Uploaded on

Pattern of adoption of semantic web by search engines - timelines and analysis

Pattern of adoption of semantic web by search engines - timelines and analysis

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads


Total Views
On Slideshare
From Embeds
Number of Embeds



Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

    No notes for slide


  • 1. The  RDFA/SEO  WAVE   How  to  catch  it  &  why   Email: bstarr@Ontologica.us Twitter: @BarbaraStarr
  • 2. The  Schema.org/SEO  WAVE   How  to  catch  it  &  why   Email: bstarr@Ontologica.us Twitter: @BarbaraStarr
  • 3. About  me  •  Decades    working  with  Seman2c  Technologies   in  finance,  government,  insurance  and  more  •  Currently  –  Major  Online  Retailer  •  SD  Semweb    organizer,  assistant  SF  organizer,  etc  •  Added  goodrela2ons  rdfa  onto  some  900,000   item  pages   –  Looking  at  all  kinds  of  backlinks  from  many  e-­‐tailers   sites  certainly  demonstrated  the  necessity  for   structured  data  within  web  pages  or  a  “less   gameable”  search  solu2on.  
  • 4. What  I  am  going  to  talk  about  •  The  Wave  •  How  to  catch  it  •  Why  •  The  catch?  •  Demo    
  • 5. Some  basic  defini2ons  •  RDFa  -­‐  RDF  in  aRributes    •  Rich  snippets,  embedded  structured  data  on   html  pages  •  Typically  used  ini2ally  by  the  search  engines  to   enhance  displays  in  SERPs  •  Rich  Snippets  yield  increase  in  CTR  (Click   Through  Rate)  •  Ini2al  claim  –  no  change  in  search  rankings  
  • 6. The  WAVE  
  • 7. The  Wave  •  Yahoo  •  Google  •  Facebook  •  Many  others,  but  focus  on  SEO  
  • 8. Adop2on/Usage  •  First  used  by  Yahoo,  Searchmonkey,  Feb  2008  •  Full  RDFa  support  •  Products  •  News  •  Events  •  Video  •  Documents  •  Local  
  • 9. The  Demise  of  Searchmonkey  Con2nued  Support  for  RDFA  snippets  
  • 10. Adop2on/Usage  -­‐  GOOGLE    •  Rich  snippets  introduced  May  12,  2009   –  Reviews   –  People   –  Events   –  Businesses  and  organiza2ons   –  Reviews   –  Recipes   –  Breadcrumbs   –  Local  Search   –  Video   –  Images     –  Products  hRp://rdf.data-­‐vocabulary.org/#  
  • 11. Rich  Snippets  MAY  12,  2009   •  Google  now  supports  Rich  snippets  for   –  People   –  Events   –  Businesses  and  organiza2ons   –  Reviews   –  Recipes   –  Products   –  Breadcrumbs   –  Local  Search   hRp://rdf.data-­‐vocabulary.org/#  
  • 12. RDFa  for  videos   September  2009  
  • 13. October  26,  2009  
  • 14. Events   Mar  12,  2010  
  • 15. Recipes   April  13,  2010  17  
  • 16. Facebook Opengraph protocol based on RFDa April  20,  2010   Enables “semantic Profiling” of users
  • 17. April  26,  2010  
  • 18. Sept  2,  2010  
  • 19. Sept  22,  2010  
  • 20. Products  –  Nov  2,  2010  Included  support  for  goodrela2ons  vocabulary  
  • 21. Peter  Mika’s  blog  –  Yahoo  Analysis   Results  prior  to  goodrela2ons  announcement  by  google    
  • 22. LOD  Cloud  Evolu2on   The  wave  of  growth  has  been   remarkable  Source  maintained  by:  Richard  Cygniak  and  Anja  Jentsch.  hRp://lod-­‐cloud.net  
  • 23. Mar  2008  
  • 24. March  5  -­‐  2009   Sem- Wiki- Surge Web- company Radio LIBRIS Central RDF ohloh Doap- Music- space Semantic Resex brainz Audio- Eurécom Flickr Web.org MySpace Scrobbler QDOS SW exporter Wrapper Conference IRIT Corpus Toulouse RAE BBC BBC Crunch 2001 FOAF SIOC ACM BBC Later + John Base Revyu Jamendo Peel profiles Sites Playcount TOTP Open- Buda- Data Guides pest DBLP BME flickr RKB Project Pub Geo- Euro- wrappr Explorer Guten- Virtuoso Guide names stat berg Pisa BBC Sponger eprintsProgramm Open es Calais New- riese World Linked ECS castle Fact- MDB South- IEEE book ampton Magna- Gov- tune RDF Book Track Mashup DBpedia lingvoj Freebase IBM US CiteSeer LAAS- Census W3C DBLP CNRS Data WordNet Hannover UniRef GEO UMBEL Species DBLP Berlin Reactome LinkedCT UniParc Open Taxonomy Cyc Yago Drug PROSITE Daily Bank Med Pub GeneID Homolo Chem Gene KEGG UniProt Pfam ProDom Disea- CAS Gene some ChEBI Ontology Symbol OMIM Inter Pro UniSTS PDB HGNC MGI PubMed As of March 2009
  • 25. LOD  cloud  –  Sept  22  2010   Sussex St. Reading Andrews NDL Audio- Lists Resource subjects t4gm MySpace scrobbler Lists Moseley (DBTune) (DBTune) RAMEAU Folk NTU SH lobid GTAA Plymouth Resource Lists Organi- Reading Lists sations Music The Open ECS Magna- Brainz Music DB tune Library LCSH South- (Data Brainz LIBRIS ampton Tropes lobid Ulm Incubator) (zitgist) Man- EPrints Resources chester Surge Reading biz. Music RISKS Radio Lists The Open ECS data. John Brainz Discogs Library PSH Gem. UB South- gov.uk Peel (DBTune) FanHubz (Data In- (Talis) Norm- Mann- ampton (DB cubator) Jamendo datei heim RESEX Tune) Popula- Poké- DEPLOY Last.fm tion (En- pédia Artists Last.FM Linked RDF AKTing) research EUTC (DBTune) (rdfize) LCCN VIAF Book Wiki data.gov Produc- Pisa Eurécom P20 Mashup semantic NHS .uk tions classical web.org (EnAKTing) Pokedex (DB Mortality Tune) PBAC ECS (En- AKTing) BBC MARC (RKB Budapest Program Codes Explorer) Energy education OpenEI BBC List Semantic Lotico Revyu OAI (En- CO2 data.gov mes Music Crunch SW AKTing) (En- .uk Chronic- Linked Dog NSZL Base AKTing) ling Event- MDB RDF Food IRIT America Media Catalog ohloh BBC DBLP ACM IBM Good- BibBase Ord- Wildlife (RKB Openly Recht- win nance Finder Explorer) Local spraak. Family DBLP legislation Survey Tele- New VIVO UF .gov.uk nl graphis York flickr (L3S) New- VIVO castle Times URI wrappr Open Indiana RAE2001 UK Post- Burner Calais DBLP codes statistics (FU VIVO CiteSeer Roma data.gov LOIUS Taxon iServe Berlin) IEEE .uk Cornell Concept Geo World data ESD Fact- OS dcs Names book dotAC stan- reference Project Linked Data NASA (FUB) Freebase dards data.gov Guten- .uk for Intervals (Data GESIS Course- transport DBpedia berg STW ePrints CORDIS Incu- ware data.gov bator) (FUB) Fishes ERA UN/ .uk of Texas Geo LOCODE Uberblic Euro- Species The stat dbpedia TCM SIDER Pub KISTI (FUB) lite Gene STITCH Chem JISC London Geo KEGG DIT LAAS Gazette TWC LOGD Linked Daily OBO Drug Eurostat Data UMBEL lingvoj Med (es) Disea- YAGO Medi some Care ChEBI KEGG NSF Linked KEGG KEGG Linked Drug Cpd GovTrack rdfabout Glycan Sensor Data CT Bank Pathway US SEC Open Reactome (Kno.e.sis) riese Uni Cyc Lexvo Path- way PDB Media Semantic totl.net Pfam HGNC XBRL WordNet KEGG KEGG Geographic Linked Taxo- CAS Reaction Twarql (VUA) UniProt Enzyme rdfabout EUNIS Open nomy US Census Publications Numbers PRO- ProDom SITE Chem2 UniRef Bio2RDF User-generated content Climbing WordNet SGD Homolo Linked (W3C) Affy- Gene GeoData Cornetto metrix Government PubMed Gene UniParc Ontology GeneID Cross-domain Airports Product DB UniSTS MGI Gen Life sciences Bank OMIM InterPro As of September 2010latest  LOD  cloud  
  • 26. How  to  catch  the  wave  
  • 27. How  to  catch  the  wave  •  Add  rdfa                          to  your  website  •  Either  directly  or  using  tools   –  Great  goodrela2ons  support  for  rich  snippet   genera2on   –  Wordpress  plug  ins  and  other  tools  available   –  Drupal  support   –  Others  
  • 28. Why  –  Benefits  
  • 29. Benefits  •  Increase  in  CTR  •  Visibility  in  search  engine  ver2cals   –  Local  search   –  Shopping  •  Definite  ranking  increase  for  verified,  validated  data  (e.g   within  product  search)  •  Visibility  in  other  engines/apps  consuming  RDFa  •  Mobile  usage  –  massive  market  •  Strong  need  for  structured  markup     »  Combat  spam     »  Make  informa2on  more  findable   »  Read  more  an  schema.org     »  …  
  • 30. Increase  in  CTR  •  Yahoo  performed  a  study  that  showed  >  15%   increase  in  CTR  on  some  sites  as  a  result  of   using  Rich  snippets  
  • 31. Search  Engine  ver2cals  •  Addi2onal  rewards  for  encoding  rich  snippets   on  your  site.  •  Search  ver2cals  leveraging  consump2on  of   structured  data  •  Products,  recipes,  places  ..  
  • 32. Visibility  in  local  Search  
  • 33. Visibility  in  new  products  consuming   RDFA  
  • 34. Consuming  mul2ple  microformats  
  • 35. The  Catch?  
  • 36. So  what  is  the  catch  or  is  there  one?  •  Adop2on   June  2,  2011   JUST  IN  TIME  FOR  SEMTECH  2011?  •  Ease  of  use  •  Standardized  vocabularies  •  Complex  nes2ng  of  divs  and  spans  •  There  is  a  need  for  standardized   vocabularies,  so  how  can  we  now  best   leverage  microdata  and  Schema.org?  
  • 37. RDFA  VALIDATORS  AND  TESTERS  •  RDFA  official  site:hQp://check.rdfa.info/  •  Sindice  Inspector:  hQp://inspector.sindice.com/  •  Yahoo  ObjecWinder:  hQp://developer.search.yahoo.com/ help/objecWinder  •  Google  rich  snippets  tester:  hQp://www.google.com/ webmasters/tools/richsnippets  •  New  tool  in  Gruff  –  Demo  to  follow  
  • 38. DEMO    How  to  use  allegrograph  visualiza2on   to  ensure  your  RDFa  is  correct   Barbara Starr Email: bstarr@Ontologica.us Twitter: @BarbaraStarr
  • 39. July  16,  2010