Fly ash


Published on

Fly Ash and Geo Polymers.

Published in: Education, Technology, Business
  • Be the first to comment

No Downloads
Total Views
On Slideshare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Fly ash

  1. 1. Fly Ash PDF generated using the open source mwlib toolkit. See for more information. PDF generated at: Sat, 12 May 2012 05:16:50 UTC
  2. 2. ContentsArticles Fly ash 1 Fly ash brick 10 Geopolymers 13 Aluminosilicate 15 Pozzolana 16References Article Sources and Contributors 18 Image Sources, Licenses and Contributors 19Article Licenses License 20
  3. 3. Fly ash 1 Fly ash Fly ash is one of the residues generated in combustion, and comprises the fine particles that rise with the flue gases. Ash which does not rise is termed bottom ash. In an industrial context, fly ash usually refers to ash produced during combustion of coal. Fly ash is generally captured by electrostatic precipitators or other particle filtration equipment before the flue gases reach the chimneys of coal-fired power plants, and together with bottom ash removed from the bottom of the furnace is in this case jointly known as coal ash. Depending upon the source and makeup of the coal being burned, the components of fly ash vary considerably, but all fly ash includes substantial Photomicrograph made with a Scanning Electron Microscope amounts of silicon dioxide (SiO2) (both amorphous and (SEM): Fly ash particles at 2,000x magnification crystalline) and calcium oxide (CaO), both being endemic ingredients in many coal-bearing rock strata. Toxic constituents depend upon the specific coal bed makeup, but may include one or more of the following elements or substances in quantities from trace amounts to several percent: arsenic, beryllium, boron, cadmium, chromium, chromium VI, cobalt, lead, manganese, mercury, molybdenum, selenium, strontium, thallium, and vanadium, along with dioxins and PAH compounds.[1][2] In the past, fly ash was generally released into the atmosphere, but pollution control equipment mandated in recent decades now require that it be captured prior to release. In the US, fly ash is generally stored at coal power plants or placed in landfills. About 43 percent is recycled,[3] often used to supplement Portland cement Photomicrograph made with a Scanning Electron Microscope (SEM) and Back-Scatter Detector: Cross section of fly ash particles at 750x in concrete production. Some have expressed health magnification concerns about this.[4] In some cases, such as the burning of solid waste to create electricity ("resource recovery" facilities a.k.a. waste-to-energy facilities), the fly ash may contain higher levels of contaminants than the bottom ash and mixing the fly and bottom ash together brings the proportional levels of contaminants within the range to qualify as nonhazardous waste in a given state, whereas, unmixed, the fly ash would be within the range to qualify as hazardous waste.
  4. 4. Fly ash 2 Chemical composition and classification Component Bituminous Subbituminous Lignite SiO2 (%) 20-60 40-60 15-45 Al2O3 (%) 5-35 20-30 20-25 Fe2O3 (%) 10-40 4-10 4-15 CaO (%) 1-12 5-30 15-40 LOI (%) 0-15 0-3 0-5 Fly ash material solidifies while suspended in the exhaust gases and is collected by electrostatic precipitators or filter bags. Since the particles solidify while suspended in the exhaust gases, fly ash particles are generally spherical in shape and range in size from 0.5 µm to 100 µm. They consist mostly of silicon dioxide (SiO2), which is present in two forms: amorphous, which is rounded and smooth, and crystalline, which is sharp, pointed and hazardous; aluminium oxide (Al2O3) and iron oxide (Fe2O3). Fly ashes are generally highly heterogeneous, consisting of a mixture of glassy particles with various identifiable crystalline phases such as quartz, mullite, and various iron oxides. The above concentrations of trace elements vary according to the kind of coal combusted to form it. In fact, in the case of bituminous coal, with the notable exception of boron, trace element concentrations are generally similar to trace element concentrations in unpolluted soils.[5] Two classes of fly ash are defined by ASTM C618: Class F fly ash and Class C fly ash. The chief difference between these classes is the amount of calcium, silica, alumina, and iron content in the ash. The chemical properties of the fly ash are largely influenced by the chemical content of the coal burned (i.e., anthracite, bituminous, and lignite).[6] Not all fly ashes meet ASTM C618 requirements, although depending on the application, this may not be necessary. Ash used as a cement replacement must meet strict construction standards, but no standard environmental regulations have been established in the United States. 75% of the ash must have a fineness of 45 µm or less, and have a carbon content, measured by the loss on ignition (LOI), of less than 4%. In the U.S., LOI needs to be under 6%. The particle size distribution of raw fly ash is very often fluctuating constantly, due to changing performance of the coal mills and the boiler performance. This makes it necessary that, if fly ash is used in an optimal way to replace cement in concrete production, it needs to be processed using beneficiation methods like mechanical air classification. But if fly ash is used also as a filler to replace sand in concrete production, unbeneficiated fly ash with higher LOI can be also used. Especially important is the ongoing quality verification. This is mainly expressed by quality control seals like the Bureau of Indian Standards mark or the DCL mark of the Dubai Municipality. Class F fly ash The burning of harder, older anthracite and bituminous coal typically produces Class F fly ash. This fly ash is pozzolanic in nature, and contains less than 20% lime (CaO). Possessing pozzolanic properties, the glassy silica and alumina of Class F fly ash requires a cementing agent, such as Portland cement, quicklime, or hydrated lime, with the presence of water in order to react and produce cementitious compounds. Alternatively, the addition of a chemical activator such as sodium silicate (water glass) to a Class F ash can lead to the formation of a geopolymer.
  5. 5. Fly ash 3 Class C fly ash Fly ash produced from the burning of younger lignite or subbituminous coal, in addition to having pozzolanic properties, also has some self-cementing properties. In the presence of water, Class C fly ash will harden and gain strength over time. Class C fly ash generally contains more than 20% lime (CaO). Unlike Class F, self-cementing Class C fly ash does not require an activator. Alkali and sulfate (SO4) contents are generally higher in Class C fly ashes. At least one US manufacturer has announced a fly ash brick containing up to 50 percent Class C fly ash. Testing shows the bricks meet or exceed the performance standards listed in ASTM C 216 for conventional clay brick; it is also within the allowable shrinkage limits for concrete brick in ASTM C 55, Standard Specification for Concrete Building Brick. It is estimated that the production method used in fly ash bricks will reduce the embodied energy of masonry construction by up to 90%.[7] Bricks and pavers were expected to be available in commercial quantities before the end of 2009.[8] Disposal and market sources In the past, fly ash produced from coal combustion was simply entrained in flue gases and dispersed into the atmosphere. This created environmental and health concerns that prompted laws which have reduced fly ash emissions to less than 1 percent of ash produced. Worldwide, more than 65% of fly ash produced from coal power stations is disposed of in landfills and ash ponds. The recycling of fly ash has become an increasing concern in recent years due to increasing landfill costs and current interest in sustainable development. As of 2005, U.S. coal-fired power plants reported producing 71.1 million tons of fly ash, of which 29.1 million tons were reused in various applications.[9] If the nearly 42 million tons of unused fly ash had been recycled, it would have reduced the need for approximately 27500 acre·ft (unknown operator: ustrong m3) of landfill space.[9][10] Other environmental benefits to recycling fly ash includes reducing the demand for virgin materials that would need quarrying and substituting for materials that may be energy-intensive to create such as Portland cement. As of 2006, about 125 million tons of coal-combustion byproducts, including fly ash, were produced in the U.S. each year, with about 43 percent of that amount used in commercial applications, according to the American Coal Ash Association Web site. As of early 2008, the United States Environmental Protection Agency hoped that figure would increase to 50 percent as of 2011.[11] Fly ash reuse There is no U.S. governmental registration or labelling of fly ash utilization in the different sectors of the economy - industry, infrastructures and agriculture. Fly ash utilization survey data, acknowledged as incomplete, are published annually by the American Coal Ash Association.[12] The ways of fly ash utilization include (approximately in order of decreasing importance): • Concrete production, as a substitute material for Portland cement and sand • Embankments and other structural fills (usually for road construction) • Grout and Flowable fill production • Waste stabilization and solidification • Cement clinkers production - (as a substitute material for clay) • Mine reclamation • Stabilization of soft soils • Road subbase construction • As Aggregate substitute material (e.g. for brick production) • Mineral filler in asphaltic concrete
  6. 6. Fly ash 4 • Agricultural uses: soil amendment, fertilizer, cattle feeders, soil stabilization in stock feed yards, and agricultural stakes • Loose application on rivers to melt ice[13] • Loose application on roads and parking lots for ice control[14] • Other applications include cosmetics, toothpaste, kitchen counter tops, floor and ceiling tiles, bowling balls, flotation devices, stucco, utensils, tool handles, picture frames, auto bodies and boat hulls, cellular concrete, geopolymers, roofing tiles, roofing granules, decking, fireplace mantles, cinder block, PVC pipe, Structural Insulated Panels, house siding and trim, running tracks, blasting grit, recycled plastic lumber, utility poles and crossarms, railway sleepers, highway sound barriers, marine pilings, doors, window frames, scaffolding, sign posts, crypts, columns, railroad ties, vinyl flooring, paving stones, shower stalls, garage doors, park benches, landscape timbers, planters, pallet blocks, molding, mail boxes, artificial reef, binding agent, paints and undercoatings, metal castings, and filler in wood and plastic products.[10][15][16] Portland cement Owing to its pozzolanic properties, fly ash is used as a replacement for some of the Portland cement content of concrete.[17] The use of fly ash as a pozzolanic ingredient was recognized as early as 1914, although the earliest noteworthy study of its use was in 1937.[18] Before its use was lost to the Dark Ages, Roman structures such as aqueducts or the Pantheon in Rome used volcanic ash (which possesses similar properties to fly ash) as pozzolan in their concrete.[19] As pozzolan greatly improves the strength and durability of concrete, the use of ash is a key factor in their preservation. Use of fly ash as a partial replacement for Portland cement is generally limited to Class F fly ashes. It can replace up to 30% by mass of Portland cement, and can add to the concrete’s final strength and increase its chemical resistance and durability. Recently concrete mix design for partial cement replacement with High Volume Fly Ash (50 % cement replacement) has been developed. For Roller Compacted Concrete (RCC)[used in dam construction] replacement values of 70% have been achieved with processed fly ash at the Ghatghar Dam project in Maharashtra, India. Due to the spherical shape of fly ash particles, it can also increase workability of cement while reducing water demand.[20] The replacement of Portland cement with fly ash is considered by its promoters to reduce the greenhouse gas "footprint" of concrete, as the production of one ton of Portland cement produces approximately one ton of CO2 as compared to zero CO2 being produced using existing fly ash. New fly ash production, i.e., the burning of coal, produces approximately twenty to thirty tons of CO2 per ton of fly ash. Since the worldwide production of Portland cement is expected to reach nearly 2 billion tons by 2010, replacement of any large portion of this cement by fly ash could significantly reduce carbon emissions associated with construction, as long as the comparison takes the production of fly ash as a given. Embankment Fly ash properties are unusual among engineering materials. Unlike soils typically used for embankment construction, fly ash has a large uniformity coefficient and it consists of clay-sized particles. Engineering properties that affect the use of fly ash in embankments include grain size distribution, compaction characteristics, shear strength, compressibility, permeability, and frost susceptibility.[20] Nearly all the types of fly ash used in embankments are Class F. Soil stabilization Soil stabilization is the permanent physical and chemical alteration of soils to enhance their physical properties. Stabilization can increase the shear strength of a soil and/or control the shrink-swell properties of a soil, thus improving the load-bearing capacity of a sub-grade to support pavements and foundations. Stabilization can be used to treat a wide range of sub-grade materials from expansive clays to granular materials. Stabilization can be achieved
  7. 7. Fly ash 5 with a variety of chemical additives including lime, fly ash, and Portland cement, as well as by-products such as lime-kiln dust (LKD) and cement-kiln dust (CKD). Proper design and testing is an important component of any stabilization project. This allows for the establishment of design criteria as well as the determination of the proper chemical additive and admixture rate to be used to achieve the desired engineering properties. Benefits of the stabilization process can include: Higher resistance (R) values, Reduction in plasticity, Lower permeability, Reduction of pavement thickness, Elimination of excavation - material hauling/handling - and base importation, Aids compaction, Provides “all-weather” access onto and within projects sites. Another form of soil treatment closely related to soil stabilization is soil modification, sometimes referred to as “mud drying” or soil conditioning. Although some stabilization inherently occurs in soil modification, the distinction is that soil modification is merely a means to reduce the moisture content of a soil to expedite construction, whereas stabilization can substantially increase the shear strength of a material such that it can be incorporated into the project’s structural design. The determining factors associated with soil modification vs soil stabilization may be the existing moisture content, the end use of the soil structure and ultimately the cost benefit provided. Equipment for the stabilization and modification processes include: chemical additive spreaders, soil mixers (reclaimers), portable pneumatic storage containers, water trucks, deep lift compactors, motor graders. Flowable fill Fly ash is also used as a component in the production of flowable fill (also called controlled low strength material, or CLSM), which is used as self-leveling, self-compacting backfill material in lieu of compacted earth or granular fill. The strength of flowable fill mixes can range from 50 to 1,200 lbf/in² (0.3 to 8.3 MPa), depending on the design requirements of the project in question. Flowable fill includes mixtures of Portland cement and filler material, and can contain mineral admixtures. Fly ash can replace either the Portland cement or fine aggregate (in most cases, river sand) as a filler material. High fly ash content mixes contain nearly all fly ash, with a small percentage of Portland cement and enough water to make the mix flowable. Low fly ash content mixes contain a high percentage of filler material, and a low percentage of fly ash, Portland cement, and water. Class F fly ash is best suited for high fly ash content mixes, whereas Class C fly ash is almost always used in low fly ash content mixes.[20][21] Asphalt concrete Asphalt concrete is a composite material consisting of an asphalt binder and mineral aggregate. Both Class F and Class C fly ash can typically be used as a mineral filler to fill the voids and provide contact points between larger aggregate particles in asphalt concrete mixes. This application is used in conjunction, or as a replacement for, other binders (such as Portland cement or hydrated lime). For use in asphalt pavement, the fly ash must meet mineral filler specifications outlined in ASTM D242 [22]. The hydrophobic nature of fly ash gives pavements better resistance to stripping. Fly ash has also been shown to increase the stiffness of the asphalt matrix, improving rutting resistance and increasing mix durability.[20][23] Geopolymers More recently, fly ash has been used as a component in geopolymers, where the reactivity of the fly ash glasses is used to generate a binder comparable to a hydrated Portland cement in appearance and properties, but with possibly reduced CO2 emissions.[24] It should be noted that when the total carbon footprint of the alkali required to form geopolymer cement is considered, including the calcining of limestone as an intermediate to the formation of alkali, the net reduction in total CO2 emissions may be negligible. Moreover, handling of alkali can be problematic and setting of geopolymer cements is very rapid (minutes versus hours) as compared to Portland cements, making widespread use of geopolymer cements impractical at the ready mix level.
  8. 8. Fly ash 6 Roller compacted concrete Another application of using fly ash is in roller compacted concrete dams. Many dams in the US have been constructed with high fly ash contents. Fly ash lowers the heat of hydration allowing thicker placements to occur. Data for these can be found at the US Bureau of Reclamation. This has also been demonstrated in the Ghatghar Dam Project in India. Bricks There are several techniques for manufacturing construction bricks from fly ash, producing a wide variety of products. One type of fly ash brick is manufactured by mixing fly ash with an equal amount of clay, then firing in a kiln at about 1000 degrees C. This approach has the principal benefit of reducing the amount of clay required. Another type of fly ash brick is made by mixing soil, plaster of paris, fly ash and water, and allowing the mixture to dry. Because no heat is required, this technique reduces air pollution. More modern manufacturing processes use a greater proportion of fly ash, and a high pressure manufacturing technique, which produces high strength bricks with environmental benefits. In the United Kingdom, fly ash has been used for over fifty years to make concrete building blocks. They are widely used for the inner skin of cavity walls. They are naturally more thermally insulating than blocks made with other aggregates. Ash bricks have been used in house construction in Windhoek, Namibia since the 1970s. There is, however, a problem with the bricks in that they tend to fail or produce unsightly pop-outs. This happens when the bricks come into contact with moisture and a chemical reaction occurs causing the bricks to expand. In India, fly ash bricks are used for construction. Leading manufacturers use an industrial standard known as "Pulverized fuel ash for lime-Pozzolana mixture" using over 75% post-industrial recycled waste, and a compression process. This produces a strong product with good insulation properties and environmental benefits. [25][26] American civil engineer Henry Liu announced the invention of a new type of fly ash brick in 2007. Lius brick is compressed at 4,000 psi and cured for 24 hours in a 150 °F (66 °C) steam bath, then toughened with an air entrainment agent, so that it lasts for more than 100 freeze-thaw cycles. Owing to the high concentration of calcium oxide in class C fly ash, the brick can be described as self-cementing. Since this method contains no clay and uses pressure instead of heat, it saves energy, reduces mercury pollution, and costs 20% less than traditional manufacturing techniques. [27][28] This type of brick is now manufactured under license in the USA. [29] Some varieties of fly ash brick gain strength as they age. Metal matrix composites Hollow fly ash can be infiltrated by molten metal to form solid, alumina encased spheres. Fly ash can also be mixed with molten metal and cast to reduce overall weight and density, due to the low density of fly ash. Research is underway to incorporate fly ash into lead acid batteries in a lead calcium tin fly ash composite in an effort to reduce weight of the battery. Waste treatment and stabilization Fly ash, in view of its alkalinity and water absorption capacity, may be used in combination with other alkaline materials to transform sewage sludge into organic fertilizer or biofuel.[30] In addition, fly ash, mainly class C, may be used in the stabilization/solidification process of hazardous wastes and contaminated soils.[31] For example, the Rhenipal process uses fly ash as an admixture to stabilize sewage sludge and other toxic sludges. This process has been used since 1996 to stabilize large amounts of chromium(VI) contaminated leather sludges in Alcanena, Portugal.[32][33]
  9. 9. Fly ash 7 Environmental problems Present production rate of fly ash In the United States about 131 million tons of fly ash are produced annually by 460 coal-fired power plants. A 2008 industry survey estimated that 43 percent of this ash is re-used.[34] Groundwater contamination Since coal contains trace levels of arsenic, barium, beryllium, boron, cadmium, chromium, thallium, selenium, molybdenum and mercury, its ash will continue to contain these traces and therefore cannot be dumped or stored where rainwater can leach the metals and move them to aquifers.[35] Spills of bulk storage Where fly ash is stored in bulk, it is usually stored wet rather than dry so that fugitive dust is minimized. The resulting impoundments (ponds) are typically large and stable for long periods, but any breach of their dams or bunding will be rapid and on a massive scale. In December 2008 the collapse of an embankment at an impoundment for wet storage of fly ash at the Tennessee Valley Authoritys Kingston Fossil Plant resulted in a major release of 5.4 millon cubic yards of coal fly ash, damaging 3 homes and flowing into the Emory River. Cleanup costs may exceed $1.2 billion. This spill was followed a few weeks later by a smaller TVA-plant spill in Alabama, which contaminated Widows Creek and the Tennessee River.[36] Contaminants Fly ash contains trace concentrations of heavy metals and other substances that are known to be detrimental to health in sufficient quantities. Potentially toxic trace Tennessee Valley Authority Fly Ash containment failure on 23 elements in coal include arsenic, beryllium, cadmium, December 2008 in Kingston, Tennessee barium, chromium, copper, lead, mercury, molybdenum, nickel, radium, selenium, thorium, uranium, vanadium, and zinc. Approximately 10 percent of the mass of coals burned in the United States consists of unburnable mineral material that becomes ash, so the concentration of most trace elements in coal ash is approximately 10 times the concentration in the original coal.[37] A 1997 analysis by the U.S. Geological Survey (USGS) found that fly ash typically contained 10 to 30 ppm of uranium, comparable to the levels found in some granitic rocks, phosphate rock, and black shale.[37] In 2000, the United States Environmental Protection Agency (EPA) said that coal fly ash did not need to be regulated as a hazardous waste.[38] Studies by the U.S. Geological Survey and others of radioactive elements in coal ash have concluded that fly ash compares with common soils or rocks and should not be the source of alarm.[37] However, community and environmental organizations have documented numerous environmental contamination and damage concerns.[39][40][41] A revised risk assessment approach may change the way coal combustion wastes (CCW) are regulated, according to an August 2007 EPA notice in the Federal Register.[42] In June 2008, the U.S. House of Representatives held an
  10. 10. Fly ash 8 oversight hearing on the Federal governments role in addressing health and environmental risks of fly ash.[43] Exposure concerns Crystalline silica and lime along with toxic chemicals are among the exposure concerns. Although industry has claimed that fly ash is "neither toxic nor poisonous," this is disputed. Exposure to fly ash through skin contact, inhalation of fine particle dust and drinking water may well present health risks. The National Academy of Sciences noted in 2007 that "the presence of high contaminant levels in many CCR (coal combustion residue) leachates may create human health and ecological concerns." [1] Fine crystalline silica present in fly ash has been linked with lung damage, in particular silicosis. OSHA allows 0.10 mg/m3, (one ten-thousandth of a gram per cubic meter of air). Another fly ash component of some concern is lime (CaO). This chemical reacts with water (H2O) to form calcium hydroxide [Ca(OH)2], giving fly ash a pH somewhere between 10 and 12, a medium to strong base. This can also cause lung damage if present in sufficient quantities. In a study by NIOSH at a cement company [44], crystalline silica exposures from fly ash were determined to be of no concern. For maintaining a safe workplace emphasis must be placed on maintaining low nuisance dust levels and to use the appropriate personal protective equipment (PPE). The conclusion of this NIOSH study is supported by other studies devoted to the effects of fly ash on the health of workers in power plants. According to these studies, fly ash dust should not be considered as "silicotic dust", because most of the crystalline silica is coated by amorphic alumino-silicates (glass), the main constituent of fly ash particles. This was shown particularly on the basis of scanning electron microscopy observations, by a research work performed in the Netherlands [45], but similar findings were obtained also in other countries. External links • Evaluation of Dust Exposures at Lehigh Portland Cement Company, Union Bridge, MD, a NIOSH Report, HETA 2000-0309-2857 [44] • Determination of Airborne Crystalline Silica Treatise by NIOSH [46] • "Coal Ash: 130 Million Tons of Waste" [47] 60 Minutes (Oct. 4, 2009) • American Coal Ash Association [48] • Fly Ash Information Center [49] : Site explaining the history and uses of fly ash. • United States Geological Survey - Radioactive Elements in Coal and Fly Ash [50] (document) • Public Employees for Environmental Responsibility: Coal Combustion Waste [51] • UK Quality Ash Association [52] : A site promoting the many uses of fly ash in the UK • Coal Ash Is More Radioactive than Nuclear Waste [53], Scientific American (13 December 2007) References [1] Managing Coal Combustion Residues in Mines, Committee on Mine Placement of Coal Combustion Wastes, National Research Council of the National Academies, 2006 [2] Human and Ecological Risk Assessment of Coal Combustion Wastes, RTI, Research Triangle Park, August 6, 2007, prepared for the U.S. Environmental Protection Agency [3] American Coal Ash Association [4] "Is fly ash an inferior building and structural material" (http:/ / findarticles. com/ p/ articles/ mi_gx5204/ is_2003/ ai_n19124302/ ?tag=content;col1). Science in Dispute. 2003. . [5] EPRI (Project Manager K. Ladwig) 2010, Comparison of coal combustion products to other common materials - Chemical Characteristics, Electric Power Research Institute, Palo Alto, CA [6] "ASTM C618 - 08 Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete" (http:/ / www. astm. org/ cgi-bin/ SoftCart. exe/ DATABASE. CART/ REDLINE_PAGES/ C618. htm?L+ mystore+ lsft6707). ASTM International. . Retrieved 2008-09-18.
  11. 11. Fly ash 9 [7] " The Building Brick of Sustainability (http:/ / calstarproducts. com/ “the-building-brick-of-sustainability”-construction-specifications-institute-magazine/ )". Chusid, Michael; Miller, Steve; & Rapoport, Julie. The Construction Specifier May 2009. [8] " Coal by-product to be used to make bricks in Caledonia (http:/ / calstarproducts. com/ wp-content/ themes/ default/ pdf/ JournalTimes_040109. pdf)". Burke, Michael. The Journal Times April 1, 2009. [9] American Coal Ash Association. "CCP Production and Use Survey" (http:/ / www. acaa-usa. org/ PDF/ 2005_CCP_Production_and_Use_Figures_Released_by_ACAA. pdf) (PDF). . [10] U.S. Environmental Protection Agency. "Using Coal Ash in Highway Construction - A Guide to Benefits and Impacts" (http:/ / www. epa. gov/ epaoswer/ osw/ conserve/ c2p2/ pubs/ greenbk508. pdf). . [11] Robert McCabe (March 30, 2008). "Above ground, a golf course. Just beneath it, potential health risks" (http:/ / hamptonroads. com/ 2008/ 03/ above-ground-golf-course-just-beneath-it-potential-health-risks). The Virginian-Pilot. . [12] American Coal Ash Association. "Coal Combustion Products Production & Use Statistics" (http:/ / acaa. affiniscape. com/ displaycommon. cfm?an=1& subarticlenbr=3). . [13] Gaarder, Nancy. "Coal ash will fight flooding" (http:/ / www. omaha. com/ article/ 20100217/ NEWS01/ 702179923), Omaha World-Herald, February 17, 2010. [14] Josephson, Joan. "Coal ash under fire from Portland resident" (http:/ / www. observertoday. com/ page/ content. detail/ id/ 535925. html?nav=5047), "ObserverToday", February 13, 2010. [15] U.S. Federal Highway Administration. "Fly Ash" (http:/ / www. fhwa. dot. gov/ infrastructure/ materialsgrp/ flyash. htm). . [16] Public Employees for Environmental Responsibility. "Coal Combustion Wastes in Our Lives" (http:/ / www. peer. org/ campaigns/ publichealth/ coalash/ everywhere. php). . [17] Scott, Allan N .; Thomas, Michael D. A. (January/February 2007). "Evaluation of Fly Ash From Co-Combustion of Coal and Petroleum Coke for Use in Concrete". ACI Materials Journal (American Concrete Institute) 104 (1): 62–70. [18] Halstead, W. (October 1986). "Use of Fly Ash in Concrete". National Cooperative Highway Research Project 127. [19] Moore, David. The Roman Pantheon: The Triumph of Concrete. [20] U.S. Federal Highway Administration. "Fly Ash Facts for Highway Engineers" (http:/ / www. fhwa. dot. gov/ pavement/ recycling/ fafacts. pdf) (PDF). . [21] Hennis, K. W.; Frishette, C. W. (1993). "A New Era in Control Density Fill". Proceedings of the Tenth International Ash Utilization Symposium [22] http:/ / www. astm. org/ cgi-bin/ SoftCart. exe/ DATABASE. CART/ REDLINE_PAGES/ D242. htm?L+ mystore+ ndfm2845 [23] Zimmer, F. V. (1970). "Fly Ash as a Bituminous Filler". Proceedings of the Second Ash Utilization Symposium [24] Duxson, P.; Provis, J.L.; Lukey, G.C.; van Deventer, J.S.J. (2007). "The role of inorganic polymer technology in the development of Green concrete". Cement and Concrete Research 37 (12): 1590–1597. doi:10.1016/j.cemconres.2007.08.018 [25] "FAQs - Fly Ash Bricks - Puzzolana Green Fly-Ash bricks" (http:/ / www. flyashbricksdelhi. com/ faqs#A2). Fly Ash Bricks Delhi. . [26] "List of important IS Codes related to bricks" (http:/ / flyashbricksinfo. com/ construction/ list-of-important-is-codes-related-to-bricks. html). Fly Ash Bricks Info. . [27] Popular Science Magazine, INVENTION AWARDS : A Green Brick (http:/ / www. popsci. com/ popsci/ technology/ b987485a9f492110vgnvcm1000004eecbccdrcrd. html?s_prop16= RSS:technology), May 2007 [28] National Science Foundation, Press Release 07-058, "Follow the Green Brick Road?" (http:/ / www. nsf. gov/ news/ news_summ. jsp?cntn_id=109594& org=ENG), May 22, 2007 [29] "Bricks – CalStar Products" (http:/ / calstarproducts. com/ products/ fly-ash-brick-fab). CalStar Products. . [30] N-Viro International (http:/ / www. nviro. com/ soil. html) [31] EPA, 2009. Technology performance review: selecting and using solidification/stabilization treatment for site remediation. NRMRL, U.S. Environmental Protection Agency, Cinicinnati, OH [32] "Toxic Sludge stabilisation for INAG, Portugal" (http:/ / www. dirkgroup. com/ waterindustry/ mobilesolutions/ sludgestabilisationcase. html). DIRK group (http:/ / www. dirkgroup. com). . [33] DIRK group (http:/ / www. dirkgroup. com) (1996). "Pulverised fuel ash products solve the sewage sludge problems of the wastewater industry". Waste management 16 (1-3): 51–57. doi:10.1016/S0956-053X(96)00060-8. [34] Chemical & Engineering News, 23 February 2009, "The Foul Side of Clean Coal", p. 44 [35] A December 2008 Maryland court decision levied a $54 million penalty against Constellation Energy, which had performed a "restoration project" of filling an abandoned gravel quarry with fly ash; the ash contaminated area waterwells with heavy metals. C&EN/12 Feb. 2009, p. 45 [36] "TVA Widows Creek coal waste spill" (http:/ / www. sourcewatch. org/ index. php?title=TVA_Widows_Creek_coal_waste_spill). . Retrieved 2010-12-11. [37] U.S. Geological Survey (October 1997). "Radioactive Elements in Coal and Fly Ash: Abundance, Forms, and Environmental Significance" (http:/ / pubs. usgs. gov/ fs/ 1997/ fs163-97/ FS-163-97. pdf) (PDF). U.S. Geological Survey Fact Sheet FS-163-97. . [38] Environmental Protection Agency (May 22, 2000). "Notice of Regulatory Determination on Wastes From the Combustion of Fossil Fuels" (http:/ / frwebgate. access. gpo. gov/ cgi-bin/ getpage. cgi?dbname=2000_register& position=all& page=32214). Federal Register Vol. 65, No. 99. p. 32214. .
  12. 12. Fly ash 10 [39] McCabe, Robert; Mike Saewitz (2008-07-19). "Chesapeake takes steps toward Superfund designation of site." (http:/ / www. norfolk. com/ 2008/ 07/ chesapeake-takes-steps-toward-superfund-designation-site?page=1). The Virginian-Pilot. . [40] McCabe, Robert. "Above ground golf course, Just beneath if potential health risks" (http:/ / hamptonroads. com/ 2008/ 03/ above-ground-golf-course-just-beneath-it-potential-health-risks), The Virginian-Pilot, 2008-03-30 [41] Citizens Coal Council, Hoosier Environmental Council, Clean Air Task Force (March 2000), "Laid to Waste: The Dirty Secret of Combustion Waste from Americas Power Plants" (http:/ / www. catf. us/ publications/ reports/ Laid_to_Waste. pdf) [42] Environmental Protection Agency (August 29, 2007). "Notice of Data Availability on the Disposal of Coal Combustion Wastes in Landfills and Surface Impoundments" (http:/ / edocket. access. gpo. gov/ 2007/ pdf/ E7-17138. pdf) (PDF). 72 Federal Register 49714. . [43] House Committee on Natural Resources, Subcommittee on Energy and Mineral Resources (June 10, 2008). "Oversight Hearing: How Should the Federal Government Address the Health and Environmental Risks of Coal Combustion Wastes?" (http:/ / resourcescommittee. house. gov/ index. php?option=com_jcalpro& Itemid=65& extmode=view& extid=184). . [44] http:/ / www. cdc. gov/ niosh/ hhe/ reports/ pdfs/ 2000-0309-2857. pdf [45] Meij R., 2003. Status report on the health issues associated with pulverized fuel ash and fly dust. Report 50131022-KPS/MEC 01-6032, KEMA Power Generation and Sustainables, Arnhem, NL) [46] http:/ / www. cdc. gov/ niosh/ docs/ 2003-154/ pdfs/ chapter-r. pdf [47] http:/ / www. cbsnews. com/ stories/ 2009/ 10/ 01/ 60minutes/ main5356202. shtml [48] http:/ / www. acaa-usa. org [49] http:/ / www. fly-ash-information-center. org. in [50] http:/ / greenwood. cr. usgs. gov/ energy/ factshts/ 163-97/ FS-163-97. html [51] http:/ / www. peer. org/ campaigns/ publichealth/ coalash/ index. php [52] http:/ / www. ukqaa. org. uk [53] http:/ / www. sciam. com/ article. cfm?id=coal-ash-is-more-radioactive-than-nuclear-waste Fly ash brick Fly ash brick (FAB) are building materials, specifically masonry units, containing Class C fly ash and water. Compressed at 4,000 psi and cured for 24 hours in a 150 °F (66 °C) steam bath , then toughened with an air entrainment agent, the bricks last for more than 100 freeze-thaw cycles. Owing to the high concentration of calcium oxide in class C fly ash, the brick can be described as "self-cementing". The manufacturing method is said to save energy, reduce mercury pollution, and costs 20% less than traditional clay brick manufacturing. The raw materials The raw material that is used for fly ash brick are: Fly ash, Sand/Stone dust, Lime, Gypsum and Cement. Flyash bricks are lighter than clay bricks. • Fly ash • Sand or Stone dust • Lime • Gypsum • Cement Funton Creek. Presumably this was a navigable Advantages channel in the days when the brick works was serviced by barges bringing fly-ash from London 1. Due to high strength, practically no breakage during transport & and returning with loads of bricks. use. 2. Due to uniform size of bricks mortar required for joints & plaster reduces almost by 50%. 3. Due to lower water penetration seepage of water through bricks is considerably reduced. 4. Plaster of Paris / Gypsum Plaster can be directly applied on these bricks without a backing coat of plaster 5. These bricks do not require soaking in water for 24 hours. Only sprinkling of water before use is enough.
  13. 13. Fly ash brick 11 Dis-advantages 1. Poor quality and outlook in colour without plastering 2. Mechanical bonding strength is weak. But this can be rectified by adding marble waste. 3. Limitation of size. Only modular size can be produces. Large size will have more breakages Appearance These bricks have a pleasing colour like cement, are uniform in shape and smooth in finish, also, they require no plastering for building work. The bricks are of dense composition, uniformly shaped with/without a frog, free from visible cracks, warp-age, organic matter, pebbles and nodules of free lime. They are lighter in weight than ordinary clay bricks and less porous too. The colour of flyash bricks can be altered with the addition of admixtures during the process of brick making. They come in various sizes, but generally are similar to the sizes of clay bricks. Structural Capability These bricks can provide advantages being available in several load-bearing grades, savings in mortar plastering, and giving smart looking brickwork. High compressive strength eliminates breakages/wastages during transport and handling, the cracking of plaster is reduced due to lower thickness of joints and plaster and basic material of the bricks, which is more compatible with cement mortar. Due to its comparable density the bricks do not cause any extra load for design of structures and provides better resistance for earthquake loads due to panel action with high strength bricks. Compressive strength of fly ash sand lime bricks is av. 9.00 N/mm2 (as against 3.50 N/mm2 for handmade clay bricks). Thermal properties Thermal conductivity is 0.90-1.05 W/m2 ºC (20-30% less than those of concrete blocks). These bricks do not absorb heat; they reflect heat and gives maximum light reflection without glare. Sound insulation It provides an acceptable degree of sound insulation. Fire and vermin resistance Flyash bricks have a good fire rating. It has no problems of vermin attacks or infestation. Durability and moisture resistance These blocks are highly durable, after proper pointing of joints, the bricks can be directly painted in dry distemper and cement paints, without the backing coating of plaster. Rectangular faced with sharp corners, solid, compact and uniformly Water absorption is 6-12% as against 20-25% for handmade clay bricks, reducing dampness of the walls.
  14. 14. Fly ash brick 12 Toxicity and Breath-ability There are no definite studies on the toxic fume emissions or the indoor air quality of structures built with flyash bricks, though claims of radio active emissions by these blocs have been made at some scientific forums. Flyash as a raw material is very fine and care has to be taken to prevent from being air-borne and causing serious air pollution as it can remain airborne for long periods of time, causing serious health problems relating to the respiratory system. Though block manufactured from flyash has no such problems. Sustainability (environmental impacts) Fly ash is a cocktail of unhealthy elements – silica, aluminum, iron oxides, calcium, magnesium, arsenic, mercury, and cadmium, and poses serious environment and health hazards for a large population. But the brick is better off, for flyash changes into a non-toxic product when mixed with lime at ordinary temperature as the calcium silicate hydrates and forms a dense composite inert block. Thus having the potential as a good building material, while offsetting about 100million tonne’s of flyash annually produced in India by the numerous thermal power plants, which could cause serious contamination of land, groundwater and air. Buildability, availability and cost The blocks have an easy workability and high compressive strength eliminates breakages/wastage during handling giving a neat finish, with lower thickness of joints and plaster. The construction technique remains the same as regular bricks ensuring easy change of material, without requiring additional training for the masons. Though these bricks are abundantly available closer to thermal power plants all over the country for obvious reasons, finding dealers in all major cities and towns wouldn’t be a problem. Applicability The blocks being available in several load bearing grades are suitable for use: - • Load bearing external walls, in low and medium size structures. • Non-load bearing internal walls in low and medium size structures. • Non-load bearing internal or external walls in high-rise buildings.
  15. 15. Geopolymers 13 Geopolymers Geopolymer is a term covering a class of synthetic aluminosilicate materials with potential use in a number of areas, essentially as a replacement for Portland cement and for advanced high-tech composites, ceramic applications or as a form of cast stone. The name Geopolymer was first applied to these materials by Joseph Davidovits[1] in the 1970s, although similar materials had been developed in the former Soviet Union since the 1950s, originally under the name "soil cements".[2][3] However, this name never found widespread usage in the English language, as it is more often applied to the description of soils which are consolidated with a small amount of Portland cement to enhance strength and stability. Geopolymer cements are an example of the broader class of alkali-activated binders, which also includes alkali-activated metallurgical slags and other related materials.[4] Research Much of the drive behind research carried out in academic institutions involves the development of geopolymer cements as a potential large-scale replacement for concrete produced from Portland cement. This is due to geopolymers’ alleged lower carbon dioxide production emissions, greater chemical and thermal resistance and better mechanical properties at both ambient and extreme conditions. On the other side, industry has implemented geopolymer binders in advanced high-tech composites and ceramics for heat- and fire-resistant applications, up to 1200 °C. There is some debate as to whether geopolymer cement has lower CO2 emissions compared to Portland cement. Calcination of limestone in production of Portland cement is responsible for CO2 emissions (one ton of cement produced releases one ton of CO2), while some processes of formation of lyme also release CO2. Mainly it is the ratio of CO2 reduction that is under debate, and it is process-dependent. Production Geopolymer binders and geopolymer cements are generally formed by reaction of an aluminosilicate powder with an alkaline silicate solution at roughly ambient conditions. Metakaolin is a commonly used starting material for laboratory synthesis of geopolymers, and is generated by thermal activation of kaolinite clay. Geopolymer cements can also be made from sources of pozzolanic materials, such as lava or fly ash[5] from coal. Most studies on geopolymer cements have been carried out using natural or industrial waste sources of metakaolin and other aluminosilicates. Industrial and high-tech applications rely on more expensive and sophisticated siliceous raw materials. Theory The majority of the Earth’s crust is made up of Si-Al compounds. Davidovits proposed in 1978 that a single aluminium and silicon-containing compound, most likely geological in origin, could react in a polymerization process with an alkaline solution. The binders created were termed "geopolymers" but, now, the majority of aluminosilicate sources are by-products from organic combustion, such as fly ash from coal burning. These inorganic polymers have a chemical composition somewhat similar to zeolitic materials but exist as amorphous solids, rather than having a crystalline microstructure. Some have alleged that ancient "Roman cement" is a geopolymer cement, but in reality this material is chemically unlike alkali activated geopolymer cements because it is made using lime and forms calcium-silicate-hydrates, making it much closer to Portland cement from a chemical standpoint.
  16. 16. Geopolymers 14 Structure The chemical reaction that takes place to form geopolymers follows a multi-step process: 1. Dissolution of Si and Al atoms from the source material due to hydroxide ions in solution, 2. Reorientation of precursor ions in solution, and 3. Setting via polycondensation reactions into an inorganic "polymer" (actually a crystalline-like lattice). The inorganic polymer network is in general a highly-coordinated 3-dimensional aluminosilicate gel, with the negative charges on tetrahedral Al(III) sites charge-balanced by alkali metal cations. History Davidovits has proposed that some of the major pyramids, rather than being blocks of solid limestone hauled into position, are composed of geopolymers, cast in their final positions in the structure. He also considers that Roman cement and the small artifacts, previously thought to be stone, of the Tiwanaku civilisation were made using knowledge of geopolymer techniques. However, because Roman cement forms calcium-silicate-hydrates, and requires calcined limestone as a reactant/precursor, it is more similar to Portland cement than alkali-activated "geopolymer cements" such as Pyrament cement of LoneStar.[6][7] References [1] Davidovits, Joseph (2008). Geopolymer Chemistry and Applications (http:/ / www. geopolymer. org/ learning/ book-geopolymer-chemistry-and-applications) (2nd ed.). Saint-Quentin, FR: Geopolymer Institute. ISBN 978-2-9514820-1-2. . [2] Stabilization/solidification of hazardous and radioactive wastes with alkali-activated cements (http:/ / dx. doi. org/ 10. 1016/ j. jhazmat. 2006. 05. 008) Science Direct Journal of Hazardous Materials 2005-08-13 [3] Geopolymer technology: the current state of the art (http:/ / dx. doi. org/ 10. 1007/ s10853-006-0637-z) Journal of Materials Science, 2006-06-04 [4] Shi, Caijun; Krivenko, Pavel V.; Roy, Della M. (2006). Alkali-Activated Cements and Concretes. Abingdon, UK: Taylor & Francis. [5] http:/ / www. sciencedirect. com/ science?_ob=ArticleURL& _udi=B6TWF-4YNC1P5-2& _user=607434& _coverDate=07%2F31%2F2010& _alid=1527901388& _rdoc=2& _fmt=high& _orig=search& _origin=search& _zone=rslt_list_item& _cdi=5561& _sort=r& _st=13& _docanchor=& view=c& _ct=3& _acct=C000031539& _version=1& _urlVersion=0& _userid=607434& md5=1d8a6a1cf54b6ef33e492a30d97a24f2& searchtype=a [6] Davidovits, Joseph; Morris, Margie (1988). The pyramids: an enigma solved. New York: Hippocrene Books. ISBN 0-87052-559-X. [7] Davidovits, Joseph; Aliaga, Francisco (1981). "Fabrication of stone objects, by geopolymeric synthesis, in the pre-incan Huanka civilization (Peru)" (http:/ / www. geopolymer. org/ index. php?p=55). Making Cements with Plant Extracts. Geopolymer Institute. . Retrieved 2008-01-09. External links • Geopolymer Institute ( • Geopolymer Alliance (
  17. 17. Aluminosilicate 15 Aluminosilicate Kyanite Andalusite Sillimanite [1] Phase diagram of the Aluminosilicates. Aluminosilicate minerals are minerals composed of aluminium, silicon, and oxygen, plus countercations. They are a major component of kaolin and other clay minerals. Andalusite, kyanite, and sillimanite are naturally occurring aluminosilicate minerals that have the composition Al2SiO5.[2][3][4] The triple point of the three polymorphs is located at a temperature of 500 °C and a pressure of 0.4 GPa. These three minerals are commonly used as index minerals in metamorphic rocks. Hydrated aluminosilicate minerals are referred to as zeolites and are porous structures that are naturally occurring materials. The catalyst silica-alumina is an amorphous substance which is not an aluminosilicate compound. References [1] Whitney, D.L. (2002), "Coexisting andalusite, kyanite, and sillimanite: Sequential formation of three Al2SiO5 polymorphs during progressive metamorphism near the triple point, Sivrihisar, Turkey" (http:/ / ammin. geoscienceworld. org/ cgi/ content/ abstract/ 87/ 4/ 405), American Mineralogist 87 (4): 405–416, [2] Andalusite, Handbook of Mineralogy (http:/ / rruff. geo. arizona. edu/ doclib/ hom/ andalusite. pdf) [3] Kyanite, Handbook of Mineralogy (http:/ / rruff. geo. arizona. edu/ doclib/ hom/ kyanite. pdf) [4] Sillimanite, Handbook of Mineralogy (http:/ / rruff. geo. arizona. edu/ doclib/ hom/ sillimanite. pdf)
  18. 18. Pozzolana 16 Pozzolana Pozzolana, also known as pozzolanic ash (pulvis puteolanus in Latin), is a fine, sandy volcanic ash. Pozzolanic ash was first discovered and dug in Italy, at Pozzuoli. It was later discovered at a number of other sites as well. Vitruvius speaks of four types of pozzolana: black, white, grey, and red, all of which can be found in the volcanic areas of Italy, such as Naples. Chemistry Pozzolana is a siliceous and aluminous material which reacts with calcium hydroxide in the presence of water. This forms compounds possessing cementitious properties at room temperature which have the ability to set underwater. It transformed the possibilities for Pozzolana from Bacoli in the Bay of Naples making concrete structures, although it took the Romans some time to discover its full potential. Typically it was mixed two-to-one with lime just prior to mixing with water. The Roman port at Cosa was built of Pozzolana that was poured underwater, apparently using a long tube to carefully lay it up without allowing sea water to mix with it. The three piers are still visible today, with the underwater portions in generally excellent condition even after more than 2100 years. Modern use Modern pozzolanic cements are a mix of natural or industrial pozzolans and Portland cement. In addition to underwater use, the high alkalinity of pozzolana makes it especially resistant to common forms of corrosion from sulfates. Once fully hardened, the Portland cement-Pozzolana blend may be stronger than Portland cement, due to its lower porosity, which also makes it more resistant to water absorption and spalling. Some industrial sources of materials with pozzolanic properties are: class F (silicious) fly ash from coal-fired power plants, silica fume from silicon production, rice husk ash from rice paddy-fields (agriculture), and metakaolin from oil sand operations. Metakaolin, a powerful pozzolan, can also be manufactured, and is valued for making white concrete. Other industrial waste products used in Portland composite cements include class C (calcareous) fly ash and ground granulated blast furnace slag.
  19. 19. Pozzolana 17 Pozzolanic reaction At the basis of the Pozzolanic reaction stands a simple acid-base reaction between calcium hydroxide, also known as Portlandite, or (Ca(OH)2), and silicic acid (H4SiO4, or Si(OH)4). Simply, this reaction can be schematically represented as follows: Ca(OH)2 + H4SiO4 → Ca2+ + H2SiO42- + 2 H2O → CaH2SiO4 · 2 H2O or summarized in abbreviated notation of cement chemists: CH + SH → CSH The product of general formula (CaH2SiO4 · 2 H2O ) formed is a calcium silicate hydrate, also abbreviated as CSH in cement chemist notation. The ratio Ca/Si, or C/S, and the number of water molecules can vary and the above mentioned stoichiometry may differ. As the density of CSH is lower than that of portlandite and pure silica, a consequence of this reaction is a swelling of the reaction products. This reaction may also occur with time in concrete between alkaline cement porewater and poorly-crystalline silica aggregates. This delayed process is also known as alkali silica reaction, or alkali-aggregate reaction, and may seriously damage concrete structures because the resulting volumetric expansion is also responsible for spalling and decrease of the concrete strength. References • Cook D.J. (1986) Natural pozzolanas. In: Swamy R.N., Editor (1986) Cement Replacement Materials, Surrey University Press, p. 200. • McCann A.M. (1994) "The Roman Port of Cosa" (273 BC), Scientific American, Ancient Cities, pp. 92–99, by Anna Marguerite McCann. Covers, hydraulic concrete, of "Pozzolana mortar" and the 5 piers, of the Cosa harbor, the Lighthouse on pier 5, diagrams, and photographs. Height of Port city: 100 BC.
  20. 20. Article Sources and Contributors 18 Article Sources and Contributors Fly ash  Source:  Contributors: Absolute Relativity, Achrn, Adam Bertrand,, Ahoerstemeier, Akrunch, Alexfrance250291,, Amatulic, Andy Dingley, Apothecia, Aryaniae, Asr, BD2412, Babbage, Badagnani, Baldyman91, Bearcat, Beland, Bergsten, Beth3004, Biscuittin, Bkell, Bmhkim, Bobblewik, Bongwarrior, Bovineone, Bullytr, Burd.rajeev, C777, Cadmium, CaliforniaAliBaba, CanisRufus, Cgingold, Chintu 922, Choongyong.koh, Chris the speller, Chris.urs-o, ChrisRuvolo, Curugil, DA3N, DabMachine, Dany680, Davewho2, DavidWBrooks, Dino, DocWatson42, DonSiano, Dshreve, E. Sn0 =31337=, Eastlaw, Emerson7, Emgold, Epolk, Eumolpo, Excirial, FantaX, Flailex, FocalPoint, Garion96, Gene Nygaard, Geomatician, Gobonobo, GreatMizuti, Ground Zero, Horsten, Icairns, IceCreamAntisocial, Ike9898, Imran srkrcivil, Irinotecan, J36miles, JDIINTEGRATED, Jeremy Visser, Jkmchugh, John Broughton, Johnprovis, JonRichfield, Jpsgujral, Juliancolton, Kbh3rd, Kinimukka, Kragen, Kuru, Kwertii, Lamro, LeoNomis, Lightmouse, LilHelpa, LinguisticDemographer, M9.justin, MARussellPESE, MER-C, Mambg, Mandarax, Materialscientist, MatheoDJ, Matyra, Mburke67, Mikeblas, Monoman38, Moonriddengirl, NawlinWiki, Orlady, PS2pcGAMER, Pakaraki, PhnomPencil, Platypus222, Ponydepression, Quadell, Quickwick73, RP459, Ranger900, Raymondwinn, Rifleman 82, Rjwilmsi, RoadieRich, Roaringindianlion, Rubywine, Saba50, Sagredo, Shieber, Shinkolobwe, Sillybilly, Simesa, SiobhanHansa, Smithbrenon, SoftWombat, Solardude, Sukisuki, TDogg310, Tabby, Tapaswe, Teles, Tigerhawkvok, Todd Vierling, Topken Microsilica, Twang, Twinsday, UFu, Unclepea, Uwmad, Van helsing, Verne Equinox, Vsmith, Wabeggs, Watchpup, Wavelength, Wickifrank, Wizard191, Wkovarik, WolfyB, WriterHound, 191 anonymous edits Fly ash brick  Source:  Contributors: A.K.Karthikeyan, Amitsehgal9, Avoided blue, BD2412, Karthikeyan mylswamy, Katharineamy, LindsayH, Malcolma, Martin451, Mattgirling, Merovingian, PamD, Pinethicket, Quickwick73, Rettetast, SMasters, Torchwoodtwo, WereSpielChequers, 12 anonymous edits Geopolymers  Source:  Contributors: Ars27, AvicAWB, Biscuittin, Dvferret, Faucozir, Geopolymer guy, Hu, JDavidovits, Jandalhandler, Jerome Charles Potts, Johnbod, Johnprovis, Joshua Issac, Keilana, Lamro, Leonard G., Look2See1, Marek69, Old Moonraker, Shinkolobwe, Tabletop, Tassedethe, Trkiehl, Uthbrian, 自 教 育, 17 anonymous edits Aluminosilicate  Source:  Contributors: Acabtp, Akxcantab, Andres, Axiosaurus, Brunky, Chris.urs-o, Crystal whacker, Cybercobra, Dedgeord, Enemenemu, Frap, GregorB, Ian Sutanto, Jackbauersd, Khalid hassani, Kreuzfeld, LGNR, LilHelpa, M0ffx, Mac, Metalloid, Mr.crispy, Nvanbuer, Ponydepression, Rjwilmsi, Smith609, Stan J Klimas, Su-no-G, Thatsjustnotcricket, Thricecube, Visor, Vsmith, 21 anonymous edits Pozzolana  Source:  Contributors: Andrej Šalov, Argyriou, Bezard1, CMD Beaker, Cohesion, DanielCD, Deineka, Dinesh smita, DocWatson42, Element16, Erpbridge, FocalPoint, Foobar, Ithunn, Ivbuiliev, Kpeyn, Lamro, LilHelpa, Maury Markowitz, Mmcannis, Natmaka, Ohms law, Petri Krohn, Roaringindianlion, Shinkolobwe, Sho Uemura, Sorsanmetsastaja, TDogg310, Vsmith, Wolever, ‫ 22 ,ﻣﺎﻧﻲ‬anonymous edits
  21. 21. Image Sources, Licenses and Contributors 19 Image Sources, Licenses and Contributors File:Fly Ash FHWA dot gov.jpg  Source:  License: Public Domain  Contributors: United States Department of Transportation - Federal Highway Administration File:Back-Scattered Electron Micrograph of Coal Fly Ash small.tif  Source:  License: Creative Commons Attribution-Sharealike 3.0  Contributors: User:Wabeggs image:Aerial view of ash slide site Dec 23 2008 123002.jpg  Source:  License: Public Domain  Contributors: Tennessee Valley Authority. Original uploader was Truthdowser at en.wikipedia File:Funton Creek - - 4336.jpg  Source:  License: Creative Commons Attribution-Share Alike 2.0 Generic  Contributors: - Image:Al2SiO5 phase diagram.svg  Source:  License: Creative Commons Attribution-Sharealike 3.0  Contributors: Smith609 Image:Pozzolana in Hands.jpg  Source:  License: Public Domain  Contributors: Ellywa, FSII, Rémih
  22. 22. License 20 License Creative Commons Attribution-Share Alike 3.0 Unported //