Your SlideShare is downloading. ×
0
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Setawwa   2010, 29-58 choules
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Setawwa 2010, 29-58 choules

524

Published on

Part 2

Part 2

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
524
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
16
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Beachwells Largest Beachwell  Seawater  Catchment Facilities in the World, Catchment Facilities in the World, • 32 Vertical beachwells split into 3 clusters, • 5 hectars of Karstic costal land dedicated  to beachwells, t b h ll • 220,000 cubic meters per day of nominal  pumping capacity, • 80 meters depth wells individually, • Very low Silt  Density Index of the raw  water.
  • 2. Pressure Filters Pressure Filters High Speed Filtration Units for Seawater Pre‐treatment • 5 Dual Media pressure Filters Filters, • 9 Single Media Filters, • 11 Cartridge Filters for pre‐treated water polishing. g p p g
  • 3. Reverse Osmosis Reverse Osmosis 8 Reverse Osmosis first pass trains • 8 individual trains on first pass equipped with 7300 reverse osmosis membranes, • 8 individual high efficiency work exchangers for energy recovery recovery, • 8 high voltage high pressure pumps for permeate production 4 Reverse Osmosis second pass trains for Boron removal • Double stage trains for water recovery improvement, • 4 i di id l t i individual trains equipped with 2800 i d ith reverse osmosis selective membranes for Boron removal
  • 4. 3D Plant View 3D Plant View
  • 5. Sydney SWRO 250,000 m3/D (66 MGD) 2007 –2010 US$0.8 Billion (plant/intake/outfall  US$0 8 Billion (plant/intake/outfall only) Design & Construct
  • 6. Sydney Client: Sydney Water Corporation (SWC) Type of Contract: Design, Build & Operate Product Flow: 66 MGD (250 ML/Day) Product Quality: <115 ppm TDS, 0.4 ppm Boron Product Quality: <115 ppm TDS 0 4 ppm Boron • Provides 15% of the total water to Sydney • Three (3) permits required ( )p q
  • 7. Kurnell Residents Towra Point  ( Ramsar Wetland) Caltex Refinery  Caltex Refinery Approx 300m Inlet Risers Inlet Riser Serenity Cove  Film Studios Botany Bay  National Park  Approx Site  Tunnels Boundary (Approx  alignment) Desalination Plant  Construction Site Outlet  Risers Riser
  • 8. Sydney Process Flow Sydney Process Flow
  • 9. Sydney
  • 10. Pretreatment Operation at 33% 66% with all filters online – 33%-66% • > low filtration rate (<4m/h) • SDI<3, filtration cycles > 55 hours SDI 3, • No acid dosing => better Boron rejection on the 1st pass and less NaOH dosing Operating at 100% • Filtration rate 6.7 m/h • Filtration cycle >40 hours • SDI < 3 at all times • F i sulfate dose-rate 7-9 mg/L Ferric lf t d t 79 /L • Influent turbidity 2 NTU, up to 10 NTU during shock chlorination
  • 11. Fujairah 2 SWRO/MED j / Hybrid Plant ‐ SWRO 136,000 m3/D (36 MGD) – MED  455,000 m3/D (120 MGD) – combined 156 MGD 2007  2010 2007 –2010 US$860 Million (SWRO & MED) Design & Construct
  • 12. F2 Location F2 Location
  • 13. Project Specifics Project Specifics
  • 14. Process
  • 15. 3D View SWRO 3D View SWRO
  • 16. Site Conditions Site Conditions 17
  • 17. Kindasa Kindasa, 25,500 m3/Day (6.7 MGD) SWRO – Media Filtration followed by UF
  • 18. Kindasa : Plant Overview Kindasa : Plant Overview Brine to Outfall Self cleaning Strainers g N pment 1st pass RO Acid storage and  s  pre treatment  pre treatment st Pass HP Pumps e dosing equip chemical dosing & Boosters Lime 1s Raw Seawater in Pre treatment Chemical dosing Seawater Intake Post treatment Post treatment Backwash 2nd pass RO O Chemical dosing Backwash Tank Raw Seawater Pumps Filtered Seawater Ultra‐filtered Seawater Substation MV & LV Switchgear Permeate Admin & Control Building Variable Speed drives Brine Product to Storage Tank MV/LV Transformers HV/MV Transformers 150m
  • 19. Ashkelon – 326,000 m3/Day (86 MGD) SWRO
  • 20. Considerations Pre‐treatment options Evolving technologies Short term Medium term Long term Costingg Siting
  • 21. Pre‐treatment Options
  • 22. Desal Plants, Evolving Technologies Desal Plants, Evolving Technologies Short term •E i i Existing technologies, minor improvements h l i i i • Brine management, i.e. ZDD Medium term M di t • Nano‐membranes (up to 15% reduction in energy), huge impact  on the over 100,000 SWRO membranes we have installed  , worldwide Long term • Forward osmosis • Alternate membranes • Bi‐products from brine 
  • 23. Financial Considerations, Capex Financial Considerations, Capex Identifying obstacles to cost‐effective operations Large scale vs. smaller scale plants L l ll l l Location • Cost of land • Proximity to existing potable water distribution network • P i it t l t i l Proximity to electrical power network t k Public Outreach Plant Availability Intake & Pre‐treatment Selection • Subsurface vs. open intake • Quality of water with incidence on number of process steps Environmental & Permitting Concerns associated with above
  • 24. Financial Considerations, Opex Financial Considerations, Opex Up to 50% of the Opex costs can be in energy consumption Energy Consumption • Minimize the process train, eliminate  pumps • Use latest proven energy recovery  devices • Plan for future developments (i.e.  membranes, etc) b ) • Length and head losses of distribution  network Chemical Consumption Chemical Consumption • Reduce the amount of chemicals  needed by minimizing the pre‐ treatment process • Minimize the amount of waste created Others • Consider life cycle costs when designing  y g g and constructing the plant
  • 25. Citing Selection & Challenges Citing Selection & Challenges Subsurface intake • Reduces power consumption by 5‐10% • Reduces chemical consumption by 5‐10% •R d Reduces the overall footprint of the plant by 10‐20% th ll f t i t f th l t b 10 20% • Reduces impingement & entrainment issues   Existing Potable water network Existing Potable water network • Reduces overall cost • Permitting and land issues Permitting and land issues Existing Power network • Reduces overall cost Reduces overall cost
  • 26. Conclusion No single pre‐treatment for all applications N i l t t tf ll li ti Incorporate lessons learnt Adapt to local environment & culture Ad t t l l i t & lt THANK YOU

×