Your SlideShare is downloading. ×
Overcoming the Top Four Challenges to Real‐Time Performance in Large‐Scale, Data‐Centric Applications
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Overcoming the Top Four Challenges to Real‐Time Performance in Large‐Scale, Data‐Centric Applications

383
views

Published on

The most critical large-scale applications today, regardless of industry, involve a demand for real-time data transfer and visualization of potentially large volumes of data. With this demand comes …

The most critical large-scale applications today, regardless of industry, involve a demand for real-time data transfer and visualization of potentially large volumes of data. With this demand comes numerous challenges and limiting factors, especially if these applications are deployed in virtual or cloud environments. Attend this session and learn how to overcome the top four challenges to real-time application performance: database performance, network data transfer bandwidth limitations, processor performance and lack of real-time predictability. Solutions discussed will include design of the proper data model for the application data, along with design patterns that facilitate optimal and minimal data transfer across networks.

Published in: Technology, Business

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
383
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
12
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Overcoming the Top Four Challenges to Real‐Time Performance in Large‐Scale,  Data‐Centric Applications Tom Lubinski Founder and CEO F d d CEO SL Corporation 17 November 2011
  • 2.  Here to talk about Scalability and Performance y Problem Space: Collection, Analysis, and Visualization in Real-Time of large volumes of monitoring data from large large- scale, complex, distributed applications Keywords: Real-Time, Large Volumes of Data
  • 3. Challenges Challenge #1: Database Performance D t b P f Common to see queries taking minutes How can you get real-time that way ?
  • 4. Challenges Challenge #2: Network Data-Transfer Bandwidth N t kD t T f B d idth Bigger pipes, but there s more data to send pipes there’s How do you get the greatest throughput ?
  • 5. Challenges Challenge #3: Processor P f P Performance More cores just means more processes ! How do you optimize your utilization ?
  • 6. Challenges Challenge #4: Lack f R l Ti L k of Real-Time Predictability P di t bilit Virtualization is the new time-share ! time share How can you trust your data ? “time-sharing”, “network computer”, “cloud”, do things ever really change ?
  • 7.  Solution – Clues ? F t of Life: Facts f Lif Database – can’t live with it can’t live without it can t it, can t Network – it’s a funnel, no way around it , y Processor – must limit what you ask it to do Virtualization - it’s erratic, have to compensate
  • 8. Solutions Solution #1: Proper Data Model P D t M d l Data structures designed for real-time real time In-memory structures to buffer database
  • 9. Can your application be … … like a high‐performance racecar ?  
  • 10. What is most important part of racecar ? (besides the engine) … the Transmission …
  • 11. For Real‐Time performance, it’s the Cache … Not a simple High‐performance High performance“current value” Real-time Multi-dimensional cache Data Cache
  • 12. Real‐Time Cache – optimized for performance ! Current / History Tables: C / Hi T bl In Out … Indexed Insertion ‐ Indexed extraction ‐asynchronous real‐time data optimized transfer to clients
  • 13. Real‐Time Cache – Data Processing / Aggregation Detail ViewsRawData Reduced Summary  Views Reduction,  Resolution,   Aging Aggregation
  • 14. Real‐Time Cache – Database read/write through ( p (optimized for timestamped multi‐dimensional data) f p )Real‐Time data Seamless timeline  automatically  automatically navigation with automatic  written to DB database query
  • 15. This sounds a bit like Oracle Coherence … Buffer database Read/write through Listeners Indexed queries What’s different ? ff
  • 16. Different tools for different problems !Real-Time Multi-dimensional d tR l Ti M lti di i l data: Current / History Tables: Multiple rows (time range) of  li l (i ) f selected columns returned in one  query  Coherence cache distributes objects  (rows) = optimized horizontally Real‐Time multi‐dimensional cache  manages columns and optimizes  … y vertically
  • 17. Benefits: Indexed Real-Time CachingSlow SQL queries minimizedSl i i i i dUsers shielded from database detailsMinimize CPU load using effective indexing
  • 18. Solutions Solution #2 Server-Side A S Sid Aggregation ti (am I being too obvious with this one ?) Know the use cases Joins and GroupBy done on server p y SQL does this, but do you need it ?
  • 19. Problems with SQL Database QueriesSlowSlSlowwer with concurrent queriesIf you need it fast, it goes even slowwwwwwer ! fastSQL = Not p Q portable (Timestamps, especially)
  • 20. Know your problem space !Real-Time Monitoring:R l Ti M it i Join and GroupBy heavily usedWe wrote our own!Performed in real-time on server-side dataOptimized for real-time requirements
  • 21.  Example: Server-Side Aggregation/Caching Servlet Data GroupBy AppRawData App Data Totals By App Join on  To  App Clients Cli t GroupBy Server Server Data Totals By Server Join on Server
  • 22.  Each cache can maintain its own history Servlet DataCachedData Totals By AppAnd  To Aggregates Clients Cli t Totals By Server … … …
  • 23.  Result: trend chart of Totals by History has all data available immediately Using SQL would require: Query 3 tables 2 GroupBys, 2 Joins, + Join on Timestamp (not portable)
  • 24. Benefits: Server-Side AggregationClient requests and gets exactly what i neededCli d l h is d dClient processing = zeroServer processing = done ahead of timeCurrent/History for aggregates readily available (No SQL)Response time = fast
  • 25. Solutions Solution #3 Use Appropriate D i U A i t Design Patterns P tt Server Side vs Client-Side Server-Side vs. Client Side Processing Efficient Data Transfer Patterns
  • 26.  Pattern #1: Data Compaction D C i (obvious, initial approach for any data transfers) Server Packets only partially filled  … Client encode decode … replaced with full packets … even simple, non‐proprietary  algorithms can make big difference algorithms can make big difference
  • 27.  Pattern #2: Data Current / Changed D C Ch d (large data tables with sparse real-time updates) Entire table sent every update … Server Client encode decode … instead, send only changed rows … little more complex, requires indexing
  • 28.  Pattern #3: Data History / C D Hi Current (trend chart invoke with real-time updates) Entire history table sent every update … Server Client manage merge … … instead, send history once, then current updates … similar to current / changed pattern, but specific to history
  • 29.  Pattern #4: Data Current / Subset D C S b (optimizing transfer of data subsets to multiple clients) Client Changed subset sent to every client … Server listen indexed Client register indexed listen indexed … instead, send subset only to registered client … requires registration logic coupled with cache
  • 30. Benefits: Design Patterns for Data TransferSame problem over and over again solved similar wayS bl d i l d i ilReduce load on networkOptimize response time – no unnecessary data
  • 31. Conclusions Conclusion #1: Know your data ! K d t Data Model designed for real-time real time In-memory structures to buffer database Server-side aggregations gg g
  • 32. Conclusions Conclusion #2 Respect Design P tt R tD i Patterns ! Server Side vs Client-Side Server-Side vs. Client Side Processing Efficient Data Transfer Patterns Don’t over-generalize – solve the problem g p
  • 33. About SL Corporation Software Product company since 1983 Headquarters in Marin County CA County, Worldwide presence in Americas, APAC, EMEA Over 100,000 licenses sold Core expertise in application performance monitoring – special focus on middleware
  • 34. Select SL RTView Customers Financial Services Financial Services E‐Commerce/Retail E Commerce/Retail Telecommunications Energy Other
  • 35. RTView: The Solution Offering Application Oracle Middleware Performance Coherence Monitoring Monitoring Monitoring• Collect all necessary •Understand the • Determine howapplication-centric and behavior of Coherence applications aremiddleware-centric interacting withpperformance data •Debug and validate g middleware systems y functionality after• Configure data configuration changes • Assess whetheraggregation and applications are runningpersistence, filters, •Integrate OCM with efficiently and reliablyanalytics,analytics alerts and existing monitoring toolsdisplays to deliver • Ensure the maximuminformation tailored for •Enable quick notification benefit from an ESBapp support teams of problems investment
  • 36. RTView – Sample ApplicationsOOCL World WideShipment Tracking Hospitality Card application at  Online Gaming Systems Harrah’s casino gaming tables Tax Season at Intuit PJM Real‐time Energy Pricing Banking application in Korea
  • 37. RTView – Multi-Tier Visibility Unified Real‐time display of data from all Application tiers Update for ORCL In‐depth Monitoring of  Middleware Components Middleware Components
  • 38. RTView – Large Data Volumes Typical large implementation, distributed over several regions with many custom applications Heatmap View showing current state of entire system – size represents number of servers for b f f application Color represents how close metric is to SLA – large red boxes are worst – drilldown to detail
  • 39. RTView - Drill-Down to Detail Metrics Drilldown to detail level metrics showing i t t i h i internal l metrics from each application Sophisticated history and alert view allows fine-tuning of thresholds for each metric
  • 40. RTView – Complex Visualizations Observe “internal load balancing” of Data Grid
  • 41. Questions? See www.sl.comfor more info about SL and RTView