Upcoming SlideShare
×

# Special angles

• 787 views

How to find the values of "special" angles in Trigonometry

How to find the values of "special" angles in Trigonometry

More in: Education
• Comment goes here.
Are you sure you want to
Be the first to comment

Total Views
787
On Slideshare
0
From Embeds
0
Number of Embeds
0

Shares
13
0
Likes
3

No embeds

### Report content

No notes for slide
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n

### Transcript

• 1. Exact Values of the Trig Ratios Thursday 26th May 2011
• 2. Construct an right angled isosceles triangle
• 3. 45° 45°Construct an right angled isosceles triangle
• 4. 1 1Make the sides the simplest they can be....
• 5. 45° 1 45° 1Make the sides the simplest they can be....
• 6. 45° 1 45° 1Find the hypotenuse....
• 7. 45° 2 1 45° 1Find the hypotenuse....
• 8. o 1 tan 45 = = 1 1 45° o 1 2 sin 45 = = 2 2 1 o 1 2 cos 45 = = 2 2 45° 1deﬁne the Trig ratios....
• 9. o 1 tan 45 = = 1 1 45° o 1 2 2 sin 45 = 2 = 2 1 o 1 2 cos 45 = = 2 2 45° 1deﬁne the Trig ratios....
• 10. o 1 tan 45 = = 1 1 45° 1 45° 1remember the process not the values :)
• 11. o 1 tan 45 = = 1 1 45° 2 1 45° 1remember the process not the values :)
• 12. o 1 tan 45 = = 1 1 45° o 1 2 2 sin 45 = 2 = 2 1 45° 1remember the process not the values :)
• 13. o 1 tan 45 = = 1 1 45° o 1 2 2 sin 45 = 2 = 2 1 o 1 2 cos 45 = = 2 2 45° 1remember the process not the values :)
• 14. Construct an equilateral triangle...
• 15. Construct an equilateral triangle...
• 16. 60° 60° 60°Construct an equilateral triangle...
• 17. 60°60° 60° with simple side lengths
• 18. 60°2 260° 60° 2 with simple side lengths
• 19. 60° 2 260° 60° 2 bisect the top angle
• 20. 30° 2 260° 60° 1 1 bisect the top angle
• 21. 30° 2 260° 60° 1 1 ﬁnd the perpendicular height
• 22. 30° 2 2 360° 60° 1 1 ﬁnd the perpendicular height
• 23. 30° 2 2 60° 60° 1 1Read off the trig ratios in the constructed right angled triangle
• 24. 30° 2 2 360° 60° 1 1
• 25. 30° 2 2 3 60° 60° o 3 1 1sin 60 = 2
• 26. 30° 2 2 3 60° 60° o 3 1 1sin 60 = 2 o 1cos 60 = 2
• 27. 30° 2 2 3 60° 60° o 3 1 1sin 60 = 2 o 1cos 60 = 2 o 3tan 60 = = 3 1
• 28. 30° 2 2 3 60° 60° o 3 1 1 o 1sin 60 = sin 30 = 2 2 o 1cos 60 = 2 o 3tan 60 = = 3 1
• 29. 30° 2 2 3 60° 60° o 3 1 1 o 1sin 60 = sin 30 = 2 2 o 1 o 3cos 60 = cos 30 = 2 2 o 3tan 60 = = 3 1
• 30. 30° 2 2 3 60° 60° o 3 1 1 o 1sin 60 = sin 30 = 2 2 o 1 o 3cos 60 = cos 30 = 2 2 o 3 1 3tan 60 = = 3 o tan 30 = = 1 3 3
• 31. Remember the process not the results! :) o 1tan 45 = = 1 3 o 1 1 o sin 60 = sin 30 = 2 2 o 1 2 o 1 o 3sin 45 = = cos 60 = cos 30 = 2 2 2 2 o 1 2 o 3 o 1 3cos 45 = = tan 60 = = 3 tan 30 = = 2 2 1 3 3