Sneutrino Cold Dark Matter, Oxford
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
633
On Slideshare
630
From Embeds
3
Number of Embeds
2

Actions

Shares
Downloads
6
Comments
0
Likes
0

Embeds 3

http://www.linkedin.com 2
https://www.linkedin.com 1

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Thermal Sneutrino Dark Matter in the FD-Term Model of Hybrid Inflation The University of Manchester Frank Deppisch frank.deppisch@manchester.ac.uk University of Manchester in collaboration with A. Pilaftsis FFD, A. Pilaftsis, JHEP 0810 (2008) 080 Particle Physics Seminar Oxford, 7 May 2009
  • 2. Overview Introduction Dark Matter Evidence Supersymmetry Neutrino Physics FD Term Hybrid Model Superpotential Inflaton VEV Hybrid Inflation RH Sneutrino Dark Matter Mass Spectrum Annihilation Conclusion 2/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 3. Evidence for Dark Matter Cluster Formation Galactic Rotation Curves Gravitational Lensing CMB Fluctuations Large Scale Structure Standard Cosmological Model: Cold Dark Matter Component of the Universe CDM h 2≈0.11 3/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 4. Supersymmetry MSSM: Minimal extension of the Standard Model with two Higgs doublets and conserved R-parity http://www.physics.gla.ac.uk/ppt/susy.htm 4/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 5. Supersymmetry MSSM: Minimal extension of the Standard Model with two Higgs doublets and conserved R-parity http://www.physics.gla.ac.uk/ppt/susy.htm SUSY must be broken ⇒ In general: Introduction of more than 100 free parameters ⇒ Required: Theoretical framework for SUSY breaking ⇒ Minimal Supergravity (mSUGRA), Universality at GUT Scale 5/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 6. Neutrinos Neutrino Oscillations ⇒ Mixing angles and mass differences sin 2 12=0.300.04 , sin 2 23 =0.500.14 , sin 2 130.028 −0.05 −0.12  m2 = 8.10.6 ⋅10−5 eV 2 ,  m13=± 2.20.7 ⋅10−3 eV 2 12 −0.6 2 −0.5 Absolute Mass Scale m 0.5 eV 1 6/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 7. Neutrinos Neutrino Oscillations ⇒ Mixing angles and mass differences sin 2 12=0.300.04 , sin 2 23 =0.500.14 , sin 2 130.028 −0.05 −0.12  m2 = 8.10.6 ⋅10−5 eV 2 ,  m13=± 2.20.7 ⋅10−3 eV 2 12 −0.6 2 −0.5 Absolute Mass Scale m 0.5 eV 1 Seesaw Mechanism ⇒ Add heavy right-handed neutrinos 2   −1 mD   MR  T 0 m D ⇒ m ≈0.1eV mD MR 100 GeV 1014 GeV But: With suitable flavor symmetry in MR and mD, right-handed neutrinos can be as light as 100 GeV 7/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 8. FD-Term Hybrid Model Garbrecht, Pallis, Pilaftsis '06 A Minimal Particle-Cosmology Supersymmetric Model =0 W =W MSSM Extension of the MSSM 8/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 9. FD-Term Hybrid Model Garbrecht, Pallis, Pilaftsis '06 A Minimal Particle-Cosmology Supersymmetric Model =0 W =W MSSM Extension of the MSSM   X 1 X 2 −M 2   S   Inflaton-Waterfall sector 9/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 10. FD-Term Hybrid Model Garbrecht, Pallis, Pilaftsis '06 A Minimal Particle-Cosmology Supersymmetric Model =0 W =W MSSM Extension of the MSSM   X 1 X 2 −M 2   S   Inflaton-Waterfall sector     S H u H d Effective µ term, µ = λ 〈S〉 10/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 11. FD-Term Hybrid Model Garbrecht, Pallis, Pilaftsis '06 A Minimal Particle-Cosmology Supersymmetric Model =0 W =W MSSM Extension of the MSSM   X 1 X 2 −M 2   S   Inflaton-Waterfall sector     S H u H d Effective µ term, µ = λ 〈S〉 ij Effective neutrino Majorana     S Ni N j 2 mass, M = ρ 〈S〉 ij    h Li H u N j Neutrino Yukawa coupling 11/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 12. FD-Term Hybrid Model Garbrecht, Pallis, Pilaftsis '06 A Minimal Particle-Cosmology Supersymmetric Model =0 W =W MSSM Extension of the MSSM   X 1 X 2 −M 2   S   Inflaton-Waterfall sector     S H u H d Effective µ term, µ = λ 〈S〉 ij Effective neutrino Majorana     S Ni N j 2 mass, M = ρ 〈S〉 ij    h Li H u N j Neutrino Yukawa coupling gX 2 − m FI D X Fayet-Iliopoulos D-Term 2 12/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 13. Inflaton VEV Soft SUSY breaking Lagrangian ij −Lsoft ⊃ M S ∗ S  M 2 N ∗ N i  A S X 1 X 2  A S H u H d  2    S N i  A S N i N j− a S M 2 S   2 13/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 14. Inflaton VEV Soft SUSY breaking Lagrangian ij −Lsoft ⊃ M S ∗ S  M 2 N ∗ N i  A S X 1 X 2  A S H u H d  2    S N i  A S N i N j− a S M 2 S   2 Scalar Potential ( 〈X1,2〉 = M ) V S ≈∣ S 〈 X 1 〉∣2∣ S 〈 X 2 〉∣2 M 2 S ∗ S [  M 2  A −a S S h.c. ] S   =2  M  M S  S S [  M  A −a S S h.c. ] 2 2 2 2  ∗  14/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 15. Inflaton VEV Soft SUSY breaking Lagrangian ij −Lsoft ⊃ M S ∗ S  M 2 N ∗ N i  A S X 1 X 2  A S H u H d  2    S N i  A S N i N j− a S M 2 S   2 Scalar Potential ( 〈X1,2〉 = M ) V S ≈∣ S 〈 X 1 〉∣2∣ S 〈 X 2 〉∣2 M 2 S ∗ S [  M 2  A −a S S h.c. ] S   =2  M  M S  S S [  M  A −a S S h.c. ] 2 2 2 2  ∗  Inflaton VEV (κ ≈ λ ≈ ρ ≈ 10−2) 1 2 2 〈 S 〉= ∣A −a S∣O M SUSY / M ≈10 M SUSY 2 15/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 16. Inflaton VEV Soft SUSY breaking Lagrangian ij −Lsoft ⊃ M S ∗ S  M 2 N ∗ N i  A S X 1 X 2  A S H u H d  2    S N i  A S N i N j− a S M 2 S   2 Scalar Potential ( 〈X1,2〉 = M ) V S ≈∣ S 〈 X 1 〉∣2∣ S 〈 X 2 〉∣2 M 2 S ∗ S [  M 2  A −a S S h.c. ] S   =2  M  M S  S S [  M  A −a S S h.c. ] 2 2 2 2  ∗  Inflaton VEV (κ ≈ λ ≈ ρ ≈ 10−2) 1 2 2 〈 S 〉= ∣A −a S∣O M SUSY / M ≈10 M SUSY 2 µ-Parameter Majorana Mass Matrix = 〈 S 〉≈ M SUSY N mij =ij 〈 S 〉≈ M SUSY 16/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 17. FD-Term Hybrid Inflation Hybrid Inflation (Linde '91) New scalar field ends inflation by acquiring VEV 17/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 18. FD-Term Hybrid Inflation Hybrid Inflation (Linde '91) New scalar field ends inflation by acquiring VEV F-Term Hybrid Inflation (Copeland et al., Dvali, Shafi, Schaefer '94) W = S  X 1 X 2− M 2     Waterfall Fields X1, X2 Scalar Potential from F terms and supergravity/loop corrections 18/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 19. FD-Term Hybrid Inflation Hybrid Inflation (Linde '91) New scalar field ends inflation by acquiring VEV F-Term Hybrid Inflation (Copeland et al., Dvali, Shafi, Schaefer '94) W = S  X 1 X 2− M 2     Waterfall Fields X1, X2 Scalar Potential from F terms and supergravity/loop corrections FD-Term Hybrid Inflation (Garbrecht, Pilaftsis '06) Subdominant non-anomalous FI D-term breaking discrete D- parity in waterfall sector U(1)X gauge sector fields can decay ⇒ entropy release ⇒ avoid gravitino overabundance problem 19/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 20. Constraints from Inflation Bounds on model parameters κ, λ, ρ from Number of e-folds exit 1 V inf N e = 2 ∫ d  ' ≈55 mPl  V inf end Power spectrum of curvature perturbations 1/ 2 1 V 3/ 2  exit  inf −5 PR = ≈4.86⋅10 2  3  mPl V 'inf exit  Spectral index 2 V 'inf  exit  ' 0.014 n s −1=2 m Pl =−0.037−0.015 V inf  exit  20/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 21. Constraints from Inflation Slow-roll slope from SUGRA and radiative corrections Spectral Index ⇒ ≈≈23.2⋅10 −2 At inflationary scale M≈1016 GeV for minimal (next-to-minimal) Kähler potential RG Evolution ⇒ ≈≈1.11.8⋅10 −2 At EW scale 21/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 22. Sneutrino Mass Spectrum FD-Term Model conserves R-parity → LSP is stable 22/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 23. Sneutrino Mass Spectrum FD-Term Model conserves R-parity → LSP is stable Right-Handed Sneutrino Mass Matrix (small Yukawa interactions with LH sneutrinos neglected)  N 1,2,3 , N ∗    1,2,3 T   2 v 2  M 2 S N  A∗  v u v d  A  v u v d  2 v 2  M 2 S N    N 1,2,3 N∗  1,2,3 → 3 Heavy and 3 Light Right-Handed Sneutrinos → Lightest Right-Handed Sneutrino can be LSP 2 2 2 2 m N = v S  M N −∣ A v S   v u v d∣  LSP  ≈2m0 −∣A0 ∣, mSUGRA, tan ≫1, =≪1 2 23/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 24. Right-Handed Sneutrino LSP Scan over mSUGRA parameters (A 0 = 300 GeV, µ > 0, tanβ = 10,30) Sneutrino LSP points to low-energy SUSY spectrum, consistent with annihilation via Higgs m N ≈20−100 GeV  1 24/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 25. Sneutrino Cold Dark Matter MSSM (+ RH Neutrinos) Left-Handed Sneutrino LSP Annihilates too efficiently (gauge interaction) 25/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 26. Sneutrino Cold Dark Matter MSSM (+ RH Neutrinos) Left-Handed Sneutrino LSP Annihilates too efficiently (gauge interaction) Right-Handed Sneutrino LSP Overcloses Universe as thermal DM (small Yukawa interaction) Possible as non-thermal DM (Gopalakrishna, de Gouvêa, Porod '06) 26/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 27. Sneutrino Cold Dark Matter MSSM (+ RH Neutrinos) Left-Handed Sneutrino LSP Annihilates too efficiently (gauge interaction) Right-Handed Sneutrino LSP Overcloses Universe as thermal DM (small Yukawa interaction) Possible as non-thermal DM (Gopalakrishna, de Gouvêa, Porod '06) Left-Right Mixtures possible (Arina, Fornengo '06) 27/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 28. Sneutrino Cold Dark Matter MSSM (+ RH Neutrinos) Left-Handed Sneutrino LSP Annihilates too efficiently (gauge interaction) Right-Handed Sneutrino LSP Overcloses Universe as thermal DM (small Yukawa interaction) Possible as non-thermal DM (Gopalakrishna, de Gouvêa, Porod '06) Left-Right Mixtures possible (Arina, Fornengo '06) FD-Term Model → New Interaction 1 1       N ∗ N ∗ H u H d h.c. from inflaton F-term F S =  N i N i  H u H d i i 2 2 Quartic Coupling to Higgs Fields (McDonald '94, Burgess et al. '01) 28/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 29. Annihilation Channels 1  2 29/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 30. Dark Matter Searches Direct Searches Elastic Scattering between Sneutrino and Nucleus via t-channel Higgs exchange Per Nucleon 2 4 2 nucleon  el ≈5⋅10 −50 2 cm     10 −4 100 GeV mH 1  50 GeV mN 1  Experiments: CDMS-II, SuperCDMS, Xenon1T 30/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 31. Dark Matter Searches Direct Searches Elastic Scattering between Sneutrino and Nucleus via t-channel Higgs exchange Per Nucleon 2 4 2 nucleon  el ≈5⋅10 −50 2 cm     10 −4 100 GeV mH 1  50 GeV mN 1  Experiments: CDMS-II, SuperCDMS, Xenon1T Indirect Searches Detection of Dark Matter annihilation products such as photons, positrons, anti-protons High-energy Neutrinos from Sun and Earth 31/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 32. Sneutrino Annihilation Calculation of Sneutrino Relic Density Higgs properties calculated using CPSuperH (Lee at al. '03) Annihilation via DM h2=0.11 Higgs m N ≈m H / 2  1 1 −4  2⋅10 Inflationary Bounds −4  2.35.8⋅10 Direct WIMP Searches −1...−3  ≈10 Scenario I: m0=70 GeV, m1/2=243 GeV, A0=300 GeV, tanβ =10, µ =303 GeV 32/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 33. Sneutrino Annihilation Calculation of Sneutrino Relic Density Higgs properties calculated using CPSuperH (Lee at al. '03) Annihilation via DM h2=0.11 Higgs m N ≈m H / 2  1 1 −4  2⋅10 Inflationary Bounds −4  2.35.8⋅10 Direct WIMP Searches −1...−3  ≈10 Scenario II: m0=125 GeV, m1/2=212 GeV, A0=300 GeV, tanβ =30, µ =263 GeV 33/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 34. Sneutrino Annihilation Calculation of Sneutrino Relic Density Higgs properties calculated using CPSuperH (Lee at al. '03) Annihilation via DM h2=0.11 Higgs m N ≈m H / 2  1 1 −4  2⋅10 Inflationary Bounds −4  2.35.8⋅10 Direct WIMP Searches −1...−3  ≈10 Scenario II: m0=125 GeV, m1/2=212 GeV, H ere be A0=300 GeV, tanβ =30, µ =263 GeV 34/40 Frank Deppisch H um a ns Dark Matter in the F(D) Term Model Sneutrino 7/5/2009
  • 35. Conclusion FD-Term Model provides Inflationary Mechanism 35/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 36. Conclusion FD-Term Model provides Inflationary Mechanism Solution to Gravitino Problem 36/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 37. Conclusion FD-Term Model provides Inflationary Mechanism Solution to Gravitino Problem Solution to µ Problem 37/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 38. Conclusion FD-Term Model provides Inflationary Mechanism Solution to Gravitino Problem Solution to µ Problem EW Scale Heavy Neutrinos Seesaw Mechanism Resonant Leptogenesis Lepton Flavor Violating Processes Accessible at LHC? 38/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 39. Conclusion FD-Term Model provides Inflationary Mechanism Solution to Gravitino Problem Solution to µ Problem EW Scale Heavy Neutrinos Right-Handed Sneutrinos as Thermal DM Low Energy SUSY Spectrum Annihilation via Higgs Funnel m N =m H / 2≈60 GeV  LSP 1 39/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009
  • 40. Conclusion FD-Term Model provides Inflationary Mechanism Solution to Gravitino Problem Solution to µ Problem EW Scale Heavy Neutrinos Right-Handed Sneutrinos as Thermal DM Low Energy SUSY Spectrum Annihilation via Higgs Funnel m N =m H / 2≈60 GeV  LSP 1 Invisible Higgs Decays Sneutrinos within Cascade Decays 40/40 Frank Deppisch Sneutrino Dark Matter in the F(D) Term Model 7/5/2009