Case Study: Caltech 'Orchid' Fundamental Research Project

  • 738 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
738
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
7
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. CALTECH  ‘ORCHID’  FUNDAMENTAL  RESEARCH  PROJECT-­  CASE  STUDY     EXECUTIVE  OVERVIEW     This  is  a  story  of  fundamental  scientific  research  being  conducted  in  a  multi-­university   collaboration  across  continents  and  across  various  branches  of  theoretical  and  experimental   physics.  Specifically,  one  project  in  the  ‘Orchid’  program  (funded  by  DARPA)  has  combined  the   specialist  expertise  of  two  experimental  laboratories,  (one  at  Caltech  in  the  United  States  and   another  at  the  University  of  Vienna  in  Austria),  together  with  a  global  network  of  renowned   theoretical  physicists.  Their  shared  objective  has  been  to  achieve  a  breakthrough  in  exploring   frontiers  of  knowledge  about  ‘opto-­mechanics’,  a  young  field  of  science  focused  on  the  use  of   light  to  manipulate  mechanical  devices  at  nano-­scale.     Despite  this  ambition,  however,  it  is  known  from  previous  studies  that  multi-­university   research  has  a  tendency  to  be  “problematic”.  Multi-­university  projects,  by  comparison  with   multi-­disciplinary  projects  within  single  institutions  have  been  shown  to  have  significantly   fewer  project  outcomes.  Within  this  particular  global  collaboration,  the  challenges  have  been   heightened  by  the  unpredictable  nature  of  fundamental  research,  as  well  as  by  the  diversity  of   laboratory  technology  and  experimental  processes  being  used  by  researchers  in  different   universities.  Therefore,  it  is  notable  that  this  4-­year  DARPA  project  has  produced  some   “milestone”  experimental  findings  documented  in  internationally  recognized  publications1.       Supporting  the  virtual  organization  of  the  research  studied  in  this  case,  there  appear  to  have   been  significant  coordination  mechanisms.  For  example,  the  compelling  mission  of  the  project,   the  contribution  of  graduate  students  from  one  institution  “embedded”  for  lengthy  periods  as   researchers  in  a  counterpart  institution/laboratory  and  acting  in  liaison  or  “straddler”  roles,   timely  use  of  periodic  face-­to-­face  communication  among  scientists,  and  facilitation  provided   by  the  DARPA  program  manager,  all  seem  to  have  made  a  positive  difference  in  the  outcomes   of  this  project.  Thus,  this  experience  may  offer  insights  about  possible  ways  to  meet  the  “costs”   of  multi-­organizational  collaboration,  particularly  in  the  field  of  fundamental  research.                                                                                                                   1  Among  the  publications  supported  by  the  Orchid  project  is:  Safavi-­‐Naeini,  A.H.  et  al.,  2013,   “Squeezed  Light  from  a  Silicon  Micromechanical  Resonator”,  Nature  500,  pp.  185-­‐189.  
  • 2. HISTORY/BACKGROUND-­‐-­‐SITE  &  PROJECT:     In  June  2010,  faculty  from  the  Division  of  Engineering  &  Applied  Science  and  the  Division  of   Physics  at  the  California  Institute  of  Technology  (Caltech)  began  a  fundamental  or  pure   research  project,  a  theoretical  and  experimental  program  in  ‘Optomechanics’  (i.e.  use  of   light  to  manipulate  mechanical  devices  at  nano-­‐scale).    From  the  outset,  however,  Caltech   scientists  conceived  of  this  project  as  a  global  collaboration  with  scientists  at  other   universities  in  Austria,  Germany,  Switzerland,  Canada,  and  the  United  States.     ‘Optomechanics’  is  a  very  young  field  of  science  that  started  only  5-­‐10  years  ago,  merging   various  branches  of  physics,  namely,  optics  (the  study  of  the  behavior  and  properties  of   light),  photonics  (the  use  of  light  to  perform  functions  like  information  processing  and   telecommunications,  traditionally  within  the  domain  of  electronics),  and  quantum   mechanics  (the  study  of  the  interaction  of  energy  and  matter  at  the  sub-­‐atomic  scale).   Consequently,  scientists  who  work  in  the  field  of  ‘optomechanics’  are  all  physicists  but   come  from  a  diverse  background  of  disciplines.         The  project  is  named  “Optical  Radiation  Cooling  and  Heating  of  Integrated  Devices”   (ORCHID).    It  originated  from  an  applied  physics  research  proposal  that  was  made  in  2009   to  the  Microsystems  Technology  Office  of  DARPA  (Defense  Advanced  Research  Projects   Agency)  of  the  US  Department  of  Defense.    The  proposal  built  upon  a  theoretical   proposition  regarding  the  use  of  (laser)  light  to  (cool)/reduce  mechanical  motion  at  nano-­‐ scale.    Subsequently,  DARPA  incorporated  this  proposal  into  an  overall  program  of  study.     The  DARPA  ‘ORCHID’  research  program  has  had  two  phases.  Phase  One  from  June  2010  to   June  2012  is  fundamental  research,  (R1  on  the  R&D  spectrum,  see  Fig.  1  below),  exploring   frontiers  of  knowledge  about  the  physics  of  optomechanical  devices  through   demonstration  and  measurement  of  various  optomechanical  effects  on  specific  device   platforms  like  microscopic  crystals.  Phase  Two,  from  July  2012  to  June  2014  called  for   applied  research,  (R2  on  the  R&D  spectrum),  thereby  building  a  robust  “toolbox”  of   techniques  for  a  variety  of  application  areas  (sensors,  oscillators,  etc.),  leading  potentially   to  technology  applications  in  cell  phones  and  other  telecommunications  equipment.     Within  the  overall  ‘ORCHID’  program,  in  addition  to  the  research  team/project  led  by   Caltech,  there  are  4  other  projects/teams-­‐-­‐2  teams  from  Yale,  1  team  from  UCLA  Berkeley,   and  1  team  from  Cornell  University.    Supporting  all  5  teams  of  ‘Experimentalists’  is  one   globally  dispersed  team  of  ‘Theorists’.    The  scope  of  this  VOSS  study  is  limited  primarily  to   the  team/project  led  by  Caltech  ‘Experimentalists’  (with  support  by  the  ‘Theory’  team),  and   is  focused  primarily  on  the  time  period  involving  the  ‘pure’  research  of  Phase  One.2     This  virtual  organization  case  study  focuses,  therefore,  on  work  designated  as  ‘R1’   (Fundamental  Research)  on  one  extreme  end  of  the  Research  &  Development  continuum,  a   format  for  R&D  based  on  the  classical  work  of  Bell  Labs,  (Mashey  as  reported  in  Revkin,   2008)  and  illustrated  below  in  Figure  1  as  six  stages  or  types  of  Research  &  Development   work.                                                                                                                   2  See  Appendix  1:  Methodology  
  • 3. Figure 1: A Six-Stage Continuum of the R&D Process3     PROJECT  STAKEHOLDERS:     DARPA  is  the  primary  funding  source  (almost  $5  M)  to  the  Caltech  team/project,  over  a   period  of  4  years.    The  mandate  of  DARPA  is  to  support  ‘hard  research’-­‐-­‐out  of  the  reach  of   current  technology  by  a  factor  of  10.  (For  example,  DARPA  is  the  agency  that  gave  birth  to   the  predecessor  of  the  Internet  and  GPS  technologies.)  Therefore,  this  is  an  agency  very   familiar  with  the  challenges  and  requirements  of  sponsorship  and  management  of  highly   exploratory  research.        The  DARPA  funding  is  supplemented  by  grants  from  the  European   Commission,  the  European  Research  Council,  and  the  Austrian  Science  Fund.    Nevertheless,   DARPA  is  the  driving  force  behind  this  research  program,  and  the  DARPA  Project  Manager   is  active  in  promoting  “collaboration”  among  the  scientific  groups,  in  particular  between   the  experimentalists  and  the  theorists.     Within  the  Caltech-­‐led  ORCHID  project,  there  are  5  ‘experimentalist’  scientific  groups,  3   located  at  Caltech,  1  in  Austria,  and  1  in  Switzerland,  (see  Fig.  1).  Two  of  the  Caltech  groups   are  located  in  the  same  building  that  houses  the  Department  of  Applied  Physics.  The  third   Caltech  group  belongs  to  the  Department  of  Physics  in  a  separate  location  on  this  small   university  campus.    Each  group  is  led  by  an  experimental  physicist/professor,  with  their                                                                                                                   3  Bell  Labs’  R&D  Portfolio  Management  profile,  as  reported  by  John  Mashey  to  Andrew  Revkin  (NY   Times,  December  12,  2008),  and  adapted  by  Carolyn  Ordowich.  
  • 4. own  laboratories  staffed  by  graduate  and  post-­‐doctoral  students.    Approximately  20   Caltech  personnel  are  involved  with  the  ‘ORCHID’  project  in  some  way.         While  the  Principal  Investigators  (PIs)  of  all  3  groups  and  a  number  of  their  graduate   students  have  conducted  research  and  published  together  quite  extensively,  for  the   ‘ORCHID’  project  the  3  Caltech  laboratories  with  their  groups  operate  independently.      The   Micro  &  Nano-­‐Photonics  Group  does,  however,  fabricate  some  of  the  devices  used  in   experiments  conducted  by  the  Quantum  Optics  Group.  Each  group  is  conducting  different   experiments  on  3  different  types  of  optomechanical  device  platforms.       This  VOSS  study  focuses  on  the  working  relationship  between  the  Micro  &  Nano-­‐Photonics   Group  at  Caltech  and  the  Quantum  Optics  &  Nanophysics  Group  in  the  University  of  Vienna,   Austria.  Among  the  collaborations  the  Austrian  laboratory  and  the  Photonics  Group  at   Caltech  have  established  the  closest  relationship.    The  Micro  &  Nano-­‐Photonics  Group   fabricates  its  own  devices  (optomechanical  crystals)  and  conducts  its  own  experiments.  It   is  also  fabricating  devices  for  use  in  similar  experiments  that  are  run,  using  different   methods,  on  significantly  different  equipment  in  the  Austrian  Quantum  Optics  laboratory.   Thus,  there  is  strong  interdependence  between  the  Caltech  Photonics  Group  and  the   Austrian  Quantum  Optics  Group.       The  Austrian  school  is  world-­‐famous  for  their  technical  infrastructures  that  can  do   experiments  at  temperatures  1000  times  lower  than  possible  at  Caltech.    The  Caltech  lab   has  the  advantage  in  the  manufacture  of  quality  devices  for  experimentation,  and  in  this   project,  the  Austrian  lab  depends  upon  the  Caltech  lab  for  state-­‐of-­‐the-­‐art  patterning  of   nano-­‐structure  devices.    Another  Caltech  comparative  advantage  is  its  expertise  in   techniques  of  “getting  light  in  and  out  of”  these  devices  using  a  special  fiber  that  has  not   been  replicated  elsewhere  in  the  world.      Until  the  ORCHID  project,  however,  these  2   scientific  groups  had  never  collaborated.  The  idea  for  collaboration  arose  in  an  informal   discussion  between  the  leaders  of  the  two  groups  at  a  scientific  meeting  after  the  DARPA   proposal  was  submitted.       Another  aspect  of  scientific  collaboration  that  is  a  focus  of  this  study  concerns  interaction   between  the  3  groups  of  theoretical  physicists  and  the  experimentalists  (see  Fig.  2).  The   ‘Theory’  team  was  brought  together  for  the  ORCHID  project  at  the  initiative  of  the  DARPA   Project  Manager  who  polled  the  experimental  scientists  for  recommendations  of  specific   theoretical  physicists  most  capable  of  providing  “support  for  experimentation”  and  for   advancement  of  optomechanical  theory  based  on  ORCHID  experimental  findings.       The  3  principal  investigators  on  the  theory  team  represented  3  different  schools.    The  three   worked  in  Germany,  Canada,  and  the  United  States.      Only  two  of  the  theorists  have  done   substantial  prior  work  together.    Also,  although  the  members  of  this  theory  team  have  a   track  record  of  collaboration  with  optomechanical  experimentalists,  in  this  specific  case,   only  1  of  the  theoretical  physicists  has  worked  previously  with  1  of  the  Caltech  professors   on  two  joint  publications.  However,  2  of  the  theoretical  physicists  have  contributed  to  a   number  of  joint  publications  co-­‐authored  with  one  of  the  experimental  physicists  who   leads  another  ORCHID  project  team  at  Yale  University.    Professional  links  may  contribute  to   communications  opportunities  and  past  interactions  may  create  assumptions  about  how   work  will  progress.    
  • 5.   Indeed,  the  theory  team  proposal  submitted  to  DARPA  anticipated  that  the  ORCHID  project   would  be  particularly  challenging  for  them,  with  respect  to  scientific  management.  First,   there  was  expectation  of  some  “competition”  for  theory  support  from  among  the  5   experimentalist  project  teams,  (the  Caltech-­‐based  team  +  4  other  project  teams  at  Yale,   Berkeley,  and  Cornell).    Secondly,  the  theory  team  assigned  within  its  own  DARPA  budget  a   substantial  provision  for  travel,  as  one  way  to  meet  the  larger  challenge  of  maintaining  a     “close  connection”  with  the  geographically  dispersed  research  groups.       THE  CHALLENGES  OF  ‘VIRTUAL  ORGANIZATION’  FOR  FUNDAMENTAL  RESEARCH:     One  of  the  central  collaborative  challenges  in  the  virtual  setting  between  the  Caltech  Nano-­‐ Photonics  Group  and  the  Quantum  Optics  Group  at  the  University  of  Vienna  is  related  to  the   very  nature  of  their  work.  Pure  or  fundamental  research,  (R1  on  our  R&D  spectrum—see   Figure  1)  is  inherently  unpredictable  and  fraught  with  ambiguity.    The  objective  of  the   ORCHID  project  is  discovery  and  knowledge  generation,  with  no  certainty  of  what  will  be   learned  about  the  capabilities  of  specific  device  platforms  to  actually  display  heretofore   hypothetical  optomechanical  effects.  Moreover,  how  to  achieve  such  discovery  has  never   been  entirely  clear  during  the  early  stages  of  the  ORCHID  project,  in  terms  of  questions  that   have  remained  about  what  would  be  the  most  productive  experiments  to  run,  and  how   such  experiments  should  be  designed.    
  • 6. Research  has  often  documented  examples  of  the  efficacy  of  clarity  and  predictability  in   work.    Malhotra  et  al.  described  “innovation  without  collocation”  in  their  case  study  at   Boeing-­‐Rocketdyne  where  the  parameters  of  the  desired  outcome  were  clear,  though  not   the  ‘how’  of  achieving  a  breakthrough  design  concept  for  liquid-­‐fuelled  rocket  engine   technology.4    Extreme  unpredictability  is  also  directly  contrary  to  findings  by  Olson  et  al.  in   their  decade-­‐long  study  of  science  collaboratories,  where  a  key  factor  leading  to  success   has  been  work  that  is  “unambiguous.”  5  Further  evidence  of  the  challenge  faced  by  the   ORCHID  project  team  is  found  in  Chudoba  et  al.’s  conclusion  that  “work  predictability”  is  a   key  mitigating  factor  for  success  in  a  virtual  organizational  setting6.    Doing  pure  research  in   a  virtual  setting  then,  offers  special  challenges  that  are  inherent  in  the  work  and  the  mode   of  interaction.     A  second  criterion  Olson  et  al.  identified  as  a  factor  leading  to  success  in  collaboratories   was  an  ability  to  act  “somewhat  independently  from  one  another”.      The  Vienna  laboratory   is  dependent  upon  Caltech  to  fabricate  unique  optomechanical  crystal  devices  for  use  in   experiments  that  Caltech  is  depending  upon  the  Viennese  scientists  to  run  on  their  unique   laser-­‐cooling  equipment.  This  substantial  interdependence  between  the  two  laboratories   implies  a  need  for  continuous  and  effective  interaction,  albeit  in  a  virtual  mode.         On  top  of  these  challenges  in  the  nature  of  work  within  this  research  project,  there  are   other  “discontinuities”  (or  factors  that  could  contribute  to  a  decrease  in  cohesion  and  a   capability  for  collaboration).    Chudoba  et  al.  have  already  identified  that  “greater  variety  of   work  practices  negatively  impact  performance”  in  virtual  settings,  and  here  within  the   ORCHID  project,  the  two  experimentalist  groups,  of  Quantum  Optics  and  of  Nano-­‐Photonics   are  based  on  related  but  very  different  disciplines,  and  use  differing  language  to  describe   similar  data.  Moreover,  the  theoretical  physicists  have  their  own  approach  to  problem-­‐ solving  that  differs  from  that  of  either  of  the  experimentalist  schools.     Compounding  the  difference  in  disciplines  or  professional  cultures  that  exists  between  the   two  laboratories  is  the  difference  in  the  equipment  that  they  use  for  experimentation.  It  is   an  overall  advantage  for  the  ORCHID  project  that  the  University  of  Vienna  laboratory  has  a   technical  infrastructure  that  can  do  experiments  at  1000  times  lower  temperatures  than  is   possible  at  Caltech.  However,  the  techniques  that  Caltech  has  perfected  for  “getting  light  in   and  out  of”  its  optomechanical  devices  do  not  work  on  the  Austrian  experimental   infrastructure.  Thus, a key challenge in this collaboration is for the scientists to invent a new technique for using their devices that would be compatible with the Austrian laboratory. Just the way this disconnect alone was discovered illustrates a need for close interaction. A graduate student from Vienna was visiting and noticed that there was a mismatch in the way the equipment was supposed to fit together. This coincidental visit and the discovery it triggered greatly facilitated the work of the entire process.     Finally,  all  of  these  scientists  have  experienced  or  are  familiar  with  some  past  failures  or   shortcomings  in  multi-­‐university  research7,  often  due  to  conflicting  priorities  among                                                                                                                   4  Malhotra  et.  al.,  MIS  Quarterly,  Jun  2001:  25,  2;  pp.  229-­‐249.   5  Olson  &  Olson,  Human-­Computer  Interaction,  2000:  15,  pp.  139-­‐178.   6  Chudoba  et.  al.  Info  Systems  Journal,  2005:  15,  pp.  279-­‐306.   7  Cummings  &  Kiesler,  Research  Policy,  2007:  36,  pp.  1620-­‐1634.  
  • 7. diverse  institutions.  With  the  best  of  intentions,  a  conflict  in  priorities  may  not  be  apparent   at  the  outset  of  a  collaboration,  but  geographic  separation  has  a  way  of  expanding  this  type   of  inter-­‐organizational  “discontinuity”.    Specifically,  within  the  ORCHID  project,  this  factor   has  potential  for  impact,  insofar  as  here,  exploratory  research  is  being  practiced  under  tight   timelines  with  6-­‐month  review  periods  (administered  by  the  funding  agency,  DARPA).       Given  all  of  this  background,  the  primary  challenge  has  been  to  learn  if  and  how  the   geographically  dispersed  teams  of  experimentalist  and  theoretical  physicists  might   effectively  converge  their  thinking  and  diverse  perspectives,  in  order  to  answer  the   fundamental  ‘what’  and  ‘how’  questions  posed  by  the  ORCHID  project  within  a  virtual   collaborative  scientific  organization.       OUR  FINDINGS:     For  this  case  the  focus  is  on  3  topics;  the  nature  of  the  collaborative  relationships,   identification  of  key  deliberations  involved  in  this  research  process,  and  the  nature  and   media  of  communication  used  by  participants  in  these  deliberations.    Each  of  these  topics   highlights  an  aspect  of  the  work  between  ORCHID  participant  scientists  and  students  as   well  as  in  part  the  influence  of  the  funding  agency  in  creating  a  more  effective  initial   grouping  of  skills  and  capabilities.     Collaboration   The  at-­‐distance  collaboration  between  the  Caltech-­‐based  Micro  &  Nano-­‐Photonics  Group   and  the  Austrian  Optics  &  Nanophysics  Group  has  proven  to  be  even  more  challenging  than   anticipated.    A  major  element  of  the  challenge  came  from  the  need  to  invent  a  new   methodology  that  would  enable  devices  fabricated  by  Caltech  to  run  on  the  experimental   equipment  in  the  Austrian  laboratory.  This  co-­‐invention  required  recognition  or   identification  of  the  problem  and  an  extremely  detailed  mutual  understanding  of  the   technical  capabilities  and  limitations.    The  actual  geographic  constraints  and  virtual   organization  added  to  this  very  challenging  task.       Tremendous  mutual  respect  between  the  leaders  and  staff  of  the  two  laboratories  and  the   shared  strong  “motivation”  to  collaborate  combined  to  enhance  the  chances  of  project   success.  In  the  opinion  of  the  Austrians,  “no  group  worldwide  can  make  such  devices  as  at   Caltech”,  and  similarly,  the  view  expressed  by  members  of  the  Caltech  Group  is  that  the   “Vienna  school  is  world  famous”  for  the  quality  of  its  experimental  scientists  and  the   capability  of  their  equipment  to  do  experiments  at  1000  times  lower  temperatures  than  is   possible  at  Caltech.    The  mutual  respect  between  the  labs  has  also  led  to  a  relationship  that   is  “complementary”  and  “not  competitive”.  Most  importantly,  the  combination  of  the  two   types  of  expertise  creates  a  unique  opportunity  for  scientific  breakthrough.    As  one  group   leader  said,  it  was  “the  first  time  in  principle…to  enter  a  regime  that  we  can  do  [quantum]   experiments  with  truly  microscopic  systems”.       Even  during  the  early  intense  period  of  experimentation  within  this  collaboration,  it  has   already  yielded  a  series  of  internationally  recognized  publications  and  a  “milestone”   experiment/demonstration  of  a  capability  “to  cool  a  miniature  mechanical  object  to  its  
  • 8. lowest  possible  energy  state  using  laser  light”  which  “paves  the  way  for…quantum   experiments  that  scientists  have  long  dreamed  of  conducting”8  (See  Fig.  3).       Figure  3:     Nanoscale  Silicon  Mechanical  Resonator  used  in  breakthrough  Caltech  Experiment                                                                                                                       8  “Caltech  Team  Uses  Laser  Light  to  Cool  Object  to  Quantum  Ground  State”,  Caltech  Media   Relations  News  Release,  California  Institute  of  Technology,  Pasadena  CA,  October  5,  2011.  
  • 9. Credibility  and  capability  have  always  been  important  in  science  but  they  become  more   critical  in  a  virtual  working  relationship.    Competence  is,  therefore,  an  equally  significant   motivation  for  collaboration  between  the  theoretical  and  the  experimental  physicists   within  the  ORCHID  project.    On  one  hand,  theoretical  physicists  want  to  have  connection   with  experimentalists  to  advance  their  understanding  of  what  theoretical  questions  would   be  most  relevant  and  even  feasible  for  experimentation.  In  the  words  of  a  group  leader  and   a  colleague  in  theoretical  physics,  “you  want  to  be  the  first  to  know  about  really  interesting   data…and  so,  you  go  for  the  best  experimental  groups  that  there  are”,  and  the  Caltech  lab  is   “really  one  of  the  leaders  in  the  field”,  having  “the  most  promising”  set-­‐ups/devices  “in  the   world”—“it  was  extremely  natural  to  start  collaborating  with  Caltech”.    Conversely  the   Caltech  lab  and  experimental  physicists  at  Yale  and  other  laboratories,  at  the  request  of  the   DARPA  ORCHID  Program  Director,  actually  selected  this  particular  set  of  theoretical   physicists,  for  their  well-­‐established  reputation  for  collaboration  and  an  ability  to  do  the   calculations  and  modeling  necessary  for  optomechanical  experimentation.       One  of  the  oft-­‐noted  features  of  this  collaboration  has  been  the  respected  and  fairly  active   facilitation  role  performed  by  the  ORCHID  Program  Director  from  the  funding  agency,   DARPA,  who  is  seen  “to  push  the  collaboration”.  For  example,  the  Program  Director  has   convened  periodic  teleconferences  among  the  theoretical  physicists  to  promote  and  review   their  collaboration.  And,  on  a  semi-­‐annual  basis,  the  Program  Director  leads  a  thorough   review  of  the  overall  ORCHID  program,  bringing  together  members  of  the  theoretical  and   experimentalist  groups,  faculty  and  graduate  students.       Key  Deliberations9   The  nature  of  these  scientific  collaborations  becomes  even  more  evident  through   understanding  the  key  deliberations  involved  in  achieving  this  type  of  fundamental   research  project.    For  example,  a  key  deliberation  topic  arising  continuously  during  Phase   One  of  the  ORCHID  project  is  the  Selection  of  what  Experiment(s)  to  run.  This  deliberation   also  illustrates  the  significance  of  serendipity  that  often  surfaces  in  collaborations  such  as   this  one  between  the  perspectives  of  theoretical  and  experimental  physics.       In  one  instance,  a  graduate  student  associated  with  the  German  theorists  took  note  of   experimental  data  that  his  Caltech  colleagues  had  generated  quite  by  chance.    They  were   inclined  to  discount  the  data  as  an  “artifact”.    However,  to  the  German  student  this  data  was   indicative  of  an  “interesting”  optomechanical  effect  that  had  been  predicted  by  theoretical   physicists,  although  the  same  theory  suggested  it  would  be  extremely  difficult  to  achieve   such  an  effect  experimentally.    Once  Caltech  physicists  were  informed  and  persuaded  by   this  theoretical  understanding,  a  new  experiment  was  devised,  and  the  predicted  effects   were  then  effectively  demonstrated.       Among  the  experimentalists,  there  have  already  been  examples  of  joint  participation  in   deliberations  involved  with  the  detailed  Design  of  Experiments  within  ORCHID,  both  in   terms  of  procedures  and  equipment  design.  The  most  complex  example  of  a  sub-­‐topic  in   this  type  of  deliberation  involved  the  challenge  of  what  and  how  to  redesign  in  order  to                                                                                                                   9  “Deliberations  are  patterns  of  exchange  and  communication  in  which  people  engage…to   reduce  the  equivocality  of  a  problematic  issue”;  Pava,  Calvin,  1983,  Managing  New  Office   Technology,  The  Free  Press,  New  York,  N.Y.,  p.58.  
  • 10. achieve  a  match  between  the  wavelength  characteristics  of  the  optomechnical  device   fabricated  at  Caltech,  and  on  the  other  hand,  the  wavelength  of  the  light  source  to  be   utilized  in  experiments  to  be  run  in  the  Austrian  laboratory.      A  related  deliberation  topic   has  been  the  Design  of  Measurement—what  to  measure  and  how  to  measure—where  once   again,  the  combination  of  theoretical  and  experimental  perspectives  has  been  very  helpful.     Within  the  process  of  actually  implementing  a  specific  experimental  design  or  fabricating  a   specific  device,  there  are  inevitably  multiple  problem-­‐solving  iterations.  In  one  instance,  a   Caltech  graduate  student  spent  6  months  “putting  out  fires”  in  trying  to  develop  just  one   experiment  that  had  a  wide  variety  of  issues  ranging  from  inaccuracies  in  certain  sensing   equipment  to  inconsistencies  in  the  production  of  the  optomechanical  crystal  device  itself.   During  these  trouble-­‐shooting  deliberations  within  the  experiment  conducted  at  Caltech,   the  experience  and  perspective  provided  by  members  of  the  Austrian  laboratory  were  key.     Other  deliberations  for  both  the  theoretical  and  experimental  physicists  have  involved   more  logistical  topics,  such  as  the  timing  and  coordination  for  the  transport  of   optomechanical  devices  between  Caltech  and  the  Austrian  laboratory,  the  allocation  of  staff   resources  (i.e.  specific  graduate  students  or  lab  technicians)  to  work  on  specific  theoretical   questions  or  to  develop  specific  experiments,  or  even  the  “partitioning”  of  research   questions  among  the  theorists  for  particular  study  by  each  of  their  respective  groups.       In  the  way  that  the  various  physicists  have  described  these  deliberations,  it  is  apparent  that   a  particular  deliberation  topic  could  not  only  re-­‐cycle  in  a  non-­‐linear  fashion,  (for  example,   the  ‘choice  point’  of  whether  to  run  a  particular  experiment),  but  it  might  also  carry  on  over   an  extended  period  of  time,  with  substantial  lapses  or  “incubation”  time  in-­‐between   communications—“it’s  a  constant  re-­‐evaluation;  where  do  you  want  to  put  your  effort?”         Communications   The  choice  and  use  of  communication  media  are  central  factors  in  the  functioning  of   research  networks  or  virtual  organizations  because  deliberations  are  patterns  of  exchange   and  communication  to  resolve  issues  of  equivocality  in  knowledge  work  processes.   Nevertheless,  to  maintain  communication  between  two  geographically  separated  scientific   groups  has,  in  the  view  of  the  Orchid  project  participants,  required  “enormous  effort”.   Furthermore,  within  the  Orchid  project  experience,  there  appear  to  be  certain  patterns,   whereby  different  modes  of  communication  seem  to  have  come  into  play  at  different  stages   of  specific  deliberations  and  within  the  overall  research  process.       One  pattern  that  has  been  common  for  both  the  experimental  and  theoretical  physicists  is   that  “a  lot  of  the  collaboration  really  goes  on  via  email”,  exchanging  documents  or   experimental  results  without  the  expectation  of  instant  response.    Email  as  a   communication  mode  allows  contemplation  and  preparation  for  what  is  very  often  a  next   step  in  the  deliberation,  namely,  one  or  more  synchronous  Skype  conversations  or   teleconferences  to  discuss  and  make  “sense”  of  the  shared  information.  Sometimes,  a   “screen-­‐sharing”  feature  has  been  utilized  to  supplement  this  ‘sense-­‐making’.  Sometimes,   Google-­‐Plus  has  also  been  used,  particularly  by  some  of  the  graduate  students,  to   supplement  email.    
  • 11. Skype  calls  have  had  another  use,  distinct  from  email  exchanges,  for  what  some  ORCHID   participants  term  “strategic  decisions”,  for  example,  weighing  options  about  if  and  when  to   run  a  certain  experiment,  or  whether  or  not  to  allocate  additional  resources  to  a  specific   aspect  of  the  project.  The  visual  as  well  as  audio  capability  of  Skype  calls  has  also  enabled   ORCHID  participants  to  sit  in  pairs  or  threesomes  around  a  computer  and  use  Skype  (only   very  occasionally)  as  a  means  to  hold  a  modified  form  of  videoconference,  rather  than  use  a   more  elaborate,  specialized  video  conferencing  technology.       In  fact,  most  teleconferences  seem  to  have  involved  pairs  or  trios  of  (distributed)  ORCHID   participants,  rather  than  the  larger  group  ‘gatherings’  for  project  teleconferences  that   might  have  been  contemplated  at  the  outset  of  the  Caltech-­‐based  ORCHID  project.  Virtual   large  group  ‘gatherings’  of  diverse  faculty  and  graduate  students  have  proven  to  be  an   overwhelming  organizational  challenge.  One  of  the  principles  of  virtual  communication   that  seems  to  be  foremost  in  the  ORCHID  project  context  is  that  communication  technology   and  procedures  need  to  be  “simple  and  robust”  or  they  will  not  get  used.       Some  of  the  ORCHID  project  members  have  participated  in  videoconferences  within  other   research  networks,  and  there  are  now  plans  in  the  forthcoming  year  for  both  the  Caltech   lab  and  the  Austrian  lab  to  utilize  newly  installed  videoconference  facilities,  particularly  as   the  need  will  increase  for  inter-­‐group  discussions  and  interpretation  of  a  growing  amount   of  data  from  the  intense  period  of  experimentation  in  the  Austrian  lab.       Nevertheless,  most  of  the  ORCHID  project  participants  would  claim  that  much  of  the  most   significant  progress  has  been  made  in  the  research  process  when  there  has  been  the   opportunity  for  face-­‐to-­‐face  (F2F)  communication  between  members  of  these   geographically  dispersed  scientific  groups.  For  example,  the  ‘idea’  for  this  scientific   collaboration  “all  started”  through  a  series  of  F2F  meetings  at  Caltech  and  conferences   involving  faculty  and  graduate  students  from  the  Caltech  and  Austrian  laboratories.  And   now,  these  scientists  who  are  now  collaborating  within  the  ORCHID  project  renew  their   F2F  contact,  at  scientific  conferences  to  which  they  are  invited  several  times  a  year,  as  well   as  at  the  semi-­‐annual  ORCHID  Program  review  meetings  convened  by  DARPA.     Similarly,  within  the  early  months  of  the  ORCHID  project,  the  ‘theory’  team  worked  entirely   at  a  distance  from  the  experimentalists,  studying  research  papers  and  slides  presented  at   the  ORCHID  program  launch,  in  order  to  make  sense  of  “where  the  experimentalists  were   going”,  and  “what  questions  would  be  important  to  the  success  of  their  experiments”.   However,  “in  terms  of  real  [theoretical]  research  being  conducted…the  most  impressive   example”  occurred  when  the  leader  of  the  German  school  of  Theoretical  Physics  sent  one  of   his  graduate  students  to  work  for  5  consecutive  months  in  the  Micro  &  Nano-­‐Photonics  lab   at  Caltech.  During  this  period,  the  graduate  student  (linked  by  frequent  Skype  and  email   communication  with  his  German  colleagues)  was  “able  to  give  real  time  suggestions  to  the   experimentalists  on  what  they  should  be  measuring”  or  quickly  to  interpret  experimental   data  that  “it  would  have  taken  [the  experimentalists]  a  long  time  to  figure  out”.     Another  example  of  this  type  of  “embedded  researcher”  was  the  graduate  student  from  the   Austrian  laboratory  who  came,  quite  by  chance,  to  Caltech  for  5  weeks  in  September-­‐ October  2010,  when  it  so  happened  the  project  was  experiencing  an  unfortunate  delay  in   development  of  the  optomechanical  device  and  experimental  design  intended  for  use  in  the  
  • 12. Austrian  laboratory.  By  all  accounts,  this  graduate  student  and  his  colleagues  in  Austria   could  not  have  been  nearly  as  helpful  with  expediting  this  key  experimental  design,   without  his  physical  presence  and  F2F  communication  with  the  Caltech  scientists.  In  the   words  of  the  Austrian  graduate  student:  “it’s  very  hard  to  really  get  on  the  same  page  and   really  understand  what  the  other  one  means  if  you  don’t  see…the  design,  see  how  the   people  work…I  wasn’t  really  aware  of  how  different  the  experiments  were  [in  Caltech]  than   in  Vienna.  And,  we  just  had  to  merge  those  two  different  approaches  together.”       From  late  2010  to  March  2011,  this  graduate  student  continued  his  F2F  contact  with   Caltech,  traveling  back-­‐and-­‐forth  from  Austria,  transporting  various  prototypes  of  the   optomechanical  device  for  test  runs  in  Austria,  and  since  March  2011,  he  has  begun  a  two-­‐ year  post-­‐doctoral  assignment  with  the  Caltech  Nano-­‐Photonics  Group.  During  2011  and   2012  of  Phase  Two  of  the  ORCHID  project,  he  joined  Caltech  graduate  students  in  periodic   visits  to  the  Austrian  laboratory  where  they  have  taken  the  refined  optomechanical  crystal   device  and  worked  with  the  University  of  Vienna  staff  to  set-­‐up  the  actual  experimentation,   now  successfully  underway  in  Austria  “with  a  full-­‐blown  structure  fully  operational  and   completely  unique”.  Without  this  F2F  contact  by  this  second  “embedded  researcher”,  the   general  opinion  is  that  this  experimental  design  “would  have  been  worked  out,  but  it  would   just  have  taken  much  longer”.         ANALYSIS/CONCLUSIONS:     Researchers  know  that    “technology-­‐mediated  interactions…complement  face-­‐to-­‐face   interactions”  in  virtual  settings.  Dixon  and  Pantelli  (2010)  documented  this  in  their  study   of  a  UK  government-­‐funded  program  establishing  a  ‘virtual  centre  of  excellence’  for   technology  development10.    In  the  ORCHID  project  experience  much  of  the  face-­‐to-­‐face   interaction  actually  occurred  by  happenstance,  and  for  periods  of  time  longer  than  typical   for  graduate  student  exchanges.    These  factors  raise  questions  and  may  also  provide   answers  about  the  nature  and  dynamics  of  this  complementarity  of  communication  media   in  virtual  settings.    More  to  the  point  they  raise  questions  and  may  also  provide  answers   about  how  this  dynamic  works  in  fundamental  research  collaborations.  The  project   participants  interviewed  generally  acknowledge  that  email,  videoconference,  or  any  of  the   technology-­‐mediated  forms  of  communication  “work  best  when  you  already  have  an  idea   of  where  you  want  to  go”,  with  a  particular  work  process  question  or  research  topic.       So,  determining  the  direction  or  strategies  of  a  project  may  require  concentrated  F2F   communication.  Some  of  the  ORCHID  participants  commented  that  this  is  most  apparent   “in  the  early  stages  of  a  project,  when  things  are  so  confusing…everything  is  so  unclear— you  need  a  lot  of  random  discussions  that  may  lead  to  nowhere…we  just  have  to  talk  again   and  again—it  seems  to  depend  very  much  on  personal  interaction,  the  chance  element.”       This  leads  to  three  inquiries.       • First,  to  what  extent  is  this  initial  confusion  temporary  and  is  it  only  initially  needed   to  develop  an  understanding  of  each  other  and  ‘get  on  the  same  page’?                                                                                                                   10  Dixon  and  Pantelli,  2010,  “From  Virtual  Teams  to  Virtuality  in  Teams”,  Human  Relations,   63(8),  pp.  1177-­‐1197)    
  • 13. • Second,  how  much  is  this  challenge  one  of  “perspective-­‐taking”  among  participants   from  different  disciplines  and  with  diverse  work  practices?11     • And  third,  in  this  virtual  setting  where  most  of  the  geographically  dispersed   participants  had  not  previously  worked  together,  how  much  of  the  challenge  of   mutual  understanding  involves  trust  and  relationship  building?     Taking  these  questions  in  reverse  order,  the  answer  from  Caltech  participants  and  from  the   two  “embedded”  European  researchers,  is  that  it  has  been  “very  crucial”  to  work  together,   “eat  lunch,  and  have  coffee  together”,  or  “to  spend  time  together”,  just  “to  get  to  know  each   other”.      These  interactions  make  it  easier  to  “just  get  on  the  same  page”.    Caltech  graduate   students  and  their  “embedded  researcher”  counterparts  have  developed  a  “personal”   friendship  more  than  just  a  “professional”  relationship.    As  a  result,  they  are  “more  willing   to  have  discussions  [with  each  other]  when  [they]  don’t  have  clear,  conclusive  ideas”,  and   are  “more  willing  to  share  data  that  [they]  don’t  understand”—in  their  words,  “we  are  not   as  hesitant  with  each  other”.       These  participants  now  also  speak  in  a  way  that  suggests  they  are  more  tolerant  or  open  to   some  national  “cultural  differences”  between  the  scientific  groups.    Such  differences  could   otherwise  have  been  serious  “discontinuities”  in  the  collaboration,  especially  given  the   delays  that  have  occurred  with  various  pieces  of  work  in  this  project,  disrupting   coordination  between  laboratories.    One  Caltech  graduate  student  gave  this  example:     “when  the  German  scientists  say  that  they  will  have  a  result  ready  in  4  months,  it  is  ready   in  4  months;  whereas  when  Americans  say  that  they  will  have  a  result  in  2  months,  it  often   takes  longer—we  [North  Americans]  over-­‐promise,  while  the  Germans  are  more  cautious”.       Building  respect  and  trust  is  thus  clearly  connected  to  the  second  challenge  of  “perspective-­‐ taking”  across  the  disciplines  of  theoretical  and  experimental  physics,  or  across  the   disciplines  of  quantum  optics  and  applied  physics,  and  even  more  particularly,  between   scientists  from  two  laboratories  with  methods  and  equipment  for  experimentation  that  are   “very,  very  different”.    Beyond  this  interpersonal  dimension,  though,  the  process  of   integrating  multi-­‐disciplinary  and  multicultural  perspectives  to  solve  technical  problems   has  required  that  scientists  “actually  sit  together…make  drawings  on  the  blackboard  and   discuss  things…again  and  again”.       The  nature  of  these  conversations  appears  to  closely  resemble  the  use  of  “narrative”  and   “boundary  objects”  cited  by  Boland  &  Tenkasi,  in  their  modeling  of  language  and  cognition   to  assist  in  the  design  of  electronic  communication  systems  for  “communities  of  knowing”   within  and  across  organizational  boundaries.12    Indeed,  some  of  the  ORCHID  project                                                                                                                   11  Boland  &  Tenkasi,  1995,  “Perspective-­‐making  and  perspective-­‐taking  in  communities  of   knowing”,  Organization  Science,  6  (4),  pp.  350-­‐372.     12  Bruner  (1986)  contends  that  rational  analysis  of  data  is  supplemented  by  how  we   construct  stories  or  metaphors  to  make  sense  of  unusual  or  unexpected  events  in  an   interesting  and  believable  way  that  fits  with  our  particular  cultural  field.  Similarly,  Star   (1989,  1993)  has  observed  how  a  picture,  map  or  diagram  can  provide  a  visible   representation  of  one’s  thinking  and  becomes  a  “boundary  object”  that  makes  one’s   knowledge  available  for  analysis  with  another  individual  or  scientific  community.    
  • 14. participants  agree  that  this  kind  of  interdisciplinary  problem-­‐solving  discussion  is   definitely  “possible  at  a  distance,  over  the  internet,  on  a  [video  or  tele]  conference  call   where  you  can  just  draw  things…But  it’s  not  as  efficient  as  if  you  come  for  a  week  or  two   and  just  sit  together  and  just  concentrate  on  one  thing.”     Nevertheless,  the  two  “embedded  researchers”  have  continued  to  perform  within  the   ORCHID  project  a  function  with  respect  to  colleagues  in  their  ‘home’  scientific  groups  that   is  very  similar  to  what  Boland  &  Tenkasi  refer  to  as  “semiotic  brokers”.13    Knowing  the   ‘language’  and  the  capabilities  of  the  Caltech  lab,  they  have  been  able  to  establish  a  liaison   or  “straddler”  role14  ‘translating’  and  expediting  communication  between  the  Caltech  staff,   the  theory  team,  and  staff  associated  with  the  Austrian  experimental  lab.     From  the  perspective  of  the  European  leaders  of  the  ORCHID  project,  this  linking  role  has   been  “absolutely  essential”.  Without  this  role,  and  without  it  being  performed  effectively,   graduate  students  in  one  or  more  of  the  labs  would  lose  interest  and  engagement  with  the   project.  Critical  opportunities  to  focus  the  research  would  be  missed  or  adjustments  would   not  be  made.  Unlike  a  situation  where  the  two  lab  groups  might  have  been  co-­‐located,  in   this  case  of  a  trans-­‐Atlantic  collaboration,  regular  and  spontaneous  meetings  to  critique   progress  don’t  happen  easily,  given  all  of  the  local  distractions  and  priorities  that  take  over   one’s  attention”.       To  the  first  question  about  how  ‘temporary’  the  need  is  for  F2F  communication  in  this   work,  the  perception  expressed  by  many  of  the  ORCHID  participants  is  that  there  is  a   general  “threshold”  or  set  of  constraints  associated  with  a  phone  call,  videoconference,  etc.     Part  of  this  perception,  even  for  many  of  the  younger  Millennial  generation  graduate   students,  is  that  there  is  “a  raft  of  minor  issues”—audio  noise,  crossing  over  from  one   information  source  to  another,  time  zone  issues—“that  all  add  up  to  make  virtual   communication  less  appealing,  not  as  easy  for  most  complex  problem-­‐solving”.       More  important,  though,  is  that  F2F  enables  “a  non-­‐restricted  occasion,  meaning  there  is  no   phone  that  when  you  hang  up,  the  person  is  gone…[no]  1-­‐hour  time  slot  for  a  phone   call…you  just  are  around…there  is  the  possibility  to  interact  24  hours  in  principle”.  Thus,   what  is  seen  to  be  lacking  with  electronic  communication  media  is  “intensity  and   spontaneity”  that  these  scientists  contend  are  vital  when  “developing  new  ideas,  new   directions—about  the  experiment,  and  so  on”.     In  science,  “there’s  this  random-­‐chance  occurring  of  ideas…you  chat  about  a  lot  of  different   topics,  and  then,  somehow  the  germ  of  a  new  idea  comes  up”  whereas    “teleconferences   don’t  happen  by  chance”.    Or,  as  another  Caltech  scientist  expressed  the  dilemma,  without   opportunities  for  F2F  communication,  “Eureka  moments  won’t  happen”.  Along  with  this   spontaneity,  there  needs  also  to  be  the  “pressure”  or  “intensity”  of  “constant  exchange”   because  in  “generating  new  ideas,  you  always  have  an  incubation  time”.                                                                                                                     13  Lyotard  (1984)  refers  to  the  important  role  of  agents  that  help  to  translate  and  integrate   the  representation  of  concepts.     14  Heeks  et  al.,  2001,  “Synching  or  Sinking:  Global  Software  Outsourcing  Relationships”,  IEEE   Software,  March/April  2001,  p.59.  
  • 15. The  question  remains  whether  this  need  for  F2F  communication  to  help  generate  “new   ideas,  new  directions”  exists  primarily  or  solely  at  the  beginning  of  a  fundamental  research   project  like  ORCHID?  Perhaps,  it  is  so  for  projects  more  on  the  ‘Development’  side  of  the   R&D  spectrum.  For  fundamental  research,  however,  that  has  as  its  core  objective  to   generate  ‘breakthrough’  concepts,  knowledge,  and  experimental  data,  it  seems  more  likely   from  the  experience  of  the  ORCHID  project  over  its  extended  period  of  three  years,  that   there  is  a  rhythmic  cycle  moving  from  one  ‘unknown’  through  to  discovery  of  ‘known’   results  that  evoke  their  own  new  questions  and  definition  of  a  new  ‘unknown’  followed  by   a  further  search  for  ‘findings’.  In  the  words  of  the  European  science  leader  for  ORCHID,  “in   fundamental  research,  one  never  knows  in  which  direction  research  is  taking  you—new   opportunities  and  new  challenges  are  continually  opening  up”.  Indeed,  the  experience  of   the  ORCHID  project  has  persuaded  this  European  scientist  that  timely,  periodic  F2F   communication  is  vital  in  virtual  scientific  collaborations  involving  fundamental  research.       F2F  communication  within  the  virtual  organization  of  the  ORCHID  project  may  have   additional  importance.  Findings  from  the  study  of  other  virtual  teams  suggest  that  they   have  a  need  for  “deep  temporal  rhythms  of  interaction”,  with  “face-­‐to-­‐face  meetings…as  a   heartbeat,  rhythmically  pumping  new  life  into  the  team’s  processes”.  The  goal  is  “to  draw   team  members  together…to  connect,  couple,  and  integrate  team  members  so  that  they   communicate  more  effectively.”15       In  this  ORCHID  project,  the  process  of  drawing  people  together  began  early  and  continued   into  the  virtual  setting.    Early  F2F  communication  was  combined  with  the  unique  and  very   powerful  motivation  that  the  dispersed  parties  seem  to  have  for  this  collaboration.    The   science  leaders  of  the  ORCHID  project  “had  talked  to  each  other  a  lot  of  times  before   starting  this  program”,  and  “it  helps  that  a  program  like  ORCHID  is  very  focused  on  one   topic”  of  vital  interest  to  all  the  relevant  scientific  groups.    Indeed,  the  speculation  of  at   least  one  experienced  research  scientist  in  the  ORCHID  project  is  that  success  in  such   multi-­‐university  research  “does  not  depend  so  much  on  technical  difficulties  in   collaboration,  but  more  on  motivation”.    A  strong  motivation  can  combine  with  the   intensity  of  relationship  building,  F2F  or  virtually,  to  enhance  and  support  deliberations   across  multidisciplinary  and  geographic  boundaries.                                                                                                                       15  Maznevski  and  Chudoba,  2000,  Bridging  Space  Over  Time:  Global  Virtual  Team  Dynamics   and  Effectiveness,  Organization  Science,  11  (5),  pp.  473-­‐492.      
  • 16. REFERENCES:     Boland,   R.J.,   Tenkasi,   R.V.,   1995,   Perspective   making   and   perspective   taking   in   communities   of   knowing,  Organization  Science,  6  (4),  pp.  350–372.       Bruner,  J.  S.,  1986,  Actual  Minds,  Possible  Worlds,  Cambridge,  MA:  Harvard  University  Press.     Caltech  Media  Relations,  2011,  “Caltech  Team  Uses  Laser  Light  to  Cool  Object  to  Quantum  Ground   State”,  News  Release,  California  Institute  of  Technology,  Pasadena  CA,  October  5,  2011.     Caltech  Media  Relations,  2013,  “Caltech  Team  Produces  Squeezed  Light  Using  a  Silicon   Micromechanical  System”,  News  Release,  Caltech,  Pasadena  CA,  August  7,  2013.     Safavi-­‐Naeini,  A.H.  et  al.,  2013,  “Squeezed  Light  from  a  Silicon  Micromechanical  Resonator”,  Nature   500,  (August  8,  2013),  pp.  185-­‐189.     Chudoba,   K.M.,   Wynn,   E.,   Lu,   M.,   Watson-­‐Manheim,   M.B.,   2005,   How   Virtual   are   we?   Measuring   Virtuality  and  understanding  its  Impact  in  a  Global  Organization,  Information  Systems  Journal,  15,   pp.  279-­‐306.     Cummings,   J.   N.,   Kiesler,   S.,   2007,   Coordination   Costs   and   Project   Outcomes   in   Multi-­‐University   Collaborations,  Research  Policy,  36,  pp.  1620-­‐1634.     Dixon,  K.R.,  Panteli,  N.,  2010,  From  Virtual  Teams  to  Virtuality  in  Teams,  Human  Relations,  63  (8),   pp.1177-­‐1197.     Heeks,  R.,  Krishna,  S.,  Nicholson,  B.,  Sahay,  S.,  2001,  “Synching  or  Sinking:  Global  Software   Outsourcing  Relationships”,  IEEE  Software,  March/April  2001,  p.59.     Lyotard,  J.  F.,  1984,  The  Postmodern  Conditions:  A  Report  on  Knowledge,  Minneapolis,  MN:  University   of  Minnesota  Press.       Malhotra,   A.,   Majchrzak,   A.,   Carman,   R.,   Lott,   V.,   2000,   Radical   Innovation   without   Collocation:   A   Case  Study  at  Boeing-­‐Rocketdyne,  MIS  Quarterly,  25  (2),  pp.  229-­‐249.     Maznevski,  M.L.,  Chudoba,  K.M.,  2000,  Bridging  Space  Over  Time:  Global  Virtual  Team  Dynamics   and  Effectiveness,  Organization  Science,  11  (5),  pp.  473-­‐492.     Olson,  G.M.  Olson,  J.S.,  2000,  Distance  Matters,  Human-­Computer  Interaction,  15,  pp.  139-­‐178.     Pava,  Calvin,  1983,  Managing  New  Office  Technology,  The  Free  Press,  New  York,  N.Y.,  p.58.     Revkin,  A.,  2008.  Dot  Earth:  ‘R2-­D2’  and  Other  Lessons  from  Bell  Labs,  New  York  Times,  December   12,  2008.     Star,  S.  L.,  1989,  “The  Structure  of  Ill-­‐Structured  Solutions:  Boundary  Objects  and  Heterogeneous   Distributed  Problem  Solving”,  in  M.  Huhns  and  L.  Gasser  (Eds.),  Readings  in  Distributed  Artificial   Intelligence  2,  Menlo  Park,  CA:  Morgan  Kaufmann.     Star,  S.  L.,  1993,  “Cooperation  Without  Consensus  in  Scientific  Problem  Solving:  Dynamics  of   Closure  in  Open  Systems”,  in  S.  Easterbrook  (Ed.),  CSCW:  Cooperation  or  Conflict,  London:  UK   Springer.  
  • 17.     APPENDIX  1:  METHODOLOGY     During  the  late  spring  of  2010,  the  VOSS  research  team  opened  discussions  with  Caltech’s   Micro  &  Nano  Photonics  Research  Group  in  the  Applied  Physics  department.  This  research   group  had  previously  agreed  and  formally  expressed  an  interest  to  participate  as  a  site  in   he  VOSS  project.  However,  a  preliminary  ‘scoping’  discussion  was  required  to  determine   the  most  appropriate  multi-­‐university  research  activity  to  focus  upon  for  this  VOSS  study.     After  ‘kick-­‐off’  of  the  ORCHID  program  at  a  meeting  of  the  various  research  teams  from   Caltech,  Yale,  etc.,  held  in  Santa  Barbara,  CA  in  June  2010,  preparations  for  the  eventual   experimentation  began  slowly  both  at  Caltech  and  at  the  University  of  Vienna  Quantum   Optics  Group.    Preparations  were  complicated  by  the  need  to  coordinate  the  planning  of   what  research  to  do  and  how  to  do  it,  between  two  laboratories  that  operated  with  very   different  equipment  and  methodologies.  Hence,  it  was  not  until  the  spring  of  2011  that  the   ORCHID  project  Principal  Investigator  signaled  to  the  VOSS  research  team  that  it  was   timely  to  hold  the  first  of  a  series  of  (one  hour)  teleconference  interviews  to  review  the   project’s  progress.       In  the  summer  of  2011,  one  member  of  the  VOSS  team  made  a  visit  to  the  Caltech   laboratories  and  conducted  face-­‐to-­‐face  interviews  with  the  Principal  Investigator  and  with   two  of  the  graduate  students  involved  very  substantially  with  the  ORCHID  project.  Plans   were  also  made  at  this  time  for  phone  interviews  (held  in  the  autumn  of  2011)  with  faculty   and  graduate  students  located  at  the  University  of  Vienna  laboratory,  and  with  European   and  Canadian  members  of  the  ORCHID  project  team  of  theoretical  physicists.  It  was   emphasized  by  the  ORCHID  project  Principal  Investigator  that  PhD  students  and  Post-­‐ Doctoral  associates  within  each  of  the  laboratories  in  Europe  and  Caltech  were  the   individuals  most  involved  in  the  day-­‐to-­‐day  process  of  this  scientific  collaboration,  and   thus,  would  be  preferred  subjects  for  interviews  in  this  VOSS  study.     Finally,  a  second  round  of  interviews  were  conducted  with  the  leaders  and  selected   members  of  the  ORCHID  project  during  Phase  Two,  in  the  autumn  of  2012.     Overall,  during  an  elapsed  time  period  of  three  years,  approximately  20  (60-­‐90  minute)   interviews  have  been  conducted  in  person  or  by  phone,  involving  two  members  of  the   VOSS  research  team  and  one  subject/participant  of  the  ORCHID  project.    Interviews  have   sought  primarily  to  identify:     i) perceptions  of  the  nature  and  challenges  of  this  scientific  collaboration  from  the   perspectives  of  the  various  scientific  Groups;     ii) key  deliberations  (“choice  points”)  in  this  particular  process  of  fundamental   research;  and     iii) the  qualitative  nature  and  frequency  of  use  associated  with  various  media  of   communication  among  participants  in  the  ORCHID  project.