Your SlideShare is downloading. ×
0
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Технологии построения крупных сетей
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Технологии построения крупных сетей

1,172

Published on

Антон Меркушов – инструктор SkillFactory, опытный сетевой инженер и сертифицированный профессионал Cisco – о современных технологиях и протоколах, необходимых при расширении сети.

Антон Меркушов – инструктор SkillFactory, опытный сетевой инженер и сертифицированный профессионал Cisco – о современных технологиях и протоколах, необходимых при расширении сети.

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,172
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
53
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Технологии построения крупных сетей 10.03.2013Антон Меркушов: CCNP, CCSP, CCSI 33059, CCAI amerckushov@getccna.ru
  • 2. Содержание•  Введение•  Протокол BGP в корпоративной сети•  Рост/слияние компании – объединение сетей•  Внедрение IPv6 – неизбежное будущее или реальность•  Заключение #  
  • 3. Введение•  Сети демонстрируют как количественный, так и качественный рост•  Растёт сложность сетей и используемых в них технологий•  Повышаются требования к сетевым инженерам #  
  • 4. Рост сетей #  
  • 5. Протокол BGP вкорпоративной сети
  • 6. IGP против EGP•  Interior gateway protocol (IGP) –  A routing protocol operating within an Autonomous System (AS). –  RIP, OSPF, and EIGRP are IGPs.•  Exterior gateway protocol (EGP) –  A routing protocol operating between different AS. –  BGP is an interdomain routing protocol (IDRP) and is an EGP. #  
  • 7. Автономная система (AS)•  An AS is a group of routers that share similar routing policies and operate within a single administrative domain. •  An AS typically belongs to one organization. –  A single or multiple interior gateway protocols (IGP) may be used within the AS. –  In either case, the outside world views the entire AS as a single entity.•  If an AS connects to the public Internet using an exterior gateway protocol such as BGP, then it must be assigned a unique AS number which is managed by the Internet Assigned Numbers Authority (IANA). #  
  • 8. IANA•  The IANA is responsible for allocating AS numbers through five Regional Internet Registries (RIRs). –  RIRs are nonprofit corporations established for the purpose of administration and registration of IP address space and AS numbers in key geographic locations. #  
  • 9. Региональные интернет регистраторы (RIR) RIR  Name Geographic  Coverage   Link   AfriNIC   Con&nent  of  Africa     www.afrinic.net   APNIC   (Asia  Pacific  Network   Asia  Pacific  region   www.apnic.net   Informa&on  Centre)   ARIN   Canada,  the  United  States,  and  (American  Registry  for  Internet   several  islands  in  the  Caribbean   www.arin.net     Numbers)   Sea  and  North  Atlan&c  Ocean   LACNIC     Central  and  South  America  and   (La&n  America  and  Caribbean   www.lacnic.net   por&ons  of  the  Caribbean   Internet  Addresses  Registry)   RIPE   Europe,  the  Middle  East,  and   www.ripe.net   (Réseaux  IP  Européens)   Central  Asia   #  
  • 10. Номера автономных систем•  AS numbers can be between 1 to 65,535. –  RIRs manage the AS numbers between 1 and 64,512. –  The 64,512 - 65,535 numbers are reserved for private use (similar to IP Private addresses). –  The IANA is enforcing a policy whereby organizations that connect to a single provider use an AS number from the private pool. •  Note: –  The current AS pool of addresses is predicted to run out by 2012. –  For this reason, the IETF has released RFC 4893 and RFC 5398. –  These RFCs describe BGP extensions to increase the AS number from the two-octet (16-bit) field to a four-octet (32-bits) field, increasing the pool size from 65,536 to 4,294,967,296 values. #  
  • 11. Основы BGP•  The Internet is a collection of autonomous systems that are interconnected to allow communication among them. –  BGP provides the routing between these autonomous systems. •  BGP is a path vector protocol.•  It is the only routing protocol to use TCP. –  OSPF and EIGRP operate directly over IP. IS-IS is at the network layer. –  RIP uses the User Datagram Protocol (UDP) for its transport layer. #  
  • 12. Основы BGP•  BGP version 4 (BGP-4) is the latest version of BGP. –  Defined in RFC 4271. –  Supports supernetting, CIDR and VLSM .•  BGP4 and CIDR prevent the Internet routing table from becoming too large. –  Without CIDR, the Internet would have 2,000,000 + entries. –  With CIDR, Internet core routers manage around 450,000 entries. –  http://bgp.potaroo.net/ #  
  • 13. Текущий размер глобальной таблицы BGP•  As of March1, 2013, there were 445,961 routes in the routing tables of the Internet core routers. •  http://bgpupdates.potaroo.net/instability/bgpupd.html #  
  • 14. Основы BGP•  When two routers establish a TCP enabled BGP connection, they are called neighbors or peers. –  Peer routers exchange multiple connection messages.•  Each router running BGP is called a BGP speaker. •  When BGP neighbors first establish a connection, they exchange all candidate BGP routes. –  After this initial exchange, incremental updates are sent as network information changes. #  
  • 15. Основы BGP•  BGP provides an interdomain routing system that guarantees the loop-free exchange of routing information between autonomous systems. #  
  • 16. Сравнение BGP с IGP•  BGP works differently than IGPs because it does not make routing decisions based on best path metrics. –  Instead, BGP is a policy-based routing protocol that allows an AS to control traffic flow using multiple BGP attributes. •  Routers running BGP exchange network attributes including a list of the full path of BGP AS numbers that a router should take to reach a destination network. •  BGP allows an organization to fully use all of its bandwidth by manipulating these path attributes. #  
  • 17. Сравнение BGP с IGP Interior  or   Hierarchy  Protocol   Type   Metric   Exterior   Required?   RIP   Interior   Distance  vector   No   Hop  count   OSPF   Interior   Link  state   Yes   Cost   IS-­‐IS   Interior   Link  state   Yes   Metric   Advanced     EIGRP   Interior   No   Composite   distance  vector   Path  vectors   BGP   Exterior   Path  vector   No   (aGributes)   #  
  • 18. Подключение корпоративной сети к ISP•  Modern corporate IP networks connect to the global Internet.•  Requirements that must be determined for connecting an enterprise to an ISP include the following: –  Public IP address space –  Enterprise-to-ISP connection link type and bandwidth –  Connection redundancy –  Routing protocol #  
  • 19. Использование глобальных IP адресов•  Public IP addresses are used: –  By internal enterprise clients to access the Internet using NAT. –  To make enterprise servers accessible from the Internet using static NAT. •  Public IP addresses are available from ISPs and RIRs. –  Most enterprises acquire their IP addresses and AS number from ISPs. –  Large enterprises may want to acquire IP addresses and AS number from a RIR. #  
  • 20. Пример использования статических маршрутов•  Static routes are the simplest way to implement routing with an ISP. –  Typically a customer has a single connection to an ISP and the customer uses a default route toward the ISP while the ISP deploys static routes toward the customer.R1(config)# router eigrp 110R1(config-router)# network 10.0.0.0R1(config-router)# exitR1(config)# ip default-network 0.0.0.0R1(config)# ip route 0.0.0.0 0.0.0.0 serial 0/0/0 Company  A   ISP   10.0.0.0   Internet     172.16.0.0   172.17.0.0   R1   S0/0/0   S0/0/1   PE  •  PE(config)# ip route 10.0.0.0 255.0.0.0 serial 0/0/1•  PE(config)# ip route 172.16.0.0 255.255.0.0 serial 0/0/1•  PE(config)# ip route 172.17.0.0 255.255.0.0 serial 0/0/1 #  
  • 21. Использование BGP•  BGP can be used to dynamically exchange routing information.•  BGP can also be configured to react to topology changes beyond a customer-to-ISP link. Company  A   ISP     AS  65010   AS  65020   Internet     R1   S0/0/0   S0/0/1   PE   #  
  • 22. Резервирование подключений•  Redundancy can be achieved by deploying redundant links, deploying redundant devices, and using redundant components within a router. –  The ISP connection can also be made redundant. •  When a customer is connected to a single ISP the connection is referred to as single-homed or dual-homed.•  When a customer is connected to multiple ISPs the connection is referred to as multihomed or dual- multihomed. #  
  • 23. Резервирование подключенийConnec&ng  to  One  ISP   Connec&ng  to  Two  or  more  ISPs   Single-­‐homed   MulNhomed   Dual-­‐homed   Dual-­‐mulNhomed   #  
  • 24. Подключение к одному ISP – без резервирования•  The connection type depends on the ISP offering (e.g., leased line, xDSL, Ethernet) and link failure results in a no Internet connectivity.•  The figure displays two options: –  Option 1: Static routes are typically used with a static default route from the customer to the ISP, and static routes from the ISP toward customer networks. –  Option 2: When BGP is used, the customer dynamically advertises its public networks and the ISP propagates a default route to the customer. OpNon  1:   Default  Route   StaNc  Route(s)   Company  A   ISP     AS  65010   AS  65020   Internet     R1   S0/0/0   S0/0/1   PE   OpNon  2:   BGP   #  
  • 25. Подключение к одному ISP – с резервированием•  The figure displays two dual-homed options: –  Option 1: Both links can be connected to one customer router. –  Option 2: To enhance resiliency, the two links can terminate at separate routers in the customer’s network. Company  A   ISP     OpNon  1:   Internet     R1   PE   Company  A   ISP     OpNon  2:   Internet     R1   PE   R2   #  
  • 26. Подключение к одному ISP – с резервированием•  Routing deployment options include: –  Primary and backup link functionality in case the primary link fails. –  Load sharing using Cisco Express Forwarding (CEF).•  Regardless, routing can be either static or dynamic (BGP). Company  A   ISP     OpNon  1:   Internet     R1   PE   Company  A   ISP     OpNon  2:   Internet     R1   PE   R2   #  
  • 27. Подключение к нескольким ISP – без резервирования•  Connections from different ISPs can terminate on the same router, or on different routers to further enhance the resiliency. •  Routing must be capable of reacting to dynamic changes therefore BGP is typically used. ISP  1     PE   Company  A   R1   Internet     ISP  2     R2   PE   #  
  • 28. Подключение к нескольким ISP – без резервирования•  Multihomed benefits include: –  Achieving an ISP-independent solution. –  Scalability of the solution, beyond two ISPs. –  Resistance to a failure to a single ISP. –  Load sharing for different destination networks between ISPs. ISP  1     PE   Company  A   R1   Internet     ISP  2     R2   PE   #  
  • 29. Подключение к нескольким ISP – с резервированием•  Dual multihomed includes all the benefits of multihomed connectivity, with enhanced resiliency.•  The configuration typically has multiple edge routers, one per ISP, and uses BGP. ISP  1     PE   Company  A   R1   Internet     ISP  2     R2   PE   #  
  • 30. Особенности подключения к нескольким ISP1.  Each ISP passes only a default route to the AS. –  The default route is passed on to internal routers. 2.  Each ISP passes only a default route and provider-owned specific routes to the AS. – These routes may be propagated to internal routers, or all internal routers in the transit path can run BGP to exchange these routes. 3.  Each ISP passes all routes to the AS. – All internal routers in the transit path run BGP to exchange these routes. #  
  • 31. Характеристики векторов пути BGP•  Internal routing protocols announce a list of networks and the metrics to get to each network.•  In contrast, BGP routers exchange network reachability information, called path vectors, made up of path attributes.•  The path vector information includes: –  A list of the full path of BGP AS numbers (hop by hop) necessary to reach a destination network. –  Other attributes including the IP address to get to the next AS (the next- hop attribute) and how the networks at the end of the path were introduced into BGP (the origin code attribute). #  
  • 32. Процесс выбора маршрута в BGP•  Prefer  the  route  with  highest  weight.   •  Prefer  the  route  with  the  lowest  MED.  •  Prefer  the  route  with  highest   •  Prefer  the  EBGP  route  over  IBGP  route.   LOCAL_PREF.   •  Prefer  the  route  through  the  closest  IGP   neighbor.  •  Prefer  the  locally  generated  route   (network  or  aggregate  routes).     •  Prefer  the  oldest  EBGP  route.    •  Prefer  the  route  with  the  shortest  AS-­‐ PATH.     •  Prefer  the  route  with  the  lowest   neighbor  BGP  router  ID  value.  •  Prefer  the  route  with  the  lowest   ORIGIN  (IGP<EGP<incomplete)   •  Prefer  the  route  with  the  lowest   neighbor  IP  address.   #  
  • 33. Когда использовать BGP•  Most appropriate when the effects of BGP are well- understood and at least one of the following conditions exists: –  The AS has multiple connections to other autonomous systems. –  The AS allows packets to transit through it to reach other autonomous systems (eg, it is a service provider). –  Routing policy and route selection for traffic entering and leaving the AS must be manipulated. #  
  • 34. Рост/слияние компании – объединение сетей
  • 35. Использование нескольких протоколов маршрутизации•  Different routing protocols were not designed to interoperate with one another. –  Each protocol collects different types of information and reacts to topology changes in its own way. •  Running muliple routing protocols increases CPU utilization and requires more memory resources to maintain all the topology, database and routing tables. #  
  • 36. От простых к сложным сетям•  Simple routing protocols work well for simple networks. –  Typically only require one routing protocol.•  Running a single routing protocol throughout your entire IP internetwork is desirable.•  However, as networks grow they become more complex and large internetworks may have to support several routing protocols. –  Proper inter-routing protocol exchange is vital. #  
  • 37. Почему используют несколько протоколов маршрутизации?•  Interim during conversion –  Migrating from an older IGP to a new IGP.•  Application-specific protocols –  One size does not always fit all.•  Political boundaries –  Multiple departments managed by different network administrators –  Groups that do not work well with others•  Mismatch between devices –  Multivendor interoperability –  Host-based routers•  Company mergers #  
  • 38. Сложные сети•  Complex networks require careful routing protocol design and traffic optimization solutions, including the following: –  Redistribution between routing protocols –  Route filtering –  Summarization #  
  • 39. Редистрибуция•  Cisco routers allow different routing protocols to exchange routing information through a feature called route redistribution. –  Route redistribution is defined as the capability of boundary routers connecting different routing domains to exchange and advertise routing information between those routing domains (autonomous systems). #  
  • 40. Сложности редитрибуции•  The key issues that arise when using redistribution: –  Routing feedback (loops) •  If more than one boundary router is performing route redistribution, then the routers might send routing information received from one autonomous system back into that same autonomous system. –  Incompatible routing information •  Each routing protocol uses different metrics to determine the best path therefore path selection using the redistributed route information might not be optimal. –  Inconsistent convergence times •  Different routing protocols converge at different rates. •  Good planning should solve the majority of issues but additional configuration might be required. –  Some issues might be solved by changing the administrative distance, manipulating the metrics, and filtering using route maps, distribute lists, and prefix lists. #  
  • 41. Метрики маршрутов•  A boundary router must be capable of translating the metric of the received route into the receiving routing protocol. –  Redistributed route must have a metric appropriate for the receiving protocol.•  The Cisco IOS assigns the following default metrics when a protocol is redistributed into the specified routing protocol: Protocol  That  Route  Is   Default  Seed  Metric Redistributed  Into  … 0   RIP (interpreted  as  infinity) 0   IGRP  /  EIGRP (interpreted  as  infinity) 20  for  all  except  BGP  routes   OSPF (BGP  routes  have  a  default  seed  metric  of  1) IS-­‐IS 0 BGP BGP  metric  is  set  to  IGP  metric  value #  
  • 42. Назначение метрики по умолчанию•  A seed metric, different than the default metric, can be defined during the redistribution configuration. –  After the seed metric for a redistributed route is established, the metric increments normally within the autonomous system. •  The exception to this rule is OSPF E2 routes.•  Seed metrics can be defined in two ways: –  The default-metric router configuration command establishes the seed metric for all redistributed routes. –  The redistribute can also be used to define the seed metric for a specific protocol. #  
  • 43. Пример OSPF #1 R3(config)# router rip R3(config-router)# network 172.18.0.0 R3(config-router)# network 172.19.0.0 R3(config-router)# router ospf 1 R3(config-router)# network 192.168.2.0 0.0.0.255 area 0 R3(config-router)# redistribute rip subnets metric 30 R3(config-router)# RIP  AS   OSPF   Cost  =  100   R1   R2   R3   R4   172.20.0.0   172.19.0.0   192.168.2.0   Cost  =  10  172.16.0.0   172.17.0.0   172.18.0.0   192.168.4.0  Table  R1   Table  R2   Table  R3   Table  R4   C 172.16.0.0 C 172.17.0.0 C 172.18.0.0 C 192.168.1.0 C 172.20.0.0 C 172.19.0.0 C 172.19.0.0 C 192.168.2.0 R [120/1] 172.17.0.0 C 172.20.0.0 R [120/1] 172.17.0.0 O E2 [110/30] 172.16.0.0 R [120/1] 172.19.0.0 R [120/1] 172.16.0.0 R [120/1] 172.20.0.0 O E2 [110/30] 172.17.0.0 R [120/2] 172.18.0.0 R [120/1] 172.18.0.0 R [120/2] 172.16.0.0 O E2 [110/30] 172.18.0.0 C 192.168.2.0 O E2 [110/30] 172.19.0.0 O [110/110] 192.168.1.0 O E2 [110/30] 172.20.0.0 #  
  • 44. Пример OSPF #2 R3(config)# router rip R3(config-router)# network 172.18.0.0 R3(config-router)# network 172.19.0.0 R3(config-router)# router ospf 1 R3(config-router)# network 192.168.2.0 0.0.0.255 area 0 R3(config-router)# redistribute rip subnets R3(config-router)# default-metric 30 RIP  AS   OSPF   Cost  =  100   R1   R2   R3   R4   172.20.0.0   172.19.0.0   192.168.2.0   Cost  =  10  172.16.0.0   172.17.0.0   172.18.0.0   192.168.4.0  Table  R1   Table  R2   Table  R3   Table  R4   C 172.16.0.0 C 172.17.0.0 C 172.18.0.0 C 192.168.1.0 C 172.20.0.0 C 172.19.0.0 C 172.19.0.0 C 192.168.2.0 R [120/1] 172.17.0.0 C 172.20.0.0 R [120/1] 172.17.0.0 O E2 [110/30] 172.16.0.0 R [120/1] 172.19.0.0 R [120/1] 172.16.0.0 R [120/1] 172.20.0.0 O E2 [110/30] 172.17.0.0 R [120/2] 172.18.0.0 R [120/1] 172.18.0.0 R [120/2] 172.16.0.0 O E2 [110/30] 172.18.0.0 C 192.168.2.0 O E2 [110/30] 172.19.0.0 O [110/110] 192.168.1.0 O E2 [110/30] 172.20.0.0 #  
  • 45. Методы редистрибуции•  Redistribution can be done through: One-­‐Point  RedistribuNon   –  One-point redistribution RIP   OSPF   •  Only one router is redistributing one-way or two-way (both ways). –  There could still be other boundary routers but they are not configured to redistribute. –  Multipoint redistribution MulNpoint  RedistribuNon   •  Multiple routers are used to RIP   OSPF   redistribute either one-way or two-way (both ways). •  More prone to routing loop problems. #  
  • 46. Предотвращение петель маршрутизации•  The safest way to perform redistribution is to redistribute routes in only one direction, on only one boundary router within the network. –  However, that this results in a single point of failure in the network.•  If redistribution must be done in both directions or on multiple boundary routers, the redistribution should be tuned to avoid problems such as suboptimal routing and routing loops. #  
  • 47. Рекомендации при редистрибуции•  Do not overlap routing protocols. –  Do not run two different protocols in the same Internetwork. –  Instead, have distinct boundaries between networks that use different routing protocols. •  Be familiar with your network. –  Knowing the network will result in the best decision being made. #  
  • 48. Ключевые моменты редистрибуции•  Routes are redistributed into a routing protocol. –  Therefore, the redistribute command is configured under the routing process that is receiving the redistributed routes.•  Routes can only be redistributed between routing protocols that support the same protocol stack. –  For example IPv4 to IPv4 and IPv6 to IPv6. –  However, IPv4 routes cannot be redistributed into IPv6.•  The method used to configure redistribution varies among combinations of routing protocols. –  For example, some routing protocols require a metric to be configured during redistribution, but others do not. #  
  • 49. Общие шаги редистрибуции1.  Identify the boundary router(s) that will perform redistribution.2.  Determine which routing protocol is the core protocol. 3.  Determine which routing protocol is the edge protocol. – Determine whether all routes from the edge protocol need to be propagated into the core and consider methods that reduce the number of routes.4.  Select a method for injecting the required routes into the core. – Summarized routes at network boundaries minimizes the number of new entries in the routing table of the core routers.5.  Consider how to inject the core routing information into the edge protocol. #  
  • 50. Редистрибуция в RIP•  Redistribute routes into RIP. Router(config-router)# redistribute protocol [process-id] [match route-type] [metric metric-value] [route-map map-tag] Parameter DescripNon protocol The  source  protocol  from  which  routes  are  redistributed.   For  OSPF,  this  value  is  an  OSPF  process  ID.     process-id For  EIGRP  or  BGP,  this  value  is  an  AS  number.     This  parameter  is  not  required  for  IS-­‐IS.   (Op&onal)  A  parameter  used  when  redistribu&ng  OSPF  routes  into  another   route-type rou&ng  protocol.     (Op&onal)  A  parameter  used  to  specify  the  RIP  hop  count  seed  metric  for  the   redistributed  route.     metric-value If  this  value  is  not  specified  and  no  value  is  specified  using  the default- metric router  configura&on  command,  then  the  default  metric  is  0  and   interpreted  as  infinity  which  means  that  routes  will  not  be  redistributed.     (Op&onal)  Specifies  the  iden&fier  of  a  configured  route  map  to  be  interrogated   map-tag to  filter  the  importa&on  of  routes  from  the  source  rou&ng  protocol  to  the   current  RIP  rou&ng  protocol.   #  
  • 51. Пример редистрибуции в RIP R1(config)# router rip R1(config-router)# redistribute ospf 1 metric 3 R1(config-router)#OSPF   RIP   192.168.1.0  /24   .1   10.1.1.0  /24   .2   R1   Fa0/0   Fa0/0   R2  O 172.16.1.0/24 [110/50] R 172.16.0.0 [120/3] Table  R1   Table  R2   C 10.1.1.0 C 10.1.1.0 R 192.168.1.0 [120/1] C 192.168.1.0 0 172.16.1.0 [110/50] R 172.16.0.0 [120/3] #  
  • 52. Редистрибуция в OSPF•  Redistribute routes into OSPF. Router(config-router)# redistribute protocol [process-id] [metric metric-value] [metric-type type- value] [route-map map-tag] [subnets] [tag tag-value] Parameter DescripNon protocol The  source  protocol  from  which  routes  are  redistributed.   For  EIGRP  or  BGP,  this  value  is  an  AS  number.     process-id This  parameter  is  not  required  for  RIP  or  IS-­‐IS.   (Op&onal)  A  parameter  that  specifies  the  OSPF  seed  metric  used  for  the  redistributed   route.     metric-value The  default  metric  is  a  cost  of  20  (except  for  BGP  routes,  which  have  a  default  metric  of   1).     (Op&onal)  Specifies  the  iden&fier  of  a  configured  route  map  to  be  interrogated  to  filter   map-tag the  importa&on  of  routes  from  the  source  rou&ng  protocol  to  the  current  OSPF  rou&ng   protocol.   (Op&onal)  OSPF  parameter  that  specifies  that  subneced  routes  should  be   subnets redistributed.     Otherwise,  only  classful  routes  are  redistributed.   tag-value (Op&onal)  A  32-­‐bit  decimal  value  acached  to  each  external  route  to  be  used  by  ASBRs.   #  
  • 53. Пример редистрибуции в OSPF R1(config)# router ospf 1 R1(config-router)# redistribute eigrp 100 subnets metric-type 1 R1(config-router)# EIGRP  AS  100   OSPF   192.168.1.0  /24   .1   10.1.1.0  /24   .2   R1   Fa0/0   Fa0/0   R2  D 172.16.1.0/24 [90/409600]   O E1 172.16.1.0 [110/20] Table  R1   Table  R2   C 10.1.1.0 C 10.1.1.0 0 192.168.1.0 [110/20] C 192.168.1.0 D 172.16.1.0 [90/409600] O E1 172.16.1.0 [110/20] #  
  • 54. Метрика по умолчанию в RIP, OSPF, BGP•  Apply default metric values for RIP, OSPF, and BGP. Router(config-router)# default-metric number§  The number parameter  is  the  value  of  the  metric.     §  For  RIP  this  is  the  number  of  hops.   §  For  OSPF  this  is  the  assigned  cost.   #  
  • 55. Пример метрики по умолчанию в OSPF R1(config)# router ospf 1 R1(config-router)# default-metric 30 R1(config-router)# redistribute eigrp 100 subnets metric-type 1 R1(config-router)# EIGRP  AS  100   OSPF   192.168.1.0  /24   .1   10.1.1.0  /24   .2   R1   Fa0/0   Fa0/0   R2  D 172.16.1.0/24 [90/409600]   O E1 172.16.1.0 [110/30] Table  R1   Table  R2   C 10.1.1.0 C 10.1.1.0 0 192.168.1.0 [110/20] C 192.168.1.0 D 172.16.1.0 [90/409600] O E1 172.16.1.0 [110/30] #  
  • 56. Редистрибуция в EIGRP•  Redistribute routes into EIGRP. Router(config-router)# redistribute protocol [process-id] [match route-type] [metric metric-value] [route-map map-tag] Parameter DescripNon protocol The  source  protocol  from  which  routes  are  redistributed.   For  OSPF,  this  value  is  an  OSPF  process  ID.     process-id For  BGP,  this  value  is  an  AS  number.     This  parameter  is  not  required  for  RIP  or  IS-­‐IS.   (Op&onal)  A  parameter  used  when  redistribu&ng  OSPF  routes  into  another  rou&ng   route-type protocol.     Required  if  the   default-metric command  is  not  configured  otherwise  it  is   op&onal  .   A  parameter  that  specifies  the  EIGRP  seed  metric,  in  the  order  of  bandwidth,  delay,   metric-value reliability,  load,  and  maximum  transmission  unit  (MTU),  for  the  redistributed  route.     If  this  value  is  not  specified  when  redistribu&ng  from  another  protocol  and  no   default  metric  has  been  configured,  then  no  routes  will  not  be  redistributed.     (Op&onal)  Specifies  the  iden&fier  of  a  configured  route  map  to  be  interrogated  to   map-tag filter  the  importa&on  of  routes  from  the  source  rou&ng  protocol  to  the  current   EIGRP  rou&ng  protocol.   #  
  • 57. Пример редистрибуции в EIGRP R1(config)# router eigrp 100 R1(config-router)# redistribute ospf 1 metric 10000 100 255 1 1500 R1(config-router)# OSPF   EIGRP  AS  100   192.168.1.0  /24   .1   10.1.1.0  /24   .2   R1   Fa0/0   Fa0/0   R2  O 172.16.1.0/24 [110/50]   D EX 172.16.1.0/24 [170/281600]   Table  R1   Table  R2   C 10.1.1.0 C 10.1.1.0 0 192.168.1.0 [90/307200] C 192.168.1.0 O 172.16.1.0 [110/50] D EX 172.16.1.0 [170/307200] #  
  • 58. Метрика по умолчанию в EIGRP•  Apply metric values for EIGRP. •  Router(config-router)# •  default-metric bandwidth delay reliability loading mtu Parameter DescripNon The  route’s  minimum  bandwidth  in  kilobits  per  second  (kbps).     bandwidth It  can  be  0  or  any  posi&ve  integer. Route  delay  in  tens  of  microseconds.     delay It  can  be  0  or  any  posi&ve  integer  that  is  a  mul&ple  of  39.1   nanoseconds. The  likelihood  of  successful  packet  transmission,  expressed  as  a  number   reliability from  0  to  255,  where  255  means  that  the  route  is  100  percent  reliable,   and  0  means  unreliable. The  route’s  effec&ve  loading,  expressed  as  a  number  from  1  to  255,   loading where  255  means  that  the  route  is  100  percent  loaded. Maximum  transmission  unit.     mtu The  maximum  packet  size  in  bytes  along  the  route;  an  integer  greater   than  or  equal  to  1. #  
  • 59. Пример метрики по умолчанию в EIGRP R1(config)# router eigrp 100 R1(config-router)# default-metric 10000 100 255 1 1500 R1(config-router)# redistribute ospf 1 R1(config-router)# OSPF   EIGRP  AS  100   192.168.1.0  /24   .1   10.1.1.0  /24   .2   R1   Fa0/0   Fa0/0   R2  O 172.16.1.0/24 [110/50]   D EX 172.16.1.0/24 [170/281600]   Table  R1   Table  R2   C 10.1.1.0 C 10.1.1.0 0 192.168.1.0 [90/307200] C 192.168.1.0 O 172.16.1.0 [110/50] D EX 172.16.1.0 [170/307200] #  
  • 60. Изменение административной дистанции•  When routes are redistributed between two different routing protocols, some information may be lost making route selection more confusing. •  One approach to correct this is to control the administrative distance to indicate route selection preference and ensure that route selection is unambiguous. –  Although, this approach does not always guarantee the best route is selected, only that route selection will be consistent.•  For all protocols use the distance administrative-distance router configuration command. –  Alternatively for OSPF, use the distance ospf command. –  Alternatively for EIGRP, use the distance eigrp command. #  
  • 61. Изменение административной дистанции•  Change the default administrative distances. •  Router(config-router)# •  distance administrative-distance [address wildcard-mask [ip-standard- list] [ip-extended-list]] Parameter DescripNon administrative-distance Sets  the  administra&ve  distance,  an  integer  from  10  to  255.     (Op&onal)  Specifies  the  IP  address;  this  allows  filtering  of  networks   address according  to  the  IP  address  of  the  router  supplying  the  rou&ng   informa&on.   (Op&onal)  Specifies  the  wildcard  mask  used  to  interpret  the  IP   wildcard-mask address.     (Op&onal)  The  number  or  name  of  a  standard  or  extended  access   ip-standard-list list  to  be  applied  to  the  incoming  rou&ng  updates.  Allows  filtering  of   ip-extended-list the  networks  being  adver&sed.   #  
  • 62. Изменение административной дистанции OSPF•  Change the default administrative distances of OSPF. •  Router(config-router)# •  distance ospf {[intra-area dist1] [inter-area dist2] [external dist3] Parameter DescripNon (Op&onal)  Specifies  the  administra&ve  distance  for  all  OSPF  routes  within   dist1 an  area.     Acceptable  values  are  from  1  to  255  while  the  default  is  110.   (Op&onal)  Specifies  the  administra&ve  distance  for  all  OSPF  routes  from   dist2 one  area  to  another  area.     Acceptable  values  are  from  1  to  255  while  the  default  is  110.   (Op&onal)  Specifies  the  administra&ve  distance  for  all  routes  from  other   dist3 rou&ng  domains,  learned  by  redistribu&on.     Acceptable  values  are  from  1  to  255  while  the  default  is  110.   #  
  • 63. Изменение административной дистанции EIGRP•  Change the default administrative distance of EIGRP. •  Router(config-router)# •  distance eigrp internal-distance external-distance Parameter DescripNon Specifies  the  administra&ve  distance  for  EIGRP  internal  routes.     internal-distance The  distance  can  be  a  value  from  1  to  255  while  the  default  is  90.   Specifies  the  administra&ve  distance  for  EIGRP  external  routes.     external-distance The  distance  can  be  a  value  from  1  to  255  while  the  default  is  170.   #  
  • 64. Проверка редистрибуции•  Know the network topology. –  Pay particularly attention to where redundant routes exist.•  Study the routing tables on a variety of routers in the network. –  For example, check the routing table on the boundary router and on some of the internal routers in each autonomous system.•  Examine the topology table of each configured routing protocol to ensure that all appropriate prefixes are being learned.•  Use the traceroute EXEC command on some of the routes to verify that the shortest path is being used for routing. –  Be sure to run traces to networks for which redundant routes exist.•  When troubleshooting, use the traceroute and debug commands to observe the routing update traffic on the boundary routers and on the internal routers. #  
  • 65. DEMO
  • 66. Внедрение IPv6 –неизбежное будущее или реальность
  • 67. Будущее – IPv6•  Возможность развития сетей в будущем напрямую зависит от доступности IP адресов –  IPv6 совмещает в себе расширенное адресное пространство и более эффективный заголовок –  Будучи очень похожим на IPv4, IPv6 поддерживает более жесткую иерархию, необходимую в будущем #  
  • 68. Адресное пространство IPv4•  IPv4 был стандартизирован в 1981г. •  Адресное пространство – 4,29 миллиарда адресов•  Население планеты – 4,41 миллиарда человек #  
  • 69. Взрывной рост IP устройств #  
  • 70. Адресное пространство IPv6 #  
  • 71. Оставшиеся IPv4 адреса•  IANA уже распределила последний /8 префикс региональным регистраторам•  В некоторых регионах уже не осталось /8 префиксов #  
  • 72. Особенности IPv6•  Larger address space –  IPv6 addresses are 128 bits, compared to IPv4’s 32 bits. •  There are enough IPv6 addresses to allocate more than the entire IPv4 Internet address space to everyone on the planet.•  Elimination of public-to-private NAT –  End-to-end communication traceability is possible.•  Elimination of broadcast addresses –  IPv6 now includes unicast, multicast, and anycast addresses. •  Support for mobility and security –  Helps ensure compliance with mobile IP and IPsec standards. •  Simplified header for improved router efficiency #  
  • 73. Типы адресов IPv6Тип  адреса   Описание   Топология   “One  to  One”     •  An  address  des&ned  for  a  single  interface.     Unicast   •  A  packet  sent  to  a  unicast  address  is  delivered  to  the   interface  iden&fied  by  that  address.   “One  to  Many”     •  An  address  for  a  set  of  interfaces  (typically  belonging  to  Mul&cast   different  nodes).     •  A  packet  sent  to  a  mul&cast  address  will  be  delivered  to  all   interfaces  iden&fied  by  that  address.   “One  to  Nearest”  (Allocated  from  Unicast)   •  An  address  for  a  set  of  interfaces.    Anycast   •  In  most  cases  these  interfaces  belong  to  different  nodes.     •  A  packet  sent  to  an  anycast  address  is  delivered  to  the   closest  interface  as  determined  by  the  IGP.   #  
  • 74. Новшества IPv6•  Prefix renumbering –  IPv6 allows simplified mechanisms for address and prefix renumbering. •  Multiple addresses per interface –  An IPv6 interface can have multiple addresses.•  Link-local addresses –  IPv6 link-local addresses are used as the next hop when IGPs are exchanging routing updates.•  Stateless autoconfiguration: –  DHCP is not required because an IPv6 device can automatically assign itself a unique IPv6 link-local address.•  Provider-dependent or provider-independent addressing #  
  • 75. IPv4 устарел?•  IPv4 is in no danger of disappearing overnight. –  It will coexist with IPv6 and then gradually be replaced. •  IPv6 provides many transition options including: –  Dual stack: •  Both IPv4 and IPv6 are configured and run simultaneously on the interface. –  IPv6-to-IPv4 (6to4) tunneling and IPv4-compatible tunneling. –  NAT protocol translation (NAT-PT) between IPv6 and IPv4. #  
  • 76. Адреса IPv6•  IPv6 increases the number of address bits by a factor of 4, from 32 to 128, providing a very large number of addressable nodes. IPv4  =  32  bits   11111111.11111111.11111111.11111111 IPv6  =  128  bits   11111111.11111111.11111111.11111111 11111111.11111111.11111111.11111111 11111111.11111111.11111111.11111111 11111111.11111111.11111111.11111111 #  
  • 77. Распределение адресов IPv6•  The following displays how IPv6 global unicast addresses are allocated by the IANA. –  Only a small portion (12.5%) of the IPv6 address space is being allocated to the Registries in the range of 2001::/16. #  
  • 78. Специфика адресов IPv6•  The 128-bit IPv6 address is written using hexadecimal numbers. –  Specifically, it consists of 8, 16-bit segments separated with colons between each set of four hex digits (16 bits). –  Referred to as “coloned hex” format. –  Hex digits are not case sensitive. –  The format is x:x:x:x:x:x:x:x, where x is a 16- bit hexadecimal field therefore each x is representing four hexadecimal digits. •  An example address is as follows: •  2035:0001:2BC5:0000:0000:087C:0000:000A #  
  • 79. Пример адреса IPv62031:0000:130F:0000:0000:09C0:876A:130B2031: 0:130F: 0: 0: 9C0:876A:130B 2031:0:130F:0:0:9C0:876A:130B 2031:0:130F::9C0:876A:130B #  
  • 80. Пример адреса IPv6FF01:0000:0000:0000:0000:0000:0000:1 FF01:0:0:0:0:0:0:1 = FF01::1E3D7:0000:0000:0000:51F4:00C8:C0A8:6420 = E3D7::51F4:C8:C0A8:64203FFE:0501:0008:0000:0260:97FF:FE40:EFAB = 3FFE:501:8:0:260:97FF:FE40:EFAB = 3FFE:501:8::260:97FF:FE40:EFAB #  
  • 81. IPv6 Addressing in an Enterprise Network•  An IPv6 address consists of two parts: •  A subnet prefix representing the network to which the interface is connected. •  Usually 64-bits in length. •  An interface ID, sometimes called a local identifier or a token. •  Usually 64-bits in length. IPv6  =  128  bits   11111111.11111111.11111111.11111111 11111111.11111111.11111111.11111111 11111111.11111111.11111111.11111111 11111111.11111111.11111111.11111111 Subnet  prefix   Interface  ID  
  • 82. IPv6 адресация в корпоративной сети•  IPv6 uses the “/prefix-length” CIDR notation to denote how many bits in the IPv6 address represent the subnet.•  The syntax is ipv6-address/prefix-length –  ipv6-address is the 128-bit IPv6 address –  /prefix-length is a decimal value representing how many of the left most contiguous bits of the address comprise the prefix. For example: fec0:0:0:1::1234/64 is really fec0:0000:0000:0001:0000:0000:0000:1234/64 –  The first 64-bits (fec0:0000:0000:0001) forms the address prefix. –  The last 64-bits (0000:0000:0000:1234) forms the Interface ID. #  
  • 83. Префикс подсети•  The prefix length is almost always /64. –  However, IPv6 rules allow for either shorter or longer prefixes –  Although prefixes shorter than /64 can be assigned to a device (e.g., /60), it is considered bad practice and has no real application.•  Deploying a /64 IPv6 prefix on a device: –  Is pre-subscribed by RFC3177 (IAB/IESG Recommendations on IPv6 Address Allocations to Sites) –  Allows Stateless Address Auto Configuration (SLAAC) (RFC 2462) #  
  • 84. Специальные IPv6 адресаIPv6  Address   DescripNon   •  All  routes  and  used  when  specifying  a  default  sta&c  route.  ::/0 •  It  is  equivalent  to  the  IPv4  quad-­‐zero  (0.0.0.0).   •  Unspecified  address  and  is  ini&ally  assigned  to  a  host  when  ::/128 it  first  resolves  its  local  link  address.   •  Loopback  address  of  local  host.    ::1/128 •  Equivalent  to  127.0.0.1  in  IPv4.   •  Link-­‐local  unicast  address.  FE80::/10 •  Similar  to  the  Windows  autoconfigura&on  IP  address  of   169.254.x.x.  FF00::/8 •  Mul&cast  addresses.  All  other  addresses   •  Global  unicast  address.   #  
  • 85. Диапазоны IPv6 адресов •  Address types have well-defined destination scopes: –  Link-local address –  Global unicast address –  Site-local address Global   Site-­‐Local   Link-­‐Local   (Internet)    §  Note:   •  Site-­‐Local  Address  are  deprecated  in  RFC  3879.   #  
  • 86. Несколько IP адресов на интерфейсе•  An interface can have multiple IPv6 addresses simultaneously configured and enabled on it. –  However, it must have a link-local address.•  Typically, an interface is assigned a link-local and one (or more) global IPv6 address. –  For example, an Ethernet interface can have: •  Link-local address (e.g., FE80::21B:D5FF:FE5B:A408) •  Global unicast address (e.g., 2001:8:85A3:4289:21B:D5FF:FE5B:A408)•  Note: –  An interface could also be configured to simultaneously support IPv4 and IPv6 addresses. –  This creates a “dual-stacked” interface which is discussed later. #  
  • 87. IPv6 Link-Local адреса•  Link-local addresses are used for automatic address configuration, neighbor discovery, router discovery, and by many routing protocols.•  They are dynamically created using a link-local prefix of FE80::/10 and a 64-bit interface identifier. –  Unique only on the link, and it is not routable off the link. 128  bits   /10   /64   FE80 Interface  ID   1111 1110 1000 0000 0000 0000 ... 0000 0000 0000FE80::/10 #  
  • 88. IPv6 Link-Local адреса§  Link-local packets are unique only on the link, and are not routable off the link. –  Packets with a link-local destination must stay on the link where they have been generated. –  Routers that could forward them to other links are not allowed to do so because there has been no verification of uniqueness outside the context of the origin link.K 128  bits   /10   /64   FE80 Interface  ID   1111 1110 1000 0000 0000 0000 ... 0000 0000 0000FE80::/10 #  
  • 89. Пример IPv6 Link-Local адресовR1# show ipv6 interface loopback 100Loopback100 is up, line protocol is up IPv6 is enabled, link-local address is FE80::222:55FF:FE18:7DE8 No Virtual link-local address(es): Global unicast address(es): 2001:8:85A3:4290:222:55FF:FE18:7DE8, subnet is 2001:8:85A3:4290::/64 [EUI] Joined group address(es): FF02::1 FF02::2 FF02::1:FF18:7DE8 MTU is 1514 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled ICMP unreachables are sent ND DAD is not supported ND reachable time is 30000 milliseconds (using 31238) Hosts use stateless autoconfig for addresses.R1# #  
  • 90. IPv6 Global Unicast адреса•  A global unicast address is an IPv6 address from the global public unicast prefix (2001::/16). –  The structure enables aggregation of routing prefixes to reduce the number of routing table entries in the global routing table. •  Global unicast addresses are aggregated upward through organizations and eventually to the ISPs. #  
  • 91. IPv6 Global Unicast адреса•  The global unicast address typically consists of: –  A 48-bit global routing prefix –  A 16-bit subnet ID –  A 64-bit interface ID (typically in EUI-64 bit format). Subnet   Global  Rou&ng  Prefix   ID   Interface  ID   /23   /32   /48   /64   2001 0008 21B:D5FF:FE5B:A408 0010 Registry   ISP  Prefix   Site  Prefix   Subnet  Prefix   #  
  • 92. Пример IPv6 Global Unicast адресаR1# show ipv6 interface loopback 100Loopback100 is up, line protocol is up IPv6 is enabled, link-local address is FE80::222:55FF:FE18:7DE8 No Virtual link-local address(es): Global unicast address(es): 2001:8:85A3:4290:222:55FF:FE18:7DE8, subnet is 2001:8:85A3:4290::/64 [EUI] Joined group address(es): FF02::1 FF02::2 FF02::1:FF18:7DE8 MTU is 1514 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled ICMP unreachables are sent ND DAD is not supported ND reachable time is 30000 milliseconds (using 31238) Hosts use stateless autoconfig for addresses.R1# #  
  • 93. Настройка IPv6 Unicast адресов IPv6  Unicast     Address  Assignment   Link-­‐local  (FE80::/10)   Global  Routable       Address  Assignment   Address  Assignment  StaNc   Dynamic   StaNc   Dynamic   Automa&cally  created   (EUI-­‐64  format)  if  a  global   Stateless   IPv6  Address   unicast  IPv6  address  is   IPv6  Address   Autoconfigura&on   configured   IPv6  Unnumbered   DHCPv6   #  
  • 94. Включение IPv6 на интерфейсеConfigure an IPv6 address and prefix. Router(config-if)# ipv6 address address/prefix-length [link-local | eui-64] •  Command is used to statically configure an IPv6 address and prefix on an interface. –  This enables IPv6 processing on the interface. •  The link-local parameter configures the address as the link-local address on the interface. •  The eui-64 parameter completes a global IPv6 address using an EUI-64 format interface ID. #  
  • 95. Назначение Link-Local адресов .2   R1   R2  R1(config)# interface fa0/0R1(config-if)# ipv6 address FE80::1 ?link-local use link-local addressR1(config-if)# ipv6 address FE80::1 link-localR1(config-if)# endR1#•  Link-local addresses are created: –  Automatically using the EUI-64 format if the interface has IPv6 enabled on it or a global IPv6 address configured. –  Manually configured interface ID. •  Manually configured interface IDs are easier to remember than EUI-64 generated IDs.•  Notice that the prefix mask is not required on link-local addresses because they are not routed. #  
  • 96. Назначение Link-Local адресов FE80::1   .2   R1   R2  R1# show ipv6 interface fa0/0FastEthernet0/0 is up, line protocol is upIPv6 is enabled, link-local address is FE80::1 [TEN] No global unicast address is configured Joined group address(es): FF02::1 FF02::2 FF02::1:FF00:1 MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled ND DAD is enabled, number of DAD attempts: 1 ND reachable time is 30000 milliseconds ND advertised reachable time is 0 milliseconds ND advertised retransmit interval is 0 milliseconds ND router advertisements are sent every 200 seconds ND router advertisements live for 1800 seconds Hosts use stateless autoconfig for addresses.R1(config-if)#§  The output confirms the link-local address. #  
  • 97. Назначение Static Global Unicast адресов FE80::1   .2   R1   R2  R1(config)# ipv6 unicast-routingR1(config)# interface fa0/0R1(config-if)# ipv6 address 2001:1::1/64R1(config-if)#•  Global Unicast IPv6 addresses are assigned by omitting the link- local parameter.•  For example, IPv6 address 2001:1::1/64 is configured on R1’s Fast Ethernet 0/0. –  Notice that the entire address is manually configured and that the EUI-64 format was not used. #  
  • 98. Назначение Static Global Unicast адресов FE80::1   .2   R1   R2  R1# show ipv6 interface fa0/1R1# config tR1(config)# int fa0/1R1(config-if)# ipv6 add 2001::/64 eui-64R1(config-if)# do show ipv6 interface fa0/1FastEthernet0/1 is administratively down, line protocol is down IPv6 is enabled, link-local address is FE80::211:92FF:FE54:E2A1 [TEN] Global unicast address(es): 2001::211:92FF:FE54:E2A1, subnet is 2001::/64 [EUI/TEN] Joined group address(es): FF02::1 FF02::2 FF02::1:FF54:E2A1 MTU is 1500 bytes<output omitted>•  Notice that by simply configuring a global unicast IPv6 address on an interface also automatically generates a link-local interface (EUI-64) interface. #  
  • 99. Назначение Static Global Unicast адресов FE80::1 2001:1::1/64   .2   R1   R2  R1# show ipv6 interface fa0/0FastEthernet0/0 is up, line protocol is up IPv6 is enabled, link-local address is FE80::1 [TEN] Global unicast address(es): 2001:1::1, subnet is 2001:1::/64 [TEN] Joined group address(es): FF02::1 FF02::2 FF02::1:FF00:1 MTU is 1500 bytes ICMP error messages limited to one every 100 milliseconds ICMP redirects are enabled ND DAD is enabled, number of DAD attempts: 1 ND reachable time is 30000 milliseconds ND advertised reachable time is 0 milliseconds ND advertised retransmit interval is 0 milliseconds ND router advertisements are sent every 200 seconds ND router advertisements live for 1800 seconds Hosts use stateless autoconfig for addresses.R1# #  
  • 100. Назначение нескольких IPv6 адресов FE80::1 2001:1::1/64   .2   R1   R2  R1(config)# interface fa0/0R1(config-if)# ip address 10.20.20.1 255.255.255.0R1(config-if)# ip address 10.10.10.1 255.255.255.0R1(config-if)# ipv6 address 2001:1::1/64R1(config-if)# ipv6 address 2002:1::1/64R1(config-if)# endR1#•  What would happen if we configured 2 different IPv4 addresses and 2 different IPv6 addresses on the same interface? #  
  • 101. Назначение нескольких IPv6 адресов 10.10.10.1/24 FE80::1 2001:1::1/64 2001:2::1/64   .2   R1   R2  R1# show run interface fa0/0Building configuration...Current configuration : 162 bytes!interface FastEthernet0/0 ip address 10.10.10.1 255.255.255.0 duplex auto speed auto ipv6 address 2001:1::1/64 ipv6 address 2002:1::1/64 ipv6 address FE80::1 link-localendR1#•  The second IPv4 entry replaced the first entry. –  However, both IPv6 addresses have been assigned to the Fa0/0 interface.•  Interfaces can have multiple IPv6 addresses assigned to them. –  These addresses can be used simultaneously. #  
  • 102. Маршрутизация IPv6•  IPv6 supports the following routing: –  Static Routing –  RIPng –  OSPFv3 –  IS-IS for IPv6 –  EIGRP for IPv6 –  Multiprotocol BGP version 4 (MP-BGPv4) •  For each routing option above, the ipv6 unicast-routing command must be configured. #  
  • 103. Заключение
  • 104. Сертификация для сетевых инженеров§ CCENT: install and verify basic   IP network with supervision  § CCNA: also… configure and maintain   a multisite enterprise network, as directed  § CCNP: also… plan and troubleshootenterprise networks with advancedsolutions, collaborating withnetwork specialists  § CCIE: also… independently troubleshootand optimize network performance incomplex and integrated enterprise networks   #  
  • 105. Курс CCNP ROUTE•  Курс «Построение маршрутизируемых сетей Cisco» (ROUTE) – является частью трека CCNP •  Цель курса - Подготовка сетевых профессионалов, способных планировать, строить и поддерживать большие маршрутизируемые IP сети #  
  • 106. Курс CCNP ROUTEВ результате обучения вы научитесь:•  осуществлять расширенную настройку протоколов маршрутизации EIGRP и OSPF;•  управлять обновлениями протоколов маршрутизации;•  настраивать фильтрацию маршрутной информации;•  настраивать протокол BGP в корпоративной сети для подключения к нескольким сетям провайдера;•  использовать возможности маршрутизации для подключения удаленных офисов;•  внедрять протокол IPv6 в сети предприятия. #  
  • 107. Курс CCNP ROUTE Промокод #BIGNETСкидка 10% на профессиональный курс CCNP ROUTE #  
  • 108. Вопросы?amerckushov@getccna.ru

×