Your SlideShare is downloading. ×
  • Like
Approaching graph db
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Now you can save presentations on your phone or tablet

Available for both IPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Approaching graph db

  • 375 views
Published

People like graphs. In nowadays they use facebook social graph search to find ex-girlfriend/boyfriends of their sweet hearts, or to search for a new love. Moreover - companies use graphs to evaluate …

People like graphs. In nowadays they use facebook social graph search to find ex-girlfriend/boyfriends of their sweet hearts, or to search for a new love. Moreover - companies use graphs to evaluate the internal communication effectiveness or to design the enterprise network scheme. In all those tasks the simple questions arise - what type of data storage should be used to solve the problem in the most effective and easy? Graph databases!

Published in Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
375
On SlideShare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
24
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Approaching Graph databases
  • 2. Sergey  Enin   So#ware  Engineering  Team  Leader   EPAM,  Minsk  
  • 3. AGENDA NOSQL   GRAPH   DBs   APP   NEO4J  
  • 4. NoSQL
  • 5. NoSQL Not Only SQL Using  specific  toolset  for  specific  problem   NoSQL  model  is  different  from  SQL  model   NoSQL  databases  is  a  special  purpose  Database    
  • 6. (No)SQL: CLASSIFICATION Database   Data  model   Strengths   Weaks   MySQL   RelaBonal   E-­‐R  data  model   Low  flexibility   Redis   Key-­‐value   High   performance   and  scalability   Low  funcKonality   MongoDB   Document   High   performance   Variable  flexibility   Cassandra   Column   High   performance   and  scalability   Low  funcKonality   Neo4j   Graph   High   High  complexity   performance  
  • 7. Graph  Databases   Graph Databases
  • 8. Graph Databases: HISTORY Leonhard Euler (1707 –1783) Swiss mathematician
  • 9. Graph Databases: HISTORY
  • 10. What is Graph?
  • 11. Graph Databases: GRAPH A   B   VerKce   (Node)   C   Edge   (RelaKonship)   D  
  • 12. Graph Databases: WHAT IS IT?
  • 13. Graph Databases: WHAT IS IT? Joins   VS   Traversals  
  • 14. Graph Databases: CHARACTERISTICS 1 Good for semistructured connected data Index freeadjacency 2 3 The underlying storage The processing engine 4
  • 15. APPs
  • 16. ApplicaBon:  social  graphs  
  • 17. Application: PAGE RANK
  • 18. APP: Collaborative filtering
  • 19. Neo4J: CHARACTERISTICS   true  ACID  transacKons;     scales  to  billions  of  nodes  and  relaKonships;     high  speed  querying  through  traversals;     declaraKve  graph  query  language;  
  • 20. Neo4J:   who   use   Neo4J: WHO USE it  
  • 21. Neo4J:   who   use   Neo4J: NETWORK ARCHITECTURE it   Neo4J:  network  architecture  
  • 22. Neo4J:  architecture   Neo4J: ARCHITECTURE
  • 23. Neo4J:  architecture   Neo4J: Internal storage Node   RelaKonship  
  • 24. Neo4J:  architecture   Neo4J: Internal storage
  • 25. Neo4J: CYPHER
  • 26. Neo4J: CYPHER START      usa=node:mb_fulltext(name="United  States"),    gb=node:mb_fulltext(name="United  Kingdom")   MATCH      (usa:Country),  (gb:Country),    (arKst:ArKst)-­‐[:FROM_AREA]-­‐(usa),    (arKst:ArKst)-­‐[:RECORDING_CONTRACT]-­‐(l:Label),    (label)-­‐[:FROM_AREA]-­‐(gb)   RETURN      arKst,label,usa,gb  
  • 27. Thank You Sergey Enin Software Engineering Team Leader Sergey_Enin@epam.com! tygrysminsk! sergeyenin! pankrat! sergeyenin.com/sec2014!