• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Challenges and solutions in Cloud computing for the Future Internet

Challenges and solutions in Cloud computing for the Future Internet






Total Views
Views on SlideShare
Embed Views



0 Embeds 0

No embeds



Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.


11 of 1 previous next

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
  • i need slides on cloud virtualisation and cloud enterprise along with its merits and demerits!!!!!!
    Are you sure you want to
    Your message goes here
Post Comment
Edit your comment

    Challenges and solutions in Cloud computing for the Future Internet Challenges and solutions in Cloud computing for the Future Internet Document Transcript

    • Challenges and solutions in Cloud computing for the Future Internet Lyndon Nixon STI International, Amerlingstrasse 19/35, 1060 Vienna, Austria lyndon.nixon@sti2.org Parastoo Mohagheghi, Sébastien Mosser, Brice Morin, Franck Chauvel SINTEF, Forskningsveien 1, 0373 Oslo, Norway {parastoo.mohagheghi, sebastien.mosser, brice.morin, franck.chauvel}@sintef.no Athena Vakali, Maria Giatsoglou, Stefanos Antaris Aristotle University, 54124 Thessaloniki, Greece {avakali, mgiatsog, santaris}@csd.auth.gr Jacek Kopecký KMI, The Open University, Walton Hall, MK7 6AA Milton Keynes, UK j.kopecky@open.ac.uk 1. IntroductionThis chapter addresses some of the challenges currently needing to be tackled in thearea of Cloud computing with a specific focus on addressing the requirements fore-seen to ensure that the Cloud computing approach can form a critical part of the Fu-ture Internet. The premise of Cloud computing is that rather than invest in fixed com-puting resources which then may be at times idle, and at other times insufficient toneed computing requirements, clients may virtualise software or hardware in remotecomputing infrastructures. Large Cloud infrastructures make it possible to undertakecomplex computing tasks without investment in one’s own expensive infrastructurewhich then needs maintenance and may only be needed occasionally; such infrastruc-tures may offer anything from being a large capacity online storage space to provi-sioning distributed processing of extremely complex data processing tasks. This ap-proach to computing will be ever more critical on a Future Internet where increasingscales of data are being generated and need (in-time) processing, and such (also socie-ty critical) complex data processing is an unavoidable aspect of comprehensive ITsolutions across all domains and sectors. As organizations and citizens alike increa-singly rely on Cloud-based offers to handle and process their data, the availability,reliability, stability, functionality, interoperability and security of those offers need tobe ensured at ever larger scales of usage. EU research in Framework Programme 7covers a number of research projects under the objective 1.2 ―Internet of Services‖which address key challenges in Cloud computing infrastructure. In this chapter, workdone in two of those projects will be highlighted:adfa, p. 1, 2011.© Springer-Verlag Berlin Heidelberg 2011
    •  the REMICS project which addresses the challenge of companies with exist- ing legacy applications, typically representing some significant investment, who currently cannot easily shift this software into the Cloud to benefit from the advantages of virtualized and on-demand computing resources.  the Cloud4Trends experiment (under the VENUS-C project Cloud infrastruc- ture) which addresses the challenge of handling data streams in the Cloud, particularly enabling added value from detecting variations and trends in the data which can be applied to social Web data, sensor data, etc.Complementary with such usability and functionality aspects, the many projects inthis field working with various Cloud infrastructures and APIs recognize the criticallack of a standard API specification for Cloud applications. Hence the effort towardsensuring Cloud computing specification interoperability, launched within the lastFuture Internet Assembly in Poznan late 2011, is another significant step towardsaddressing Cloud computing’s future in the Future Internet presented in this chapter.2. REMICS: supporting the Migration of Legacy Applications to Interoperable Services in the CloudThis section presents on-going research on developing a language that supports theevolution of legacy applications to the Cloud and solving the issues of interoperabilitybetween services in the Cloud in the context of the REMICS project. REMICS (RE-use and Migration of legacy applications to Interoperable Cloud Serviceshttp://remics.eu) is a research project supported by the European Commission thatstarted in 2010 and will run for three years. The main objective of the project is tospecify, develop and evaluate a tool-supported model driven methodology for migrat-ing legacy applications to interoperable services in the Cloud. REMICS includes 10partners from 7 European countries including academia, research organizations andindustrial technology providers and case providers. In our view, the Cloud computingparadigm enhances thinking of IT companies as service providers. We therefore talkof the ―Service-Cloud paradigm‖ that stands for the combination of Cloud computingand Service-Oriented Architecture (SOA). Cloud adds new challenges to SOA forexample regarding developing scalable services, billing, Service Level Agreements(SLAs), distribution, security and data management. The REMICS project has alreadybeen presented in several publications such as [1, 2]. Figure 1 below depicts the tech-nological approach of REMICS. Modernisation in this process combines reverse en-gineering of legacy applications, modernizing the architecture to SOA with identify-ing services, and forward engineering to the desired platforms, as well as solving theservice interoperability issues and validating that the new application provides thedesired services with the desired quality. The whole approach is supported by theREMICS methodology that integrates the tools and provides guidelines to users. Inthis section we specifically focus on two research activities that are related to thechallenges of Future Internet applications in the Cloud; i.e., providing a solution thathides the complexity of deploying applications in the Cloud and interoperating with
    • third-party systems in providing services or composing services to new ones offeredto the users. Model-Driven Interoperability Target Source Architecture Migrate for Service Cloud Architecture Platform Forward MDA Recover through Validate, PIM4Cloud Control & Supervise Legacy Service Cloud Artifacts Implementation Figure 1: REMICS technological approach2.1 A Domain-Specific Language to Support Cloud DeploymentDue to the several models and the variety of Cloud platforms with their models ofresources, deployment in the Cloud is not a trivial task. The heterogeneity of the un-derlying Clouds, coupled to the heterogeneity of the software artefact to be deployedonto those Clouds triggers several challenges: Clouds implement open environments. As a consequence, we do not know where the application will be deployed. Thus, establishing a link between for example a web interface (the application front-end) and the back-end database requires a particular attention. Clouds work on a pay-as-you-go basis. Thus, one can consider to deploy both back-end and front-end artefacts on the same virtual machine, to reduce costs during development. Another alternative is to deploy these two artefacts on two different virtual machines. Clouds emphasize reproducibility. Thus, a given deployment descriptor should be easily re-usable as-is, in the same context or in a new one. Clouds support scalability through replication and load balancing. The front-end can be replicated in many instances while the performance of the back-end re- quires architectural decisions.For example, deploying an application to the Cloud does not automatically transformit into a scalable entity: the evolution process must carefully identify the componentsthat can be replicated to ensure elasticity using resources available in the Cloud. In[3], authors expose four principles used as the foundation of a model–based approach:(i) the choice of what models to create has a profound influence on how a problem isattacked and how a solution is shaped; (ii) every model may be expressed at differentlevels of precision; (iii) the best models are connected to reality; and (iv) no singlemodel is sufficient. Every nontrivial system is best approached through a small set of
    • nearly independent models. Thus, models must be dedicated to solve a dedicatedproblem, anchored in the reality (principles i & iii). Secondly, several models areneeded to solve different problems, and the approaches must be complementary (prin-ciples ii & iv). In our context, the modelling activity focuses on the definition of mod-els able to support application modelling and its deployment. Based on these chal-lenges, we provide a meta-model that supports the application designer while deploy-ing his/her Cloud application in a component-based approach. The objectives of thislanguage are the following: Platform–independence. This language includes Cloud–specific concepts (e.g., elastic capability, deployment geographic zone, failure recovery, parallelism, data protection) independent of different Cloud platforms. The language acts as an in- termediary pivot between legacy applications and the Clouds. Transparent projection. Based on the modeled entities, the framework handles the projection of the abstract description into concrete Cloud entities. Automated deployment. The language comes with an interpreter that implements the actual deployment, abstracting the underlying platform complexity and APIs.To tackle these challenges, we propose a Domain-Specific Language (DSL) based ona component-based representation of the system to be deployed. In our DSL, artefactsinvolved in the software system (e.g., web server, database, virtual machine) are rei-fied as components, that is, first-class elements providing and requiring deploymentservices. Based on this representation, we provide a Scala implementation of the lan-guage (as an internal DSL), providing static verification (i.e., typing) over the mod-elled system to ensure its correctness. Modelled software systems are then interpretedand the associated engine allows (i) the provisioning of virtual machines in multipleclouds and (ii) the deployment of software artefacts on these virtual machines. Thedefinition of the language for deployment and its associated engine is a first step.Based on this experience, we will consider evolution in Cloud context according totwo complementary axes: (i) the evolution of the application after its initial deploy-ment and (ii) the evolution of the Cloud infrastructure itself. Regarding interoperabili-ty, the scalability of the solution in a dynamic environment and performing transfor-mations in run-time are basic challenges.2.2 Model-Driven Service InteroperabilityWhen a legacy system is migrated to the Cloud, it directly competes with a plethoraof other applications which might provide similar services, with different costs orQuality of Service (QoS). There is also a need for interoperating with third party sys-tems and their services in the Cloud ecosystem. The relationship between the mi-grated system and the rest of the Cloud ecosystem is depicted in Figure 2. In this sim-ple example, the migrated system is composed of three services deployed in theCloud: S1 to book hotels, S2 to book flights, and S3 to plan travels. S1 and S2 aredirectly competing with other providers offering similar services (S1 and S2). Thegoal of the REMICS Model-Driven Service Interoperability approach is to supportstrategic decisions (and ease their implementations) after the migration process:
    •  Increase the market share of strategic services (such as S1). In this case, S1 is exposed through different facades aligned with de-facto standards already in use by (the clients of) competing service providers. The objective being to transfer some clients from competitors to the migrated system. Reduce the cost of non-strategic services (such as S2). In this case, S2 is exposed as a facade that current clients can still use (hence generating indirect revenues through advertising), but the behaviour is fully delegated to another service pro- vided for whom this service is strategic. Increase the market share of strategic, yet immature, services (such as S3) while containing their development costs. In this case, S3 can be extended with com- plementary services in order to provide added value to this service.In the three scenarios identified above, there is a need for: Data interoperability. The migrated system needs to interoperate with different clients and providers that have services based on other data schemas than the leg- acy application. Data must thus be converted before they can be exchanged. Behavioural interoperability. If a service of the migrated system has to collabo- rate with an external service, it is very likely that the external service does not rely on the same protocol (the sequence of messages interacting with the service) than the former service. Figure 2: Relationship between the migrated system and the Cloud ecosystemRegarding data interoperability, we have developed a tool for semi-automatic infer-ence of mappings between data models [4]. This tool addresses data interoperabilityfrom a pragmatic standing point: it uses various heuristics to lighten the intervention,yet mandatory, of a human operator. The idea is to provide the user with various algorithms detecting semantically similar concepts (regardless of structure of the underly-ing concepts), which pre-calculate a data mapping that can be later refined, as the userpush additional knowledge into the loop (validate/invalidate some recommendations,or by providing sources about the semantic of the date models: synonyms, abbrevia-tions, or ontologies). Our tool provides a new heuristic tailored to exploit the speci-ficities of object-oriented (class diagrams) models, but can be combined with existingapproaches such as syntactic mappings or semantic annotations. The resulting map-
    • pings can then be implemented by designers e.g., using tools developed in previous oron-going projects (ATHENA [5] and EMPOWER [6]), or commercial tools like Al-tova MapForce [7]. Regarding the behavioural mediation, mediation services are ex-pressed through finite state machine models, which are to be inserted between themigrated services and the external services they need to interoperate with. These statemachines are responsible for translating protocols (sequences of exchanges of mes-sages). To help designers in defining such state machines, REMICS provides codegenerators able to produce executable mock-ups to test and refine mediators, with noneed to actually use the real services. Then the mediation code is fully generated fromthe state machines and deployed on a models@runtime engine, to enable future modi-fications (e.g., after a service has been modified) in a very flexible way [8].2.3 ConclusionsIn this section we presented the REMICS project and two specific research activitieswithin REMICS that are important for the Future Internet applications in the Cloud;i.e. abstracting the complexity of deployment in the Clouds in a Cloud platform-independent language and solving the interoperability challenges of services.REMICS initially focused on two industrial cases:  DI Systemer is a Norwegian software vendor based in Trondheim within the ERP (Enterprise Resource Planning)/Accounting/CRM (Customer Relation- ship Management) domain participating as a Small and Medium Enterprise (SME) partner.  DOME Consulting & Solutions is a technology company based in Spain/Mallorca, with a strong vocation of service to the travel industry which facilitates and develops next-generation technology solutions.Both of the above companies have legacy code that is modernized in REMICS toSOA with deployment in the cloud. For example, in the DI Systemer case, the productportfolio is developed with different tools/languages and has evolved during decades(the case is discussed in detail in [2]). The software is consumed by the DISYS cus-tomers in different runtime environments: desktop standalone installations, and tradi-tional Client/Server solutions in a Local Area Network (LAN). Some users also hostthe DISYS software in virtual machines executed in DISYS ASP centre or in theirown data centre. There are practically no shared resources, i.e. there is one softwareinstallation per DISYS customer. The Recover process in REMICS has analysedcomplex and voluminous legacy COBOL code and enabled inspection and manipula-tion in UML models. Modernization and migration to the service cloud paradigmenables the company to deploy one single reporting system installation serving allcustomers/users, get paid per use, offer reports directly to the end user and to meetscalability issues by requesting more hardware from the service provider whenneeded. Since September 2011, the REMICS project has been extended with threenew academic partners and they have brought new industrial cases to the project(transport, banking and scientific applications) that are currently under analysis.
    • 3. Cloud4Trends: leveraging the Cloud infrastructure for localized real-time trend detection in social mediaSocial media and Web 2.0 technologies have profoundly widened users interactionand broadened content generation and distribution. Huge volumes of information flowon the Web in an evolving manner and great effort has been placed on exploitingknowledge hidden into these large scale data streams. Conventional data managementsolutions are not adequate for storing, indexing and accessing in such social streamsdue to the limitations in storage spaces and processing complexities. The Cloud com-puting paradigm offers a significant ground for such social streams mining applica-tions since it provides a scalable and powerful infrastructure. VENUS-C1 (VirtualMultidisciplinary EnviroNments USing Cloud Infrastructures) is a pioneering projectthat develops and deploys a Cloud computing service for research and industry com-munities in Europe by offering an industrial-quality, service-oriented platform basedon virtualization technologies, facilitating a range of research fields through easydeployment of end-user services. In particular, VENUS-C opened a call for experi-ments held on top of its offered infrastructure. Cloud4Trends is one of the experi-ments running over the VENUS-C infrastructure, entitled ―Leveraging the Cloudinfrastructure for localized real-time trend detection in social media‖. It aims at offer-ing high-quality services for identifying and revealing most significant topics andtrends expressed in social media. The research scope of Cloud4Trends is the real-timeanalysis and exploitation of the user-contributed content in Web 2.0 microbloggingand blogging platforms, in a particular geographical context. In particular, the mainaim of Cloud4Trends is: i) the development and distribution of a high-quality servicefor the real-time detection of trending topics / issues that interest and are discussed bythe users of specific geographic areas, as well as ii) the investigation and verificationof the suitability of Cloud computing infrastructures as platforms for such services,considering the benefits they offer. Online social streams tracking is also addressed inthe followed Cloud-based approach which involves: i) use of VENUS-C Cloud infra-structure specific APIs for data and execution, ii) synchronization of the executionbits and communicate data among them, and iii) refining failing jobs and code.3.1 Cloud4Trends : managing large scale social streams on the CloudClustering and summarizing methodologies are quite suitable for trend detection sincethey can reveal groups of data out of social media streams, and they can group rele-vant topics, and identify trends [12, 16]. Cloud4Trends has initiated an experimentwith microblogging data collection from the popular Twitter service and bloggingdata collection from the Blogger platform. Current clustering approaches in Twitterfocus on identifying groups of tweets using text mining techniques, such as exploitingcommon word co-occurrences [10, 13, 14]. Such tweet analysis should however beperformed on a real-time streaming fashion so as to capture in actual time the con-stantly changing trending interests of users. Cloud4Trends emphasizes that tweet1 http://www.venus-c.eu/
    • analysis can be further extended by exploiting associations based on the broadcastingtime and the users’ physical location (exploiting the geo-location features often incor-porated in social media). Using multi-feature analysis is expected to produce morefine-grained quality clusters corresponding to actual topics that are popular at a givenlocation and time period. It is also expected to alleviate the generally acknowledgedproblem of noisy data in Twitter (i.e. data containing uninteresting or meaninglessinformation). The joint consideration of location and time improves the clusteringquality and contribute to filtering out noisy tweets. Since twitter users tend to includehyperlinks to other sites (with blogs articles, videos, etc) on their tweets,Cloud4Trends enriches the initial tweet content by following the included hyperlinkand extracting metadata out of it. Moreover, the proposed approach is similarly ap-plied to blog posts in order to recover variations in users’ opinions and interests. Thistask leverages opinion harvesting and trends declared by individuals in a Web 2.0platform. Cloud4Trends operates in an online fashion, collecting tweets and blogposts that pertain to certain individual geographical areas in parallel, and clustersthem in groups based on their text-based similarity and temporal proximity.3.2 Cloud4Trends: design and implementation principlesCloud4Trends implements trend detection by using a 3-tiered conceptual design struc-ture. This structure is used to facilitate data collection, processing and trend detectionprior to the Cloud deployment, as described next: At the Data Collection tier, online data aggregators collect recently published con- tent from Twitter and the Blogosphere in particular specific geographic locations and areas, leveraging the Twitter Streaming API2 and the Google Blogger API3. The Data Processing tier analyzes retrieved tweets and blog posts to produce clus- ters that contain posts pertaining to specific topics. There are three types of cluster sets maintained, namely: tweet clusters, blog posts clusters, and extended tweet 4 clusters. New data are assigned to clusters based on the similarity calculated be- tween the documents’ and the clusters’ representation vectors, with the clustering phase having been implemented as a distributed Map-Reduce process. The Trend detection and Visualization tier retrieves all active clusters and gene- rates a summary description for each of them comprising few member terms or phrases based on their weights and their significance (hashtags, title terms, etc). Trends are therefore estimated based on the three different data sources for a num- ber of locations and the results are visualized in a web-based user interfaceCloud4Trends is implemented as a hybrid application based on the cooperation of: i)on-premises client interface components and ii) multiple job execution componentswith different functionalities on top of the VENUS-C Cloud services and infrastruc-ture. Fig. 3 illustrates the three Cloud4Trends modules, namely: the Client module,the VENUS-C Services module, and the Cloud-based module. These modules support2 https://dev.twitter.com/docs/streaming-api3 http://code.google.com/apis/blogger/docs/2.0/developers_guide_protocol.html4 Extended tweets refer to a joint representation of the tweets’ content and their referenced blogs.
    • the proposed 3-tier design (described above) such that the Client module implementsthe Data Collection and Trend detection and Visualization tiers, whereas the Cloud-based module implements the Data Processing tier. VENUS-C Services module: it gathers the particular VENUS-C components used for assisting and simplifying the application’s porting to the Cloud. More specifi- cally, the VENUS-C Data Access Service is used for accessing the Cloud Storage (Blobs and Tables) when retrieving or uploading data via a Client. The VENUS-C Execution Service is used for submitting and distributing new processing jobs to the Cloud. Cloud4Trends utilizes the Generic Worker VENUS-C programming model which operates primarily on top of Microsoft’s Azure Cloud5. Client module: it encapsulates Web 2.0 data collectors and their interfaces required for the communication with the VENUS-C Services. It involves the experiment setting/monitoring interface (attached to the on-premises server to facilitate sub- mitting new experiments and monitoring the progress of the ones currently run- ning), Web interface (to communicate the Cloud4Trends results to end users) as well as Twitter and Blog Data Collectors (to receive stream data at real time). Cloud-based module: it actually involves several components ported in the Cloud. Parsing and Clustering modules are implemented via the VENUS-C Services, i.e. the related operations are submitted as jobs via the Generic Worker framework. The clustering modules are realized by the Splitter, Similarity Calculation – Mapper-, and Aggregation-Reducer- modules, under the Map-Reduce paradigm. The Indexing Services module is implemented independently as a separate set of Cloud services. Figure 3: Cloud4Trends Modules and Functionality5 http://research.microsoft.com/en-us/downloads/76537edf-9b77-4664-b76b-cf51be506a0d/
    • 3.3 Cloud4Trends in summary and future outlookThe Cloud4Trends pilot project started in June 2011 and is now at an Alpha Prototypestate. So far, the following steps have been taken.  the on-premises data (tweet and blog post) collection applications have been seamlessly integrated with the job submission client into a real-time text parsing job submission system.  the Generic Worker’s suitability for frequent successive job submissions has been verified.  the data indexing services have been deployed in Azure using the Azure Li- brary for Lucene.NET.  communication between the Cloud-based data parsers and the indexing ser- vices has been achieved via Azure queues  the whole job submission workflow (including the submission of parsing and distributed clustering jobs) has been deployed in the Cloud. This was accom- plished with use of the Generic Worker submission service which allowed the implementation of the workflow via the submission and ―cooperation‖ of data-dependent jobs, as well as through the queue-based communication be- tween Generic Worker computing instances and the Indexing Cloud-based services.Experimentation with the Cloud4Trends pilot application has so far focused on longrunning experiments with data for the Twitter platform and short experiments withdata from the Blogger platform. Large scale experiments with data from Twitter havetargeted the city-area of New York, US. Over the Cloud4Trends application the real-time analysis of user generated data at a large city level is feasible, managing to effi-ciently handle a stream of on average 70.000 tweets per day arriving at a rate of 1tweet per second, as provided by the Twitter Streaming API. In our next experimentswe aim at extending our initial experiments with content from the Blogger platformwhich has the characteristics of larger scales of textual information, but lower updaterate. In the near future, the Cloud4Trends pilot will also perform trending topics’detection concurrently in several cities worldwide.Cloud4Trends has demonstrated that porting trend detection into the Cloud is a verysuitable solution due to the challenges posed by the data and time intensive processesinvolved in online collection and analysis of large and evolving Web 2.0 datasets.Cloud4Trends’ main objective is to establish a high-quality service for providing real-time, localized trending topics by harvesting and analysing content from Twitter andthe blogosphere, while at the same time verifying the correctness and feasibility ofthis service under a Cloud infrastructure. Cloud4Trends verifies that deploying webmining based services into the Cloud is feasible and beneficial for both researchersand entrepreneurs since it: enables massive data analysis and easier testing of new algorithms/use-case scenar- ios, achieving high-quality results with lesser cost, reduces the prerequisite for real-time applications data processing time,
    •  places focus on applications’ refinement/testing, rather than on how to operate the testbed infrastructures, improves application capability sharing, by exposing research results as a service to other research groups or interested end-users.4. ConclusionCloud computing already brings significant savings and robustness gains to companiesboth large and small. Their systems store and process their data in virtualized infra-structure. As cloud offerings mature, it is likely that deployment in the cloud will bethe first option considered for new systems, and that many existing systems will bemigrated to the cloud. In this chapter, we have presented two intriguing ongoingprojects that focus on cloud-based systems: REMICS, addressing the challenge of migrating into the cloud existing legacy applications that typically represent significant investment, to benefit from the advantages of virtualized and on-demand computing resources; VENUS-C, which runs the Cloud4Trends experiment that addresses the chal- lenge of handling data streams (social data, sensor data etc.) in the cloud, particu- larly to detect variations and trends in the data.These projects confirm that using the cloud emphasizes reproducibility, where a givensystem node should be easily re-usable as-is, in the same context or in a new one; andthat the cloud supports scalability through replication and load balancing, by encour-aging appropriate system decomposition and loosely-coupled architecture. By remov-ing the focus from the infrastructure, the cloud allows system architects to concentrateon the application’s structure, and it frees resources for testing. However, the cloud isnot a single consistent global offering — instead, there are multiple cloud vendorswith differing features, capabilities, and most importantly, application programminginterfaces (APIs). Notwithstanding the benefits of competition, there is a critical needfor standards in cloud APIs. In 2009, Vint Cerf made the point that the ―inter-cloud‖problem (exchanging information between distinct computing clouds) could be solvedvia semantics. Semantics-based descriptions of cloud resources, services and functio-nalities could especially help with provider-neutral cloud programming (utilizing non-vendor specific APIs for cloud application development), cloud portability (porting ofapplications across different cloud frameworks), and cloud interoperability (utilizingmultiple services from multiple clouds). The role of semantics in cloud computing,and the various ontologies that have been developed by several research projects, arethe subject of an ongoing discussion within the efforts around the Future Internet. TheHola! ICT Collaboration Portal6, which is open to all interested parties, hosts theCommon Cloud Ontologies Working Group, which is collecting the existing ontolo-gies, as inputs to work on a common "Cloud Ontology". Cloud offerings will be anindispensable part of the Future Internet, and they will be more interoperable, moreclearly ready to host migrated industrial legacy systems, more tuned for processingstreams of data, and so on, thanks in large part to EU-driven research contributions.6 http://www.holaportal.eu/node/285
    • AcknowledgmentsThis chapter has been prepared by the Support Action SOFI (Service Offering for theFuture Internet, http://sofi-project.eu), funded by the European Union through the7th Framework Programme (EU FP7). The work described in Section 2 has beenfunded by the REMICS project, EU FP7 contract number 257793. The work in Sec-tion 3 has been partly funded and realized within the Cloud4Trends pilot project ofthe VENUS-C research initiative, EU FP7 contract number 261565, co-funded by theGÉANT.References1. Mohagheghi, P., Barbier, F., Berre, A.J., Morin, B., Sadovykh, A., Sæther, T., Henry, A.,Abhervé, A., Ritter, T., Hein, C., Śmiałek, M.: Migrating Legacy Applications to the ServiceCloud Paradigm: The REMICS project. Book chapter in European Research Activities in Cloudcomputing, Eds. Dana Petcu and José Luis Vázquez-Poletti, Cambridge Scholars Publishing,pp. 97-121 (2012)2. Mohagheghi, P., Sæther, T.: Software Engineering Challenges for Migration to the ServiceCloud Paradigm. Proceedings of Services 2011: IEEE World Congress on Services, IEEEComputer Society, pp. 507–514 (2011)3. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide, the 2ndEdition, Addison-Wesley Object Technology Series. Addison-Wesley Professional (2005)4. Roman, D., Morin, B., Wang, S., Berre, A.J.: A Model-Driven Approach to Interoperabilityin B2B Data Exchange. In Advanced Result on MDI/SOA innovation workshop (at IWEI2001), Stockholm, Sweden. URL http://www.remics.eu/publications (2011)5. http://www.modelbased.net/aif/6. http://www.ep-empower.eu/7. http://www.altova.com/mapforce.html8. Ballagny, C., Hameurlain, N., Barbier, F.: MOCAS: A State-Based Component Model forSelf-Adaptation. In: Proceedings of SASO 2009, pp. 206-215. URLwww.cyrilballagny.fr/download/Ballagny_ECMDA09.pdf (2009)9. Sakaki, M. Okazaki, and Y. Matsuo. 2010. Earthquake shakes Twitter users: real-time eventdetection by social sensors. In WWW 10. ACM, 851-860.10. D. A. Shamma, L. Kennedy, and E. F. Churchill. 2009. Tweet the debates: understandingcommunity annotation of uncollected sources. In WSM 09. ACM, 3-10.11. N. S. Glance, M. Hurst, and T. Tomokiyo. 2004. BlogPulse: Automated Trend Discoveryfor Weblogs. In WWW’04.12. Uchida, M., Shibata, N. and Shirayama, S. 2007. Identification and Visualization of Emerg-ing Trend from Blogosphere.In ICWSM’07, pp. 305-306.13. J. Sankaranarayanan, H. Samet, B. E. Teitler, M. D. Lieberman, and J. Sperling. 2009.TwitterStand: news in tweets. In GIS 09. ACM, 42-51.14. M. Mathioudakis and N. Koudas. 2010. TwitterMonitor: trend detection over the twitterstream. In SIGMOD 10.ACM, 1155-1158.15. I. Livenson and E. Laure. 2011. Towards transparent integration of heterogeneous Cloudstorage platforms. In DIDC 11. ACM , 27-34.16. V. Koutsonikola, A. Vakali, E. Giannakidou, I. Kompatsiaris: Clustering Users of a SocialTagging System: A Topic and Time Based Approach. WISE 2009: 75-86