they can be the N[_] : Monad that the transformer composes with its underlying monad
    • MONADTRANS REDUCES REPETITION* often need to take a value that is not entirely lifted into a monad transformer stack and do just that
    • STACK MONADS DON’T STAIR-STEP* monad transformers reduce ugly, stair-stepping or nested code and focuses on core task* focuses on intuition of mutiple effects instead of handling things haphazardly
    • THANK YOU* stackmob, markana, john & atlassian, other sponsors, cosmin
    • QUESTIONS?