Your SlideShare is downloading. ×
Who is fake  discover astroturfing or attempts of fake influence  presentation
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Who is fake discover astroturfing or attempts of fake influence presentation

88
views

Published on

Who is Fake? Discover Astroturfing or Attempts of Fake Influence!

Who is Fake? Discover Astroturfing or Attempts of Fake Influence!

Published in: Technology, News & Politics

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
88
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Who is FAKE? Discover Astroturfing or Attempts of Fake Influence! Lutz Finger Soumitra DuttaMiningData.biz
  • 2. An Army of Bots $ 2.76 million
  • 3. The Social Net
  • 4. The Social Net
  • 5. The Analytics
  • 6. The Problem
  • 7. ANY measurement (if useful) Will be ATTACKED.
  • 8. Mass Movement •  Reach •  Intention •  Ease of Action
  • 9. Mass Movement •  Reach •  Intention •  Ease of Action
  • 10. Mass Movement Astroturf •  Reach •  Intention •  Ease of Action
  • 11. Bots 1.0 – Spammer going Social @you malware.com @you-as-well malware.com D fresh-contact malware.com
  • 12. Bots 1.0 – Spammer going Social 10.000 messages in 4 month @PeaceKaren_25   Jacob  Ratkiewicz  et.  al    -­‐  2011  
  • 13. 10.000 messages in 4 month Bots 1.0 – Spammer going Social @PeaceKaren_25   Jacob  Ratkiewicz  et.  al    -­‐  2011  
  • 14. Look for Un-Normal Training: •  @spam •  Manual classification •  Honey Pots
  • 15. Look for Un-Normal Differences: •  Time: Regular or Bursty •  Heavy Hashtag Usage •  Blacklisted URL •  Spam Words •  Few Friends Grier  et  al.  2010        (Berkeley)   Training: •  @spam •  Manual classification •  Honey Pots
  • 16. Thus Social Networks acted….
  • 17. Thus Social Networks acted…. 2013 7% SPAM 20122011 20% detection
  • 18. Detected but still Dangerous SMEAR Campaigns Denial of INFORMATION
  • 19. Bot 2.0 – Social Bots Analytics ToolsConversation Bots
  • 20. More Human Social Friend @JamesMTitus
  • 21. More Human Social Friend @JamesMTitus
  • 22. More Human Social Friend @JamesMTitus Knowledge Lajello
  • 23. More Human Silent Influencer @Al_AGW Social Friend @JamesMTitus Knowledge Lajello
  • 24. Can Bots do Astroturfing?
  • 25. Can Bots do Astroturfing? •  Reach •  Intention •  Ease of Action
  • 26. Can Bots do Astroturfing? INTENTION / INFLUENCE •  Opinion leaders (Katz 1955) •  Influentials (Merton 1968) •  Mavens & connectors (Gladwell 2000) •  Reach •  Intention •  Ease of Action
  • 27. Can Bots do Astroturfing? To create Intention Is not easy •  Reach •  Intention •  Ease of Action
  • 28. Can Bots do Astroturfing? Readiness Multiple Sources Topic Dependence •  Reach •  Intention •  Ease of Action To create Intention Is not easy
  • 29. But it is NOT impossible
  • 30. But it is NOT impossible Arjun  Mukherjee  et.al.    
  • 31. Influence the News 50%
  • 32. Influence the News 50% 55%
  • 33. Influence the News 0   20.000   40.000   60.000   80.000   100.000   120.000 N  Korean  leader  Kim  Jong-­‐il  dies   AnMmaNer  atom  trapped  for  first  Mme,  say  scienMsts     Neutrinos  beat  light  speed  again   Earth-­‐like  planet  found  in  the  "habitable  zone"   No  rhinos  remain  in  West  Africa   Eurozone  debt  web:  Who  owes  what  to  whom?   Writer  Christopher  Hitchens  dies   BBC  apology  for  Clarkson  comments   'Witch's  coNage'  found  in  Pendle   In  pictures:  ApocalypMc  Manchester   Social  Media  Index   Clicking   Sharing   CommenMng   50% on  the  courtesy  of       55%
  • 34. Truth about the Truth
  • 35. Thus how to spot them? INDIVIDUAL •  Not ‘loud’ •  Might be human •  Missing trainings data
  • 36. Thus how to spot them? GROUP •  Similarity of group •  Description, Focus, Tweets… INDIVIDUAL •  Not ‘loud’ •  Might be human •  Missing trainings data
  • 37. Outlook •  Arm’s length Race •  Verification •  Avoid Training Spammer •  The New Gatekeeper
  • 38. Thanks MiningData.Biz LutzFinger.com SoumitraDutta.com

×