Mapping Online Publics<br />Axel Bruns / Jean BurgessARC Centre of Excellence  for Creative Industries and Innovation,  Qu...
Project: New Media and Public Communication<br />ARC Discovery (2010-12) – A$410.000<br />Axel Bruns (CI), Jean Burgess (S...
Flickr
 Twitter
 blogs</li></ul>Research tool development and baseline data<br />Baseline information:<br /><ul><li> data extraction
 content creation    statistics
 patterns in terms    and themes
 baseline social    networking map
 interconnections    between social    network spaces</li></ul>Content creation patterns<br />Changes over time:<br /><ul>...
 regular / seasonal    patterns</li></ul>Cluster profiling:<br /><ul><li> common themes /    patterns
 lead users</li></ul>Focus on specific events<br />Cultural dynamics:<br /><ul><li> rapid spread of new ideas
 communication    across clusters
 thematic discourse    analysis
 relationship with main-   stream media coverage</li></ul>Research tools:<br /><ul><li> network crawler
 content scraper
 content analysis
 network analysis</li></li></ul><li>Methodology – Twapperkeeper<br />
Twapperkeeper Data Structure<br />
Analysis – Twapperkeeper<br />
Methodology – Twitter<br />
Key Tools<br />Data capture:<br />Twapperkeeper / yourTwapperkeeper<br />Follow and capture all tweets including set keywo...
#hashtag- / Keyword-Based Datasets<br />Hashtags:<br />Crises and other unforeseen acute events – #qldfloods, #spill<br />...
#ausvotes: Overall Activity (17 July – 24 Aug. 2010)<br />
#ausvotes: Mentions of the Leaders<br />
#ausvotes: Mentions of the Leaders (cumulative)<br />
Keyword Co-Occurrence<br />
#ausvotes: Key Themes<br />
#ausvotes: Discussion Network17 July to 25 Aug. 2010 / All @replies / Node size: Indegree / Node colour: betweenness centr...
Dynamic @reply Network Visualisations<br />Dynamic visualisation:<br />Showing @replies / retweets as they are made<br />C...
Upcoming SlideShare
Loading in...5
×

Mapping Online Publics (Part 1)

2,375

Published on

Part 1 of the "Making Sense of Twitter: Quantitative Analysis Using Twapperkeeper and Other Tools" workshop, presented at the Communities & Technologies 2011 conference, Brisbane, 29 June 2011.

Published in: Education, Technology, Business
1 Comment
2 Likes
Statistics
Notes
No Downloads
Views
Total Views
2,375
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
56
Comments
1
Likes
2
Embeds 0
No embeds

No notes for slide

Mapping Online Publics (Part 1)

  1. 1. Mapping Online Publics<br />Axel Bruns / Jean BurgessARC Centre of Excellence for Creative Industries and Innovation, Queensland University of Technology<br />a.bruns@qut.edu.au – @snurb_dot_info / je.burgess@qut.edu.au – @jeanburgesshttp://mappingonlinepublics.net – http://cci.edu.au/<br />
  2. 2. Project: New Media and Public Communication<br />ARC Discovery (2010-12) – A$410.000<br />Axel Bruns (CI), Jean Burgess (SRF) – QUT, Brisbane<br />Lars Kirchhoff, Thomas Nicolai (PIs) – Sociomantic Labs, Berlin<br />Project blog: http://mappingonlinepublics.net/<br />Year 1 Year 2 Year 3<br />Social network sources:<br /><ul><li> YouTube
  3. 3. Flickr
  4. 4. Twitter
  5. 5. blogs</li></ul>Research tool development and baseline data<br />Baseline information:<br /><ul><li> data extraction
  6. 6. content creation statistics
  7. 7. patterns in terms and themes
  8. 8. baseline social networking map
  9. 9. interconnections between social network spaces</li></ul>Content creation patterns<br />Changes over time:<br /><ul><li> short-term statistics
  10. 10. regular / seasonal patterns</li></ul>Cluster profiling:<br /><ul><li> common themes / patterns
  11. 11. lead users</li></ul>Focus on specific events<br />Cultural dynamics:<br /><ul><li> rapid spread of new ideas
  12. 12. communication across clusters
  13. 13. thematic discourse analysis
  14. 14. relationship with main- stream media coverage</li></ul>Research tools:<br /><ul><li> network crawler
  15. 15. content scraper
  16. 16. content analysis
  17. 17. network analysis</li></li></ul><li>Methodology – Twapperkeeper<br />
  18. 18. Twapperkeeper Data Structure<br />
  19. 19. Analysis – Twapperkeeper<br />
  20. 20. Methodology – Twitter<br />
  21. 21. Key Tools<br />Data capture:<br />Twapperkeeper / yourTwapperkeeper<br />Follow and capture all tweets including set keywords<br />Export in standardised CSV / TSV format<br />Data processing:<br />Gawk<br />Process CSV / TSV files – filter, extract, summarise<br />Excel<br />Statistical analysis and graphing<br />Data visualisation:<br />Gephi<br />Static and dynamic network visualisation<br />
  22. 22. #hashtag- / Keyword-Based Datasets<br />Hashtags:<br />Crises and other unforeseen acute events – #qldfloods, #spill<br />Foreseeable short-term events – #royalwedding, #comtech2011<br />Longer-term and periodic events – #ausvotes, #qanda<br />Hashtag communities – #auspol, #phdchat<br />Ironic and emotive hashtags – #winning, #fail<br />Hashtag memes – #ThanksGetUp, #tweetlikecharliesheen<br />Keywords:<br />Brands, celebrities, places – Qantas, Obama, Brisbane<br />Abbreviations and other unique identifiers – NATO, NBA, NCC1701<br />Markers for current themes – tsunami (vs. #tsunami)<br />Twitter user names – captures tweets mentioning them<br />What’s missing:<br />Pre-filtering of matching tweets (e.g. by location of participating users)<br />Capture of follow-on communication (if not using those terms)<br />‘Button’ retweets – not currently captured by yourTwapperkeeper<br />
  23. 23. #ausvotes: Overall Activity (17 July – 24 Aug. 2010)<br />
  24. 24. #ausvotes: Mentions of the Leaders<br />
  25. 25. #ausvotes: Mentions of the Leaders (cumulative)<br />
  26. 26. Keyword Co-Occurrence<br />
  27. 27. #ausvotes: Key Themes<br />
  28. 28. #ausvotes: Discussion Network17 July to 25 Aug. 2010 / All @replies / Node size: Indegree / Node colour: betweenness centrality<br />
  29. 29. Dynamic @reply Network Visualisations<br />Dynamic visualisation:<br />Showing @replies / retweets as they are made<br />Connections fading again after a set timeframe, unless renewed<br />Network structure either fixed or dynamically adjusted<br />Rudd/Gillard leadership challenge, 23 June 2010:<br />#spill discussion – from first rumours to confirmed challenge<br />Visualised for 18:00 to midnight<br />see dynamic animation on Mapping Online Publics<br />
  30. 30. Twitter and the 22 Feb. Christchurch Earthquake: #eqnz<br /> 22/2 23 24 25 26 27 28 1/3 2 3 4 5 6 7<br />
  31. 31. Twitter and the Christchurch Earthquake: #eqnz @replies<br />mainstream media<br />authorities<br />utilities<br />
  32. 32. Twitter and the Christchurch Earthquake: tweet types<br />
  33. 33. Twitter and the Christchurch Earthquake: tweet types<br />
  34. 34. Twitter and the Christchurch Earthquake: #eqnz @replies<br />Changing @reply patterns with the move from rescue to recovery:<br />
  35. 35. Twitter and the Christchurch Earthquake: #eqnz Themes<br />
  36. 36. Twitter and the Christchurch Earthquake: #eqnz Themes<br />
  37. 37. Twitter and the Christchurch Earthquake<br />Towards better strategies for social media in disasters:<br />February 2011 earthquake building on lessons learnt in 2010<br />#eqnz and key Twitter accounts already established<br />Several key accounts sharing the load and dividing responsibilities<br />More experienced use of Twitter by residents and authorities<br />Clear shift in attention after the immediate rescue phase:<br />Marked differences in list of most @replied/retweeted accounts<br />Some tracking of current problems / issues / fears may be possible<br />Decline in overall tweet volume / diversification of #hashtags?<br />
  38. 38. And now for something... – #royalwedding<br />
  39. 39. ...completely different – ‘Qantas’: @replies + #hashtags<br />
  40. 40. Understanding Australian Twitter Use<br />What is the Australian Twitteruserbase?<br />Large-scale snowballing project<br />Starting from selected hashtag communities (e.g. #ausvotes, #qldfloods, #masterchef)<br />Identifying participating users, testing for ‘Australianness’:<br />Timezone setting, location information, profile information<br />Retrieving follower/followee information for each account (very slow)<br />Progress update:<br />~550,000 Australian users identified so far<br />
  41. 41.
  42. 42. Football (rugby)<br />Sports<br />Football (soccer)<br />Twitter Celebrities<br />South Australia<br />Wine<br />Business, PR, Marketing<br />Media, Journalism, Politics<br />Follower/followee network:~40,000 Australian Twitter users(of ~440,000 known accounts so far) in-degree 20+, dark lines = mutual,colour = indegree, size = outdegree<br />Music<br />
  43. 43. http://mappingonlinepublics.net/<br />Image by campoalto<br />@snurb_dot_info<br />@jeanburgess<br />
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×