Upcoming SlideShare
×
Like this presentation? Why not share!

Like this? Share it with your network

Share

# Factorising quads diff 2 squares perfect squares

• 1,742 views

Lesson that gives examples of how to factorise quadratic equations using the difference of 2 squares rule and the properties of perfect squares.

Lesson that gives examples of how to factorise quadratic equations using the difference of 2 squares rule and the properties of perfect squares.

More in: Education
• Comment goes here.
Are you sure you want to
Be the first to comment
Be the first to like this

Total Views
1,742
On Slideshare
1,740
From Embeds
2
Number of Embeds
2

Shares
12
0
Likes
0

### Embeds2

 http://coffsharbourhighschool.com 1 http://www.slashdocs.com 1

### Report content

No notes for slide
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n

### Transcript

• 1. FACTORISING QUADRATICS Difference of 2 squares and Perfect Squares
• 2. DIFFERENCE OF 2 SQUARES• Investigate (expand): (x − 5)(x + 5) = (x + 2)(x − 2) = (3x − 6)(3x + 6) =
• 3. DIFFERENCE OF 2 SQUARES• Investigate (expand):(x − 5)(x + 5) =(x + 2)(x − 2) =(3x − 6)(3x + 6) =
• 4. DIFFERENCE OF 2 SQUARES• Investigate (expand): 2 2(x − 5)(x + 5) = x − 5x + 5x − 25 = x − 25(x + 2)(x − 2) =(3x − 6)(3x + 6) =
• 5. DIFFERENCE OF 2 SQUARES• Investigate (expand): 2 2(x − 5)(x + 5) = x − 5x + 5x − 25 = x − 25 2 2(x + 2)(x − 2) = x + 2x − 2x − 4 = x − 4(3x − 6)(3x + 6) =
• 6. DIFFERENCE OF 2 SQUARES• Investigate (expand): 2 2(x − 5)(x + 5) = x − 5x + 5x − 25 = x − 25 2 2(x + 2)(x − 2) = x + 2x − 2x − 4 = x − 4 2(3x − 6)(3x + 6) = 9x + 18x − 18x − 36 2 = x − 36
• 7. DIFFERENCE OF 2 SQUARES 2 2(a + b)(a − b) = a − b
• 8. FACTORISING USING DIFFERENCE OF 2 SQUARES• Factorise 2 x −36
• 9. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b• Factorise 2 x −36
• 10. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b)• Factorise 2 x −36
• 11. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b)• Factorise 2 x −36 a=x
• 12. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b)• Factorise 2 x −36 a=x b=6
• 13. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b)• Factorise 2 x −36 = (x + 6)(x − 6) a=x b=6
• 14. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b)• Factorise 2 4x −25
• 15. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b)• Factorise 2 4x −25 ( 2x ) −5 2 2
• 16. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b)• Factorise 2 4x −25 ( 2x ) −5 2 2a = 2x
• 17. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b)• Factorise 2 4x −25 ( 2x ) −5 2 2a = 2x b=5
• 18. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b)• Factorise 2 4x −25 = (2x + 5)(2x − 5) ( 2x ) −5 2 2a = 2x b=5
• 19. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b)• Factorise 2 3x −15
• 20. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b)• Factorise 2 3x −15 2( ) ( ) 2 3x − 15
• 21. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b)• Factorise 2 3x −15 2( ) ( ) 2 3x − 15a = 3x
• 22. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b)• Factorise 2 3x −15 2( ) ( ) 2 3x − 15a = 3x b = 15
• 23. FACTORISING USING DIFFERENCE OF 2 SQUARES 2 2 (a + b)(a − b) = a − b 2 2 a − b = (a + b)(a − b)• Factorise 2 3x −15 = ( 3x + 15 )( 3x − 15 ) 2( ) ( ) 2 3x − 15a = 3x b = 15
• 24. PERFECT SQUARES• Investigate (expand): 2 (x − 5) = (x − 5)(x − 5)
• 25. PERFECT SQUARES• Investigate (expand): 2 (x − 5) = (x − 5)(x − 5)
• 26. PERFECT SQUARES• Investigate (expand): 2 (x − 5) = (x − 5)(x − 5) 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
• 27. PERFECT SQUARES• Investigate (expand): 2 (x − 5) = (x − 5)(x − 5) a=x 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
• 28. PERFECT SQUARES• Investigate (expand): 2 (x − 5) = (x − 5)(x − 5) a=x b = −5 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
• 29. PERFECT SQUARES• Investigate (expand): 2 (x − 5) = (x − 5)(x − 5) a=x b = −5 2ab = 2 × x × (−5) 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
• 30. PERFECT SQUARES• Factorise 2 x − 8x + 16
• 31. PERFECT SQUARES• Factorise 2 x − 8x + 16 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
• 32. PERFECT SQUARES• Factorise 2 x − 8x + 16 a=x 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
• 33. PERFECT SQUARES• Factorise 2 x − 8x + 16 a=x b = −4 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
• 34. PERFECT SQUARES• Factorise 2 x − 8x + 16 a=x b = −4 2ab = 2 × x × (−4) 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
• 35. PERFECT SQUARES• Factorise 2 2 x − 8x + 16 = (x − 4) a=x b = −4 2ab = 2 × x × (−4) 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
• 36. PERFECT SQUARES• Factorise 2 x + 2 5x + 5
• 37. PERFECT SQUARES• Factorise 2 x + 2 5x + 5 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
• 38. PERFECT SQUARES• Factorise 2 x + 2 5x + 5 a=x 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
• 39. PERFECT SQUARES• Factorise 2 x + 2 5x + 5 a=x b= 5 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
• 40. PERFECT SQUARES• Factorise 2 x + 2 5x + 5 a=x b= 5 2ab = 2 × x × 5 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b
• 41. PERFECT SQUARES• Factorise 2 2 x + 2 5x + 5 = (x + 5 ) a=x b= 5 2ab = 2 × x × 5 2 2 2 (a + b) = a + 2ab + b 2 2 2 (a − b) = a − 2ab + b