Your SlideShare is downloading. ×
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Characterization of different dopants in TiO2 Structure by   Pulsed Laser Deposition
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Characterization of different dopants in TiO2 Structure by Pulsed Laser Deposition

770

Published on

Characterization of different dopants in TiO2 Structure by Pulsed Laser Deposition …

Characterization of different dopants in TiO2 Structure by Pulsed Laser Deposition
A thesis submitted By: Khaled Z.Yahya
Supervised by: Prof.Dr. Adawiya J.Haider Prof.Dr. Raad M.S.Al-Haddad

Published in: Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
770
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
21
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. UNIVERSITY OFTECHNOLOGYA thesis submitted ByKhaled Z.Yahya
  • 2. PLD: Pulsed Laser DepositionThe interaction of the laser beam withthe target resulting in evaporation of thesurface layers.The interaction of the laser beam with theevaporation materials causing the formation ofisothermal expanding plasma.The expansion of the laser induced plasmawith a rapid transfer of thermal energy of thespecies in plasma into kinetic energy.Thin film growth.
  • 3. Rotating targetLaserPulsedSubstrateheaterEjected PlumeDepositedfilm
  • 4. Why TiO2 ?Titanium dioxide (TiO2) is a wide band gap ( ) eV for anatase and 3 eVfor rutile .Titanium dioxide have high refractive index - up to 2.7 (at wavelength of600nm)Titanium dioxide good chemical resistance and high chemical stability.Titanium dioxide good sensitivity to poison gases.Titanium dioxide good photocatalysts.
  • 5. TiO2 structureAnatase Rutile Brockets
  • 6. TiO2 gas sensor• TiO2 based sensor are predominant solid-stategas sensors for domestic, commercial andindustrial application.• •Low cost• •Easy production• •Rigid construction• •Compact size• •Simple measuring electronics
  • 7. Aim of the workThe aim of this work is to reveal specific properties of TiO2nanostructure prepared by pulsed laser deposition techniqueTiO2 samples have been prepared at different dopant noblemetal such as (Pd ,Pt, Ni, Ag,…) The main objective of thiswork are :• 1. Characteristics of structural , microstructural andphotoluminescence properties of thin films .• 2. Studying the sensitivity and selectivity of these films dopedwith different noble metal deposited by PLD to CO gas.
  • 8. Prepared TiO2Picture for TiO2 ceramic
  • 9. Plasma plume
  • 10. TiO2 thin film
  • 11. Characterization Measurements ofprepare filmsFilms thickness measurementXRD StudyTCO film Morphology SEM ,AFMOptical propertiesphotoluminescence propertiesGas sensor measurement
  • 12. a)SEM b)AFM c)PL d)Gas sensingc da ba b
  • 13. •Substrate Temperatures effect (Ts )cba2θ (degree)A :anataseFigure (1) XRD spectra of TiO2/glass at different temperaturea) 200ºC b) 300ºC, c)400ºCIntensity(a.u)laser fluence 0.8 J/cm2 oxygenpressure 5 *10-1 Torr
  • 14. TiO2 /Si
  • 15. FWHM and Main grain size01020304050250 300 350 400 450 500 550Temperature °CMaingrainsize(nm)0.420.430.440.450.460.470.480.490.50.51250 300 350 400 450 500 550Temperature °CFWHM°a bFigure (3) TiO2 A(101) thin films grownon Si (111) at different substrate temperature for (a) main grain size (b)FWHM
  • 16. Oxygen pressure effectFig (4) XRD patterns of TiO2 films grown on Siat various oxygen pressures a) 5×10-2 Torr b) 5×10-1 Torr c) 10 TorrIntensity(a.u)2θ (degree)
  • 17. Laser Fluence effectFig (5) XRD patterns of TiO2 films grown on Siat various laser fluence a) 1.2 b) 0.8 c) 1.8 J/cm2
  • 18. Doping effect of noble metal(Ag, Pt, Pd and Ni).
  • 19. X - ray FlorescenceFig (7) X-ray florescence pattern for a) TiO2 pure b) TiO2 3% Ag c) TiO2 3% Pt d) TiO2 3% Pd e) TiO2 3% Ni .ab
  • 20. SEMSubstrate Temperatures effect (Ts )Figure (8) SEM image of the TiO2/Si thin films deposited at various temperature ofa) 300°C, b) 400°C, c) 500°C, and laser fluence 1.2 J/cm2 ,O2 pressure=10-1 mbar
  • 21. Oxygen pressure effectcbaFigure (9) SEM image of the TiO2/Si thin films deposited at variousoxygen pressure a ) 5×10-2 mbar, b) 5×10-1 mbar and c) 10 mbar atsubstrate temperature 500 °Cand laser fluence 1.2 J/cm2
  • 22. Doping effect of noble metal (Ag, Pt, Pd andNi).acbdFigure (10) SEM image of the TiO2/Si thin films doping 3% with different noblemetal a) Ag b) Pt c) Pd and d) Ni
  • 23. SEM of plane grain size (nm)X-ray of plane grain size (nm)sample2931TiO2 Pure 300°C3536.3TiO2 Pure 400°C4041.28TiO2 Pure 500°CTable (1). The grain size of the TiO2 filmsSEM of plane grain size (nm)X-ray of plane grain size (nm)O2 Pressure (mbar)sample33345×10-2TiO2/Si39415×10-1TiO2/Si343610TiO2/SiSEM of plane grain size (nm)X-ray of plane grain size(nm)Dopants atom Radii(pm)sample1515.7126TiO23Ag1111.6130TiO23Pt2021.572TiO2Pd 3181969TiO2Ni 3
  • 24. Atomic Force Microscopy (AFM)SubstrateTemperatures effe(TS)Figure (11) AFM image of the TiO2/Si thin films deposited at various substrate temperature ofa) 300 C, b) 400 C, c) 500 C, and laser fluence 1.2 J/cm2 ,O2 pressure=10-1 mbar
  • 25. Oxygen Pressure effectFigure (12) AFM image of the TiO2/Si thinfilms deposited at various oxygen pressurea ) 5×10-2 mbar, b ) 5×10-1 mbar and c) 10mbar at substrate temperature 500 °Cand laser fluence 1.2 J/cm2
  • 26. doping effect of noble metal (Ag ,Pt,Pd ,and Ni)bcdaFigure (13) AFM image of the TiO2/Si thinfilms doping 3% with different noble metal a)Ag b) Pt c) Pd and d) Ni substratetemperature 500 °Cand laser fluence 1.2 J/cm2 with O2pressure=10-1 mbar.
  • 27. Table (2). The RMS and roughness of TiO2 filmsfrom AFMRMS roughness(nm)AFM of plane grain size (nm)X-ray of plane grain size(nm)sample2.13031TiO2 Pure 300°C434.436.3TiO2 Pure 400°C11.24241.28TiO2 Pure 500°CRMSroughnessAFM of plane grain size (nm)X-ray of plane grain size (nm)(O2) Pressure mbarsample4 (nm)32345×10-2TiO2/Si6 nm40415×10-1TiO2/Si16.7nm333610TiO2/SiRMS roughnessAFM of plane grain size (nm)X-ray of plane grain size (nm)sample26 nm1615.7TiO2 :3% Ag28 nm12.411.6TiO2 :3% Pt23 nm2321.5TiO2 :3% Pd24 nm20.519TiO2 :3% Ni
  • 28. Optical PropertiesTransmission01020304050607080901000 200 400 600 800 1000Wave length (nm)T(%)TiO2 400 CTiO2 300 CTiO2 200 CSubstrate Temperatures effect (TS)01020304050607080901000 200 400 600 800 1000Wave length (nm)T(%)10 mbar10 -2 mbar10 -1 mbarOxygen Pressure effect01020304050607080900 200 400 600 800 1000Wave length (nm)T(%)0.8 J/cm21.8 J/cm21.2 J/cm2Laser Fluence effect01020304050607080901000 200 400 600 800 1000Wave length (nm)Transmtance%TiO2 :3% AgTiO2 :3% PdTiO2 :3%NiTiO2 :3% PtTiO2 PureDoping effect of noble metal (Ag, Pt, Pd and Ni).
  • 29. Optical Energy Gap Eg°Substrate Temperatures effect (Ts )
  • 30. doping effect of noble metal (Ag ,Pt ,Pd ,and Ni)direct Eg
  • 31. doping effect of noble metal (Ag ,Pt ,Pd ,and Ni)Indirect Eg
  • 32. Table (3) Physical and optical measurements for pureand doped TiO2 filmsOptical energy gab E°g (eV)(indirect)Optical energy gab E°g (eV)(direct)Samples3.033.4TiO2 Pure at 200 °C3.13.5TiO2 Pure at 300 °C3.23.6TiO2 Pure at 400 °C3.123.42TiO2:1%Ag at 200 °C3.203.5TiO2 :2%Ag at 200 °C3.283.67TiO2 :3%Ag at 200 °C3.113.41TiO2 :1%Pt at 200 °C3.193.52TiO2 :2%Pt at 200 °C3.253.58TiO2 :3%Pt at 200 °C2.933.42TiO2:1%Pd at 200 °C2.93.37TiO2 :2%Pd at 200 °C2.883.32TiO2 :3%Pd at 200 °C2.943.42TiO2:1%Ni at 200 °C2.93.38TiO2 :2%Ni at 200 °C2.83.35TiO2 :3%Ni at 200 °C
  • 33. Refractive index (n)00.511.522.533.50 0.5 1 1.5 2 2.5 3 3.5 4 4.5hv (eV)Refractiveindex(n)TiO2 400 CTiO2 300 CTiO2 200 CSubstrate Temperatures effect (TS)doping effect of noble metal (Ag ,Pt ,Pd ,and Ni)00.511.522.533.50 1 2 3 4 5hv (eV)Refractiveindex(n)TiO2 PureTiO2 :1%AgTiO2 :2% AgTiO2 :3%Ag00.511.522.533.50 1 2 3 4 5hv (eV)Refractiveindex(n)TiO2 PureTiO2 :1% PtTiO2 :2% PtTiO2 :3%Pt00.511.522.530 0.5 1 1.5 2 2.5 3 3.5 4 4.5hv (eV)Refractiveindex(n)TiO2 PureTiO2 :3% PdTiO2 :2% PdTiO2 :1% Pd00.511.522.533.50 0.5 1 1.5 2 2.5 3 3.5 4 4.5hv (eV)Refractiveindex(n)TiO2 PureTiO2 :3% NiTiO2 :2%NiTiO2 :1% Ni
  • 34. 00.050.10.150.20.250.30 1 2 3 4 5hv (eV)extinctioncoefficient(K)TiO2 :3% AgTiO2 :2% AgTiO2 :1% AgTiO2 Pure00.050.10.150.20.250.30 1 2 3 4 5hv (eV)extinctioncoefficient(K)TiO2 :3%PtTiO2 :2%PtTiO2 :1%PtTiO2 pure00.050.10.150.20.250.30 1 2 3 4 5hv (eV)extinctioncoefficient(K)TiO2 PureTiO2 :1%PdTiO2 :2%PdTiO2 :3%Pd00.050.10.150.20.250.30 1 2 3 4 5hv (eV)extinctioncoefficient(K)TiO2 PureTiO2 :1%NiTiO2 :2%NiTiO2 :3%NiExtinction Coefficient00.050.10.150.20.250.30 1 2 3 4 5hv (eV)extinctioncoefficient(K)TiO2 200 CTiO2 300 CTiO2 400 CSubstrate Temperatures effect (TS)doping effect of noble metal (Ag ,Pt ,Pd ,and Ni)
  • 35. Photoluminescence (PL)Substrate Temperature effect (Ts)ca bFigure (23) Photoluminescence spectrum of pure TiO2/glass thin films deposited at various substrate temperature ofa) 300°C, b) 350 °C, c) 400°C, and laser fluence 1.2 J/cm2 ,O2 pressure=10-1 mbar
  • 36. The doping effect of noble metals (Ag ,Pt ,Pd ,and Ni)a bc dFigure (24) Photoluminescence spectrum of the TiO2/glass thin films doping 3% with different noble metal a) Ag b) Pt c) Pdand d) Ni ,at substrate temperature 400 °Cand laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar.
  • 37. Table (4) Energy values and Intensity of PL PeaksSamples Energy of PeakA (eV)Intensity (a.u) Energy of Peak B (eV) Intensity (a.u) Optical energygap (eV) E°gTiO2 at 300°C 3.06 840 2.39 365 3.03TiO2 at 350°C 3.12 900 2.4 390 3.1TiO2 at 400°C 3.22 1000 2.43 415 3.2TiO2 :3% Ag at400°C3.24 280 2.45 150 3.28TiO2 :3% Pt at400°C3.25 540 2.5 380 3.25TiO2 :3% Pd at400°C2.93 810 2.33 350 2.88TiO2 :3% Ni at400°C2.85 820 2.3 400 2.8
  • 38. Sensing propertiesRoom Temperature00.020.040.060.080.10.120 200 400 600 800 1000Time (sec)SensetivityTiO2 PureTiO2:3%PtTiO2:3%AgTiO2:3%PdTiO2:3%NiFigure (24) Sensitivity for TiO2/glass pure and doping with a )Ag b)Pt c) Pdd) Ni as a function of operation time for CO gas at Room temperature andlaser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
  • 39. Operation time Effect on sensing properties00.20.40.60.811.21.41.61.820 100 200 300 400 500 600 700 800 900Time (sec)SensitivityTiO2 PureTiO2 :1% AgTiO2 :2% AgTiO2 :3% Ag00.511.522.533.50 100 200 300 400 500 600 700 800 900Time (sec)SensitivityTiO2 PureTiO2 :1% PtTiO2 :2% PtTiO2 :3% Pt00.20.40.60.811.21.41.60 100 200 300 400 500 600 700 800 900Time (sec)SensitivityTiO2 PureTiO2 :1% PdTiO2 :2% PdTiO2 :3% Pd00.20.40.60.811.21.40 100 200 300 400 500 600 700 800 900Time (sec)SensitivityTiO2 PureTiO2 :1% NiTiO2 :2%NiTiO2 :3% Nia bdcFigure (25) Sensitivity for TiO2/glass pure and doping with a )Ag b)Pt c) Pd d)Ni as a function of operation time for CO gas at operation temperature 250 C andlaser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
  • 40. Operation time Effect on resistance properties0246810120 200 400 600 800 1000Time (sec)Resistance(ohm)*10^9TiO2 PureTiO2 :1% AgTiO2 :2% AgTiO2 :3% Ag0246810120 200 400 600 800 1000Time (sec)Resistance(ohm)*10^9TiO2 PureTiO2 :1% PtTiO2 :2% PtTiO2 :3% Pt0246810120 200 400 600 800 1000Time (sec)Resistance(ohm)*10^9TiO2 PureTiO2 :1% PdTiO2 :2% PdTiO2 :3% Pd0246810120 200 400 600 800 1000Time (sec)Resistance(ohm)*10^9TiO2 PureTiO2 :1% NiTiO2 :2% NiTiO2 :3% NiFigure (26) resistance for TiO2/glass pure and doping with a )Ag b)Pt c)Pd d) Ni as a function of operation time for CO gas at operationtemperature 250 C and laser fluence 1.2 J/cm2 with O2 pressure=10-1mbara bcd
  • 41. Operation time Effect on current properties0123456780 200 400 600 800 1000Time (Sec)current(nA)TiO2 pureTiO2 1% AgTiO2 2% AgTiO2 3% Ag0123456789100 200 400 600 800 1000Time (Sec)current(nA)TiO2 pureTiO2 1%PtTiO2 2%PtTiO2 3%Pt012345670 200 400 600 800 1000Time (Sec)current(nA)TiO2 pureTiO2 1% PdTiO2 2% PdTiO2 3%Pd01234560 200 400 600 800 1000Time (Sec)current(nA)TiO2 pureTiO2 1% NiTiO2 2% NiTiO2 3% NiadcbFigure (27) current for TiO2 /glass pure and doping with a )Agb)Pt c) Pd d) Ni as a function of operation time for CO gas atoperation temperature 250 C and laser fluence 1.2 J/cm2 with O2pressure=10-1 mbar
  • 42. Operation temperature Effect on sensing properties00.511.522.530 50 100 150 200 250 300 350 400 450T(C)SensitivityTiO2 PureTiO2 :2% AgTiO2 :3% AgTiO2 :1% Ag00.511.522.533.540 50 100 150 200 250 300 350 400 450T(C)SensitivityTiO2 PureTiO2 :2% PtTiO2 :3% PtTiO2 :1% Pt00.511.522.50 50 100 150 200 250 300 350 400 450T(C)SensitivityTiO2 PureTiO2 :2% PdTiO2 :3% PdTiO2 :1% Pd00.20.40.60.811.21.41.60 50 100 150 200 250 300 350 400 450T(C)SensitivityTiO2 PureTiO2 :2% NiTiO2 :3%NiTiO2 :1% NiFigure (28) Sensitivity for TiO2/glass pure and doping with 1% ,2%and 3% (Ag ,Pt ,Pd ,and Ni) films for CO gas at different operationtemperature and laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbara bc d
  • 43. Sensitivity of TiO2 /Si05101520250 100 200 300 400 500T (C)SensitivityTiO2 PureTiO2:3% NITiO2:3% PdTiO2:3% AgTiO2:3%PtFigure (29) Sensitivity for TiO2/Si pure and doping with 3% (Ag ,Pt ,Pd ,and Ni) films forCO gas at different operation temperature at laser fluence 1.2 J/cm2 with O2 pressure=10-1 mbar
  • 44. Table (5) Sensitivity values of TiO2 pure and doping with differentnoble metal concentration at operation temperature T= 250 °C.Samples SensitivityTiO2 pure/glass 0.5TiO2 :1% Ag /glass 1.7TiO2 :2% Ag/glass 2.3TiO2 :3% Ag/glass 2.7TiO2 :1% Pt/glass 2.2TiO2 :2% Pt/glass 3TiO2 :3% Pt/glass 3.3TiO2 :1% Pd/glass 1.5TiO2 :2% Pd/glass 1.9TiO2 :3% Pd/glass 2.2TiO2 :1% Ni/glass 0.85TiO2 :2% Ni/glass 1.2TiO2 :3% Ni/glass 1.5TiO2 pure/Si 7.5TiO2 :3% Ag/ Si 17TiO2 :3% Pt/ Si 23TiO2 :3% Pd/ Si 15TiO2 :3% Ni/ Si 12.5
  • 45. The results in this work agreement withother results as shown in table below :References Metal dopantTiO2 Selectivity Sensitivity[46] - CO 2[136] - CO 4[45] - Ethanol and methanol vapor 5[30] Pt CO 20[39] Pd CO , H2 4 , 2.5[81] Nb CO 14[this work] Pt CO 23Ag CO 17Pd CO 14Ni CO 11- CO 7.5
  • 46. ConclusionPure TiO2 showed poor response to CO gas.3 % wt Ag ,Pt ,Pd and Ni doped TiO2 thin film was themost sensitive element to CO gas .The optimum operating temperature for CO gassensing was (250) °C . Ag ,Pt ,Pd and Ni doped TiO2 thin film would besuitable for fabricating the CO gas sensors.The sensor TiO2 doping with Pt showed goodselectivity to CO gas.TiO2 deposited on silicon has sensitivity to CO gashigher than TiO2 deposited on glass
  • 47. Future Work• 1- Studying (TiO2) films asantireflection coating on (p-n)junction solar cells and as aphotocatalyst .• 2- Using a mixing of background gasN2 + O2 with high vacuum toenhancement the quality of the films.• 3- Studying (TiO2) films as a gassensor for NO2 and H2 gas .
  • 48. Paper accepted1- “Structural and optical properties of TiO 2 photocatalyst thinfilm produced by PLD”.Iraqi Journal science 3rd Scientific conference Baghdad University.2- "Investigation of structural and Morphology properties ofNanocrystalline thin films prepared by PLD ".Journal of the collage education in the 6th conference on physics .Paper submitted3-" Structure and Morphology properties of nanocrystallinenoble metal doped films for gas sensing properties "-2nd conference of nano technology and advance material and theirapplication .4-" Nanostructure dopants TiO2 films for gas sensing".Iraqi Journal of applied physics .
  • 49. UNIVERSITY OFTECHNOLOGY

×