Photoacoustic Imaging with Coherent Light - Emmanuel Bossy

758 views
613 views

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
758
On SlideShare
0
From Embeds
0
Number of Embeds
143
Actions
Shares
0
Downloads
36
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Photoacoustic Imaging with Coherent Light - Emmanuel Bossy

  1. 1. emmanuel.bossy@espci.fr , IHP, 12 février2014emmanuel.bossy@espci.fr , IHP, 12 février2014 Photoacoustic imaging with coherent light Emmanuel Bossy Institut Langevin, ESPCI ParisTech CNRS UMR 7587, INSERM U979 Workshop Inverse Problems and Imaging Institut Henri Poincaré, 12 February 2014
  2. 2. emmanuel.bossy@espci.fr , IHP, 12 février2014 Background: waves and images in complex media Incident wave Incident wave
  3. 3. emmanuel.bossy@espci.fr , IHP, 12 février2014 Ultrasound Visible light Optics and acoustics in biological tissue
  4. 4. emmanuel.bossy@espci.fr , IHP, 12 février2014 Resolution = optics ∩ ultrasound Ultrasound Visible light Coupling optics and acoustics in biological tissue
  5. 5. emmanuel.bossy@espci.fr , IHP, 12 février2014 Photoacoustics in optically scattering media
  6. 6. emmanuel.bossy@espci.fr , IHP, 12 février2014 Heat confinement regime X
  7. 7. emmanuel.bossy@espci.fr , IHP, 12 février2014 X Heat confinement regime
  8. 8. emmanuel.bossy@espci.fr , IHP, 12 février2014 Heat AND stress confinement regime
  9. 9. emmanuel.bossy@espci.fr , IHP, 12 février2014 Heat AND stress confinement regime: initial value problem
  10. 10. emmanuel.bossy@espci.fr , IHP, 12 février2014 time pressure 2 s R T c   0 . 2 P R P r   Heat AND stress confinement regime: initial value problem
  11. 11. emmanuel.bossy@espci.fr , IHP, 12 février2014 Manohar S. et al, Optics Express 15(19), 2007 Manohar S. et al, Physics in Medicine & Biology 50(11), 2005 • 2D PVDF array • Light wavelength : 1064 nm • Ultrasound frequency : 1 MHz • Imaging depth : ~ 2 cm • Resolution : ~ 2 mm • Acquisition time : ~ 30 min Examples of applications: breast tumor imaging
  12. 12. emmanuel.bossy@espci.fr , IHP, 12 février2014 Zhang E. et al, Physics in Medicine and Biology 54(4), 2009 • Optical detection with a Fabry-Perot • Light wavelength : 670 nm • Ultrasound frequency : 0 ─ 20 MHz • Imaging depth : ~ 6 mm • Resolution : ~ 100 µm • Acquisition time : ~ 15 min Examples of applications: vascularization imaging
  13. 13. emmanuel.bossy@espci.fr , IHP, 12 février2014 Hu S. et al, Optics Letters 36(7), 2011 • Focused single element transducer • dual light wavelength : 561&570 nm • Ultrasound frequency : 30 ─ 70 MHz • Imaging depth : < 1 mm • Resolution : ~ 10 µm • Acquisition time : ~ 80 min Hu S. et al, Optics Letters 36(7), 2011 Examples of applications: functional imaging
  14. 14. emmanuel.bossy@espci.fr , IHP, 12 février2014 Principles of photoacoustic image formation ? Two different configurations: • Reconstruction-free imaging • Reconstruction-based imaging
  15. 15. emmanuel.bossy@espci.fr , IHP, 12 février2014 time ( “=“ distance) Reconstruction-free imaging
  16. 16. emmanuel.bossy@espci.fr , IHP, 12 février2014 Hu S. et al, Optics Letters 36(7), 2011 time ( “=“ distance) Reconstruction-free imaging
  17. 17. emmanuel.bossy@espci.fr , IHP, 12 février2014A. Funke, JFA, MF, ACB and E. Bossy, Applied Physics Letters 94(5), 2009 Set of raw photoacoustic signals "reconstruction-based" : images are obtained by some reconstruction algorithm. Each point of the final image is computed from multiple signals. Reconstruction-based imaging (also tomography)
  18. 18. emmanuel.bossy@espci.fr , IHP, 12 février2014 Reconstruction-based imaging (also tomography) Reconstructed image "reconstruction-based" : images are obtained by some reconstruction algorithm. Each point of the final image is computed from multiple signals. A. Funke, JFA, MF, ACB and E. Bossy, Applied Physics Letters 94(5), 2009
  19. 19. emmanuel.bossy@espci.fr , IHP, 12 février2014 Photoacoustic imaging with coherent light ?
  20. 20. emmanuel.bossy@espci.fr , IHP, 12 février2014 Photoacoustics in optically scattering media
  21. 21. emmanuel.bossy@espci.fr , IHP, 12 février2014 Enhanced photoacoustic imaging with speckle illumination speckle illumination J. Gâteau, T. Chaigne, O. Katz, S. Gigan and E. Bossy, Optics Letters 38(23), 2013
  22. 22. emmanuel.bossy@espci.fr , IHP, 12 février2014 speckle illumination fluctuations (N = 2) fluctuations (N = 50) uniform illuminationphotograph Enhanced photoacoustic imaging with speckle illumination J. Gâteau, T. Chaigne, O. Katz, S. Gigan and E. Bossy, Optics Letters 38(23), 2013
  23. 23. emmanuel.bossy@espci.fr , IHP, 12 février2014 speckle illum. Fluct. (N = 50) Fluct. (N = 2) uniform illum. Enhanced photoacoustic imaging with speckle illumination J. Gâteau, T. Chaigne, O. Katz, S. Gigan and E. Bossy, Optics Letters 38(23), 2013 photograph
  24. 24. emmanuel.bossy@espci.fr , IHP, 12 février2014 Wavefront shaping for photoacoustic imaging?
  25. 25. emmanuel.bossy@espci.fr , IHP, 12 février2014 Enhanced photoacoustic imaging with controlled illumination? Spatial light modulator (SLM) (mostly liquid crystals) Segmented, >1 million pixel course : 1 microns speed: 50Hz Deformable mirrors (piezo, magnetics…) 10-100 actuators (typ.) course : 10-20 microns Speed > kHz Adaptive optics Diffractive optics, displays ….
  26. 26. emmanuel.bossy@espci.fr , IHP, 12 février2014 Optimization approach
  27. 27. emmanuel.bossy@espci.fr , IHP, 12 février2014 Optimization Background: controlling light through scattering media
  28. 28. emmanuel.bossy@espci.fr , IHP, 12 février2014 Signal to optimizeSignal to optimize See also Kong, F. et al., Opt. Lett. 36, 2053-2055 (2011) (monochromatic, long coherence length) X 10 Photoacoustic-guided optimization
  29. 29. emmanuel.bossy@espci.fr , IHP, 12 février2014 29Chaigne et al. arXiv preprint arXiv:1310.7535 (2013). Photoacoustic-guided optimization with spectral filtering
  30. 30. emmanuel.bossy@espci.fr , IHP, 12 février2014 Transmission-matrix approach
  31. 31. emmanuel.bossy@espci.fr , IHP, 12 février2014 SLM : array of N pixels Linear system camera CCD : arrays of M pixels = An alternative approach: the transmission matrix (S. Gigan)
  32. 32. emmanuel.bossy@espci.fr , IHP, 12 février2014 Plane wave input SLM CCD sample SLM CCD sample SLM CCD sample S. Popoff, GL, RC, MF, ACB and S. Gigan. Phys. Rev. Lett. 104,100601 (2010) An alternative approach: the transmission matrix (S. Gigan)
  33. 33. emmanuel.bossy@espci.fr , IHP, 12 février2014T. Chaigne, O. Katz, ACB, MF, E. Bossy and S. Gigan, Nature Photonics, 8, 58-64 (2014) (532nm, 10Hz, 10ns ) absorbing wires (diameter= 30µm) • 140 pixels • phase-only • spherically focused • 30MHz central freq • f-number=2 The photoacoustic transmission-matrix approach
  34. 34. emmanuel.bossy@espci.fr , IHP, 12 février2014 SLM The photoacoustic transmission-matrix approach T. Chaigne, O. Katz, ACB, MF, E. Bossy and S. Gigan, Nature Photonics, 8, 58-64 (2014)
  35. 35. emmanuel.bossy@espci.fr , IHP, 12 février2014 (arb.u.) The photoacoustic transmission-matrix approach T. Chaigne, O. Katz, ACB, MF, E. Bossy and S. Gigan, Nature Photonics, 8, 58-64 (2014)
  36. 36. emmanuel.bossy@espci.fr , IHP, 12 février2014 Focusing through 0.5mm thick chicken breast tissue The photoacoustic transmission-matrix approach T. Chaigne, O. Katz, ACB, MF, E. Bossy and S. Gigan, Nature Photonics, 8, 58-64 (2014)
  37. 37. emmanuel.bossy@espci.fr , IHP, 12 février2014 2D photoacoustic imaging1D photoacoustic imaging Mono-element ultrasonic transducer Ultrasonic Array The 2-D photoacoustic transmission-matrix approach
  38. 38. emmanuel.bossy@espci.fr , IHP, 12 février2014 (532nm, 10Hz, 10ns ) Black leaf skeleton (140 pixels, phase-only) (ultrasonic linear array) The 2-D photoacoustic transmission-matrix approach Submitted (arXiv:1402.0279)
  39. 39. emmanuel.bossy@espci.fr , IHP, 12 février2014 SLM : array of pixels Photoacoustic image: array of pixels SLM: array of pixels The photoacoustic transmission matrix • Input modes= SLM pixels • Output modes = Photoacoustic pixels The 2-D photoacoustic transmission-matrix approach Submitted (arXiv:1402.0279)
  40. 40. emmanuel.bossy@espci.fr , IHP, 12 février2014 The 2-D photoacoustic transmission-matrix approach uniform illumination SLM-shaped illumination Submitted (arXiv:1402.0279)
  41. 41. emmanuel.bossy@espci.fr , IHP, 12 février2014 The 2-D photoacoustic transmission-matrix approach The photoacoustic transmission-matrix contains information on multiple random illuminations : equivalent to several speckle illumination Submitted (arXiv:1402.0279)
  42. 42. emmanuel.bossy@espci.fr , IHP, 12 février2014 The 2-D photoacoustic transmission-matrix approach The photoacoustic transmission-matrix contains information on multiple random illumination : equivalent to several speckle illumination Submitted (arXiv:1402.0279)
  43. 43. emmanuel.bossy@espci.fr , IHP, 12 février2014 43 Standard PA image Modulation map PA image when displaying focusing pattern on SLM The transmission matrix allows Identifying the targets The 2-D photoacoustic transmission-matrix approach Submitted (arXiv:1402.0279)
  44. 44. emmanuel.bossy@espci.fr , IHP, 12 février2014 Conclusions …
  45. 45. emmanuel.bossy@espci.fr , IHP, 12 février2014 • Increase  high resolution SLM • Decrease  small absorbers  high frequency transducer • Fast instrumentation and measurements grainsspeckle pixelsSLM N N  pixelsSLMN grainsspeckleN 45 Challenges Solutions • Small speckle grains α λ ≈ 1 μm  Low enhancement • Decorrelation of the sample Challenges with deep-tissue experiments
  46. 46. emmanuel.bossy@espci.fr , IHP, 12 février2014 Acknowledgements O. SimandouxA. Prost F. Poisson F. Mézière T. Chaigne Dr. J. Gâteau Dr. O. Katz Pr. S. Gigan Funding ESPCI ParisTech, CNRS INCA Grant Gold Fever PEPS PSL-CNRS Fondation Pierre-Gilles de Gennes Dr. M. Varna

×