Built to Last - Jerry Young
Upcoming SlideShare
Loading in...5
×
 

Built to Last - Jerry Young

on

  • 1,382 views

 

Statistics

Views

Total Views
1,382
Slideshare-icon Views on SlideShare
1,261
Embed Views
121

Actions

Likes
0
Downloads
15
Comments
0

3 Embeds 121

http://www.sbga.org 89
http://sbga.org 25
https://www.sbga.org 7

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Built to Last - Jerry Young Built to Last - Jerry Young Presentation Transcript

    • How can we improve our schools  by selecting proper materials  y gp p during renovation projects. Presented by: Jerry Young, AIA  LEED AP Managing Partner Young + Wright Architectural
    • Successful  habits of  h bi   f  visionary  school  districts
    • History of “green” and  “sustainable” design  “ i bl ” d i   practices CHPS (Collaborative for  High Performance Schools,  Hi h P f  S h l   Inc.)  Why we should build high  performance classrooms  Process Discussion (how do  we make decisions) Products Discussion Roofing Flooring Windows 
    • Green/sustainability is not a trend; it’s becoming law g California Legislation Title 24 sets energy efficiency  standards Government agencies requiring LEED Certification  Regulation Concerns Air quality Pesticide usage Green/sustainable design is here to stay
    • On the horizon: Federal Trade Commission guidelines on  environmental claims.  A flood of products labeled  “sustainable,” “renewable” or just plain “green” has the FTC  digging into enforcement issues, with four actions taken this  digging into enforcement issues  with four actions taken this  past summer alone. Firms will have t0 substantiate claims, indicated what it is that  Firms will have t0 substantiate claims  indicated what it is that  makes one type of product more environmentally friendly than  another.  It won’t be enough to simply prove a product is made  from recycled material or that raw materials used are renewable,  from recycled material or that raw materials used are renewable   for example.  Chance are manufacturers will also have to clarify  how that saves water, reduces carbon footprints or the like. 
    • 1999‐ founded as a collaboration of California’s major  j utilities Expanded to address all aspects of school design  construction and operation  2006 ‐ Massachusetts developed guidelines September 2007‐ New York State Education  Department guidelines are based on the  Massachusetts program October 2009‐ Northeast Collaborative for High  Performance Schools (New England States) 
    • Developed by US Green Building Council  g Provides by framework for identifying and  implementing practical and measurable green building,  design, construction, operations and maintenance  design  construction  operations and maintenance  solutions 1998‐ LEED 1.0 pilot program released 99 p p g 2000‐ LEED 2.0 released  April 2009‐ LEED v3
    • CHPS incorporates core material of the LEED system CHPS‐ purpose to provide a framework to design and  build sustainable school buildings that enhance the  educational environment and facilitate learning  d i l  i   d f ili  l i   9 LEED Certified K‐12 Educational Projects in NYS 2 CHPS Projects in NY  CHPS P j t  i  NY One third party verification One self verification One self‐verification 46 completed CHPS projects across the US 300 projects underway seeking CHPS recognition 
    • Provide an outstanding learning environment g g Facilities must be durable  Facilities must be easy to maintain  Provide long‐term benefits to students, teachers and  taxpayers 
    • Prerequisites  – common sense points  Goals‐ 1. Improve learning environment 2. Less costly to operate 3. Conserve our natural resources 
    • Green school n. a school building facility that creates a  g healthy environment that is conducive to learning while  saving energy, resources and money. US Green Building Council, LEED for Schools 2010  www.greenschoolbuildings.org
    • A high performance school: g Provides a healthy environment  Is comfortable  Thermally, visually and acoustically  Th ll   i ll   d  ti ll   Has as much natural daylight as possible Is energy efficient gy Is resource efficient  Is water efficient Is easy to maintain and operate  I   t   i t i   d  t   Energy Trust of Oregon, Inc.
    • Teachers and students should be neither hot or cold as  they teach and learn  Natural ventilation Temperature and humidity effect learning dh d ff l “On an average day, more than 10 percent of  employees in the schools are absent, the study found. The more days of school a teacher misses, the worse  that teacher's students do on state English and math tests, the study found. And the more their teacher is absent, the more days  students are absent, the study found.”  Buffalo News, September 19, 2010  B ff l  N  S t b      
    • EPA has an indoor air quality tool  for schools http://www.epa.gov/iaq/schools Increased fresh air requirements  I d f h  i   i   Elimination of volatile organic  chemicals (VOC s) from air chemicals (VOC’s) from air Fewer allergens fewer absences 
    • Lighting is one of the most critical physical  g g characteristics of the classroom A study conducted by Pacific Gas & Energy  (California) found that classrooms with natural  (C lif i ) f d  h   l   i h  l  lighting scored 26% higher in reading and 20% higher  in math  Daylight in schools: improving student performance  and health (ASES Conference, June 16, 2000)
    • Conventional Windows Usable light under most conditions for side of class  nearest windows Frequent need to use at least half of the electric lighting More advanced day lighting designs Decreased dependence on electric lights, dependent on  the daylighting design, solar orientation and climate 
    • Acoustics should be taken into consideration  throughout the design process not when the project is  completed problems arise 
    • Define criteria for selection of “green/sustainable” products Life Cycle Cost  (initial, maintenance, replacement, disposal, environmental cost) vs.  Environmental Impact (carbon foot print, waste natural resources, use of non‐renewable) vs. Energy Savings
    • Selecting  Built to Last  products in  Selecting “Built to Last” products in  a green/sustainable world 
    • PRODUCTS Made from Recycled Materials N Y Low VOC N Y Petroleum Based Y N Y Energy Savings N Y N Y Can it be recycled? N Y N Y N
    • What is the more sustainable  strategy? Keeping an 8‐year old clunker Buying a new Volkswagen with a  B i      V lk   ith    diesel engine Buying new Toyota Prius y g y I always ask Prius people, “Your last care before the Prius, how long did you  hold on to it?” It’s 1,000 gallons of fuel just making a car, shipping it,  delivering it; the act of discarding it, recycling it, takes a lot of energy, too.   delivering it; the act of discarding it  recycling it  takes a lot of energy  too    So maybe a  better thing to do rather than buying a new Prius is keeping  your car  old car 8‐10 years.  It’s probably the more sustainable strategy.  Gadi Amit, Industrial Designer G di A i  I d i l D i Fastcompany.com October 2010 
    • Flooring Roofing R fi Walls Ceilings Windows double glazing vs. triple HVAC units Unit ventilators  U it  til t   Air handling units  Air conditioner Plumbing On‐site Generation Photovoltaic panels  Wind turbine  Generator
    • Product Quantity y ` Life Span Option 1 Option 2 Option 3 Option 4 Description Initial Cost SF Initial Cost Yearly Maintenance Cost 30 Year Maintenance Cost Replacement Years Replacement Cost 10 Replacement Cost 20 Replacement Cost 30 Disposal Cost Environmentall Cost E i t C t 30 Year Life Cycle Cost
    • Product Hallway Flooring Quantity 10,000 sf y Life Span 30 years Option 1 Option 2 Option 3 Option 4 Description Terrazzo VCT Carpet Tile Initial Cost SF $13.50 $1.25 $1.50 $6.00 Initial Cost $135,000 $12,500 $15,000 $60,000 Yearly Maintenance Cost 25₵ 35₵ 75₵ 25₵ 30 Year Maintenance Cost $75,000 $105,000 $225,000 $75,000 Replacement Years 50 25 10 35 Replacement Cost 10 0 0 17,500 0 Replacement Cost 20 0 15,000 20,000 0 Replacement Cost 30 0 0 22,500 0 Disposal Cost 0 0 ? 0 Environmentall Cost E i t C t 0 0 0 0 30 Year Life Cycle Cost $210,000 $132,5000 $300,000 $135,000
    • Materials Wood Aluminum Steel Plastic Glazing Double D bl Double w/low E Double w/argon gas g g Triple Shading Coefficient
    • HVAC Equipment Life cycle cost Lif   l   t Environmental impact Energy savings Right sizing equipment vs. over designing Right sizing equipment vs  over designing Plumbing Low flow fixtures Rain water collection  Gray water Electrical design  Demand savings Energy management savings Low wattage fixtures Energy star equipment   gy q p
    • Solar Photo voltaic Solar Hot water Wind 
    • Life Cycle Cost Initial cost Maintenance cost Replacement cost Environmental Impact Use of natural resources Toxic effect on occupants p Ability to recycle Energy Savings