Uploaded on

How to find the values of "special" angles in Trigonometry

How to find the values of "special" angles in Trigonometry

More in: Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
787
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
13
Comments
0
Likes
3

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n

Transcript

  • 1. Exact Values of the Trig Ratios Thursday 26th May 2011
  • 2. Construct an right angled isosceles triangle
  • 3. 45° 45°Construct an right angled isosceles triangle
  • 4. 1 1Make the sides the simplest they can be....
  • 5. 45° 1 45° 1Make the sides the simplest they can be....
  • 6. 45° 1 45° 1Find the hypotenuse....
  • 7. 45° 2 1 45° 1Find the hypotenuse....
  • 8. o 1 tan 45 = = 1 1 45° o 1 2 sin 45 = = 2 2 1 o 1 2 cos 45 = = 2 2 45° 1define the Trig ratios....
  • 9. o 1 tan 45 = = 1 1 45° o 1 2 2 sin 45 = 2 = 2 1 o 1 2 cos 45 = = 2 2 45° 1define the Trig ratios....
  • 10. o 1 tan 45 = = 1 1 45° 1 45° 1remember the process not the values :)
  • 11. o 1 tan 45 = = 1 1 45° 2 1 45° 1remember the process not the values :)
  • 12. o 1 tan 45 = = 1 1 45° o 1 2 2 sin 45 = 2 = 2 1 45° 1remember the process not the values :)
  • 13. o 1 tan 45 = = 1 1 45° o 1 2 2 sin 45 = 2 = 2 1 o 1 2 cos 45 = = 2 2 45° 1remember the process not the values :)
  • 14. Construct an equilateral triangle...
  • 15. Construct an equilateral triangle...
  • 16. 60° 60° 60°Construct an equilateral triangle...
  • 17. 60°60° 60° with simple side lengths
  • 18. 60°2 260° 60° 2 with simple side lengths
  • 19. 60° 2 260° 60° 2 bisect the top angle
  • 20. 30° 2 260° 60° 1 1 bisect the top angle
  • 21. 30° 2 260° 60° 1 1 find the perpendicular height
  • 22. 30° 2 2 360° 60° 1 1 find the perpendicular height
  • 23. 30° 2 2 60° 60° 1 1Read off the trig ratios in the constructed right angled triangle
  • 24. 30° 2 2 360° 60° 1 1
  • 25. 30° 2 2 3 60° 60° o 3 1 1sin 60 = 2
  • 26. 30° 2 2 3 60° 60° o 3 1 1sin 60 = 2 o 1cos 60 = 2
  • 27. 30° 2 2 3 60° 60° o 3 1 1sin 60 = 2 o 1cos 60 = 2 o 3tan 60 = = 3 1
  • 28. 30° 2 2 3 60° 60° o 3 1 1 o 1sin 60 = sin 30 = 2 2 o 1cos 60 = 2 o 3tan 60 = = 3 1
  • 29. 30° 2 2 3 60° 60° o 3 1 1 o 1sin 60 = sin 30 = 2 2 o 1 o 3cos 60 = cos 30 = 2 2 o 3tan 60 = = 3 1
  • 30. 30° 2 2 3 60° 60° o 3 1 1 o 1sin 60 = sin 30 = 2 2 o 1 o 3cos 60 = cos 30 = 2 2 o 3 1 3tan 60 = = 3 o tan 30 = = 1 3 3
  • 31. Remember the process not the results! :) o 1tan 45 = = 1 3 o 1 1 o sin 60 = sin 30 = 2 2 o 1 2 o 1 o 3sin 45 = = cos 60 = cos 30 = 2 2 2 2 o 1 2 o 3 o 1 3cos 45 = = tan 60 = = 3 tan 30 = = 2 2 1 3 3