Your SlideShare is downloading. ×
Hesse et al 2009
Upcoming SlideShare
Loading in...5

Thanks for flagging this SlideShare!

Oops! An error has occurred.


Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Hesse et al 2009


Published on

Pollen Terminology

Pollen Terminology

Published in: Education, Technology

  • Be the first to comment

No Downloads
Total Views
On Slideshare
From Embeds
Number of Embeds
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

No notes for slide


  • 1. W
  • 2. Michael Hesse Heidemarie Halbritter Reinhard Zetter Martina Weber Ralf Buchner Andrea Frosch-Radivo Silvia UlrichPollen TerminologyAn illustrated handbook SpringerWienNewYork
  • 3. Univ.-Prof. Dr. Michael HesseDDr. Heidemarie HalbritterAo.Univ.-Prof. Dr. Reinhard ZetterAo.Univ.-Prof. Dr. Martina WeberDipl.-Biol. Dr. Ralf BuchnerAndrea Frosch-RadivoMag. Silvia UlrichUniversity of Vienna, AustriaThis work is subject to copyright.All rights are reserved, whether the whole or part of the material is concerned,reproduction by photocopying machines or similar means, and storage in databanks.Product Liability: The publisher can give no guarantee for all the informationcontained in this book. This does also refer to information about drug dosageand application thereof. In every individual case the respective user must checkits accuracy by consulting other pharmaceutical literature. The use of registerednames, trademarks, etc. in this publication does not imply, even in the absence -tive laws and regulations and therefore free for general use.© 2009 Springer-Verlag/WienPrinted in AustriaSpringerWienNewYork is part ofSpringer Science + Business Mediaspringer.atCover Illustrations: Agrostemma githago (SEM, HH), Pinus sp. fossil (LM, RZ),Ruellia graecicans (SEM, HH), Phyllanthus x elongatus (SEM, HH), Argyranthe-mum sp. (TEM, AF-R), Acacia myrtifolia (SEM, HH), Leontodon saxatilis (SEM, HH)Layout: Dr. Ralf Buchner, Wien, AustriaPrinting: Holzhausen Druck und Neue Medien GmbH, 1140 Wien, AustriaPrinted on acid-free and chlorine-free bleached paperSPIN: 12045303With numerous (partly coloured) FiguresLibrary of Congress Control Number: 2008941153ISBN 978-3-211-79893-5 SpringerWienNewYork
  • 4. Pollen TerminologyAn illustrated Handbook Michael HESSE, Reinhard ZETTER,Heidemarie HALBRITTER, Martina WEBER,Ralf BUCHNER, Andrea FROSCH-RADIVO, Silvia ULRICH
  • 6. In memory of Jan MULLER and Wilhelm KLAUS, who played a prominent rolein the study of fossil and extant pollen.
  • 7. There are more things in heaven and earth, than are dreamt of in our philosophy.PrefaceT he principal aim in compiling this book Manfred A. FISCHER Alfred GLASER information about the structure and Lynn HANNONoutlook of the extremely manifold pollen in Barbara HERMANOWSKIseed plants. Anton IGERSHEIM Pollen Terminology. An illustrated Handbook Irmgard JÄGER-ZÜRNshould not be seen as a mere collection of Christel KASSELMANNstriking and/or informative light and electron Nadja KAVCIKmicrographs. Each of the micrographs is Alexander KOCYAN Wolfgang KOLLERrelated to properties and functions of the Thomas LENDLpollen grains shown. The authors hope that Claudia LOOSthe book will be useful for experiencedresearchers as well as for beginners in paly- Wolfgang OBERSCHNEIDERnology, but also for medicine, biochemistry, Marianne PEROUTKAor even for lawyers and artists as an aid and Paul RADIVOguide for the evaluation and interpretation Saskia SAM-RICHTARZof pollen features. Johannes SCHACHNER Ursula SCHACHNER Barbara SIMONAcknowledgements Susanne SONTAG Robert STANGL Many people were involved in various Rupert STINGLaspects of this book project and the authors Matthias SVOJTKAwould like to acknowledge and thank them Angelika SYROVATKAfor their time, suggestions and encour- Enikö TWERASERagement during the various developmental Walter TILLphases of this book and/or for providing Stefan VOGELplant material. Bruno WALLNÖFER Arabella WURZINGER Among the many other colleagues, who Klaudia ZETTERcontributed substantially, the authors want The staff members of the Botanicalto thank (in alphabetical order): Garden of the University of Vienna (HBV) The staff members of the Bundesgärten Wolfram ADLASSNIG Wien_Innsbruck Elisabeth ANGER Josef BOGNER A special note of thanks is due to Paula BOMBOSI Mag. Franziska BRUGGER and to Mrs. Silvia Perica BRODARIC SCHILGERIUS of the team at Springer Vienna Thomas CROAT for their great support and patience during Bernadette DIETHART the preparation of this book. David Kay FERGUSON
  • 9. CONTENTGENERAL CHAPTER Introduction _______________________________ 5 Guidelines ________________________________ 7 Rules for Using Prefixes__________________________ 8 Palynology _______________________________ 11 The Science of Pollen and Spores ______________ 11 A Brief History of Palynology ___________________ 12 A Tentative Outlook___________________________ 13 Pollen Morphology________________________ 15 Polarity and Symmetry ________________________ 15 Apertures_____________________________________ 17 Structure and Function ________________________ 20 Pollen Wall ___________________________________ 20 Structure and Sculpture _______________________ 23 Harmomegathy ______________________________ 23 Why Do We Need Categories?_____________ 27 Pollen Development ______________________ 35 Microsporogenesis and Microgametogenesis __ 35 Inherence of Misinterpretation _____________ 39 Tripartite Features _____________________________ 39 Apertures as Pitfalls ___________________________ 42 Pollen Features can be Ambiguous ____________ 44 Controversial or Fuzzy Terms_______________ 47 Acalymmate/Calymmate_____________________ 47 Areolae/Areolate ____________________________ 47 Pseudocolpus ________________________________ 48 Retipilate _____________________________________ 48 Zona-, Zono- etc. _____________________________ 48 Methods _________________________________ 51 Scanning Electron Microscopy ________________ 51 Acetolysis and Light Microscopy _______________ 51 Single-Grain Technique _______________________ 51 Transmission Electron Microscopy ______________ 52 Acetocarmine Staining for Light Microscopy____ 52 How to Describe a Pollen Grain ____________ 55
  • 10. INTRODUCTIONIntroductionP ollen Terminology. An illustrated range of features. This can be achieved only Handbook is a collection of useful with micrographs, which demonstrate – a terms in palynology, well illustrated picture is telling more than thousand wordswith light (LM) and electron microscope – the often stunning diversity of features. For that reason, the explanatory poweran encyclopedic compilation of terms; in of micrographs produced with scanningthat respect see KREMP (1968). The focus is electron microscopy (SEM) and transmissionon the pollen of seed plants, predominantly electron microscopy (TEM) is used in theangiosperms, while spores are considered present volume. The numerous SEM micro-only exceptionally. Therefore the termi- graphs illustrating the astonishing diversitynology rarely includes spore or gymnosperm of pollen ornamentation. Where importantcharacteristics (e.g., leptoma, trilete mark). terms have appeared ambiguous or have Since 1994, the Glossary of Pollen been hitherto underrated, the term hasand Spore Terminology, co-authored by been reviewed and brought into focus (e.g.Wim PUNT, Stephen BLACKMORE, Siwert harmomegathy, or pollen class versus pollenNILSSON and Annick LE THOMAS, was the type).standard reference publication in paly- It is self-evident that such a book cannotnological terminology. Then, in 1999 the renounce the basics of palynology. Inonline version by Peter HOEN (http://www. this context please consult standard books in palynology, e.g., ERDTMAN (1952),appeared, with several additions. The FÆGRI and IVERSEN (1989) or BEUG (2004).online version was published by W. PUNT, The principles of pollen development andP.P. HOEN, S. BLACKMORE, S. NILSSON and morphology are incorporated as separateA. LE THOMAS in 2007 and provides inform- chapters for purposes of clarity and in orderative schematic drawings containing the to correctly interpret the detailed struc-essentials of each term and colored to tures of the pollen wall and the full range ofindicate the wall and aperture components, ornamentation. Although extremely useful for overviewpurposes, drawings cannot show the full GENERAL CHAPTER 5
  • 11. GUIDELINESGuidelinesT he aim of this book is to provide a fully more precisely, to show the full range of a illustrated terminology and glossary of single character). Brief information on the the most important palynological terms, method of preparation is often provided.including a substantial standardization of In preparing pollen for SEM micrographs, acetolysis was avoided as far as possible. Underrated pollen conditions, e.g., thethey belong to the terminology of fern spores, physical condition of the turgescent, life-likewhich is not considered here. A compre- pollen, are considered. The SEM micrographshensive description of pollen grains with terms usually represent the turgescent condition,mentioned in "Pollen Terminology. An illus- without further notice. Consequently, pollentrated Handbook" is easily accomplishable. grains are often shown in dehydrated stage, A strict rationalization of terms on the basis marked as “dry pollen”. The deviating char-of practical criteria has been attempted. acters in turgescent and dry pollen grainsFor consistency, phrases are standardized are designated by descriptive pictorial termsas far as possible; for example, features of such as cup-shaped, boat-shaped and aperture “pollen wall with ….”, and pollen wall fea- Comments are provided where this maytures (or pollen shape and size) as “pollen help in the application of a term or to qualifygrain with ….”. the circumstances in which it is used. Self-explanatory general terms are usuallybeen reworded, newly circumscribed, orbrought into focus. In addition, consistent noted (e.g., circular, see outline). For moreapplication of EM techniques and the now- information on these see the appropriateadays better understanding of pollen fea- page(s) in chapter "Illustrated Glossary". Three categories of terms are used: important terms are printed in bold and areterms according to applied techniques (LM, usually illustrated; terms of minor importanceSEM, TEM) and their usage in morphological, are printed in regular script, usually withoutanatomical and/or functional context. In illustrations (if necessary, terms in chapterchapter "Alphabetic Glossary" the entries are "Alphabetic Glossary" are sometimes also illustrated in a footnote); terms printed inprovided with numbers in bold referring to italics are not recommended and often pro-the respective page in chapter "Illustrated vided with an explanatory comment.Glossary"1 and numbers in square brackets The chapter "Illustrated Glossary" is sub-referring to important literature (see chapter divided into larger topics, e.g., “Shape and"Bibliography"). Size” or “Ornamentation”. The terms them- Emphasis is given to the numerous illus- selves are listed according to their resem-trations. The worldwide largest database blance in order to provide the user with aon pollen, PalDat ( side-by-side spectrum of similar the main source of pictures. Each term is For a quick orientation please use the lastillustrated with LM or EM pictures in order to page of "Pollen Terminology. An illustratedpoint out the character range of a term (or, Handbook". It is a fold-out page with terms alphabetically arranged. Numbers indicate the page in chapter "Illustrated Glossary". 1 Please note: literature references are not nec-essarily the earliest publication in which the term was In contrast to chapter "Illustrated Glossary"used. The comprehensive literature list (see chapter the terms in chapter "Alphabetic Glossary""Bibliography") includes beside the references more are throughout arranged alphabetically asand other (and preferably recent) publications whichhave been selected as sources of further information. the noun and the corresponding adjectival GENERAL CHAPTER 7
  • 12. GUIDELINES tends to become foggy, REITSMAform, if appropriate. Few terms are used resolute step to overcome this problem. A concise terminology now became available, though unfortu-exclusively as nouns or exclusively as adjec- nately not taking account of the range of variationtives. Sometimes two adjectival variants of most of the palynological features, and without(-ate, -ar) are used but, if so, in two different drawings or micrographs. FÆGRI and IVERSEN (1989, 4th ed.) restricted their glossary to terms exclusivelymeanings. For example: from the noun used in their book. MOORE et al. (1991, 2nd ed.) pro-granulum (sculptural or structural element vided a glossary of selected terms used in their pollen and spore keys. Standardization came with theof differing size and shape, less than 1 μm glossary by PUNT et al. (1994), updated in 2007. Thein diameter) derive the two adjectival forms main advance of their concise and comprehensive terminology is the consistent usage of drawings andgranular and granulate (both meaning the critical comments on terms and usage.“with granules”); these are correspondingterms used in two quite different contexts:granular describes a distinct type of infra- Rules for Usintectum hence a structural feature whereasgranulate refers to an ornamentation feature If both a Greek and a corresponding Latin– a sculpturing element. Both the singular and the plural are used consistently: panto- (not peri-), ekto-given consistently for Latin terms. The English (not ecto-), or the Greek di- (dis-), and notspelling of the Latin term is added (porus, the Latin bi- (bis-). There are few exceptionspl. pori, engl. pore) if the English form is from this rule. If the Latin form is more widelypreferable. used, then the term is treated as a nomen Cross-references are given to terms conservandum; for example, bisaccate isthat are synonyms (the preferable one is found exclusively in the literature and notprinted in bold) or that indicate the opposite the Greek form disaccate.condition (antonyms), e.g., homo- and Micro-heterobrochate. is used to denote features <1 μm: micro- Numbered literature references are reticulate, -echinate, -verrucate, -baculate,given for each term in chapter "Alphabetic -clavate, -gemmate, -rugulate. However,Glossary" and are not necessarily the earliest some possible combinations are not appli-publication in which the term was used. cable; for example, micro-striate or micro- perforate. Striae are not known to be PUNT et al. (2007) provide the basis of the presentterminology. Many terms in palynology were coinedat a time when only LM observations were available. describes a feature <1 μm.Mainly for historical reasons, inconsequent nomen- Terms not listed in the glossary belongclatural applications, enumerations of synonyms, and to fern or moss spores, or are considered asand the same term. obsolete, diffuse or redundant (e.g., multi- During the 20th century questions of terminologybecame more and more problematic. The mainreasons were the greatly increasing number of pub- because plicate pollen grains are alwayslications in palynology, dealing with sometimes insuf- equipped with several to many plicae), orand simultaneously the advent of manifold applied may be a permanent source of confusion (zon-, zona-, zoni-, zono-).authors used their own terminology. The situationbecame worse in the 1970s and 1980s, leading to a "Pollen Terminology. An illustrated Handbook"variety of terminological “schools”. aims to clearly separate the types and Nonetheless, in the 1950s attempts were made classes of pollen. Pollen type is a generalterms more precisely. A deserving, widely accepted term categorizing pollen grains by distinctbut all-too restricted list of pollen morphological terms combinations of characters and is oftenIVERSEN and TROELS-SMITH. Later, KREMP (1968), in his used in connection with a distinct taxonfamous encyclopedia, provided a monumental enu- (e.g., Polygonum aviculare type).meration of all known terms . Being aware of the danger that pollen terminology
  • 13. GUIDELINES Pollen class2 porate, porate, synaperturate, spiraper-of pollen grains that share a single, dis- turate, lophate, clypeate and plicate. Thesetinctive character. Pollen classes refer topollen units, to aperture form and location, they have a good diagnostic, althoughor to an extremely distinctive ornamen- mostly no systematic, value. In general,tation character. Classes include the terms a pollen grain may belong to more thanpolyads, tetrads, dyads, saccate, inap- one pollen class; in such cases the moreerturate, sulcate, ulcerate, colpate, col- Pistia: plicate - inaperturate, Hemigraphis: 2 "Pollen type" is sometimes (colloquially) plicate - colporate, Typha: tetrads - ulcerate,misused; for example, Croton type, which is a distinct Rhododendron: tetrads - colporate).feature of ornamentation and is correctly termedCroton pattern. GENERAL CHAPTER 9
  • 14. PALYNOLOGYPalynologyThe Science of Pollen and Spores haploid counterpart of the much larger diploid plant body "as we see it in nature".T he term palynology was coined after a During transport pollen grains are com- written discussion with Ernst ANTEVS and pletely separated from the parent plant and A. Orville DAHL in the Pollen Analysis perfectly adapted for their role – the transferCircular no. 8 by HYDE and WILLIAMS of male genetic material – and are able to(1944) and is a combination of the Greek resist hostile environmental stress on their (male haploid) organisms usually have as variable parameters: the pollen shape and size, the number, type and position of aper- tures and the pollen wall with its extremely diverse structure and sculpture. The char-speech”). acters of these parameters in comparative Palynology is the science of paly- pollen (and spore) morphology and plantnomorphs, a general term for all entities systematics are at least as important as anyfound in palynological samples. A domi- other morphological character of the diploidnating object of the palynomorph spectrum the pollen grain, the point of origin and the The pollen grains of seed plants andcarrier for the male gametes (sperm cells). the spores of mosses and ferns share many What makes pollen grains so unique? homologies. However, although probablyPollen grains represent an extra generation equivalent, the terminology of spore wallin seed plants, the highly reduced male strata differs, mainly for historical reasons,gametophyte (the enclosing sporoderm from the terms used for pollen grains. Someand the cellular content, consisting of two elements and/or features of spores areor three cells, and the pollen tube). Pollen unknown in pollen grains, e.g., the outermostgrains are therefore not simply parts of a wall layer in many fern spores, called theplant, such as leaves or seeds, but are the perine or perispore. HYDE and WILLIAMS (1944) The right word. Pollen Analysis Circular 8: p. 6 GENERAL CHAPTER 11
  • 15. PALYNOLOGYA Brief History of Palynology New and better microscopes enabled Hugo von MOHL (1834) and Carl JuliusThe Very Early Beginnings FRITZSCHE (1837) to separate clearly the Assyrians are said to have known the principal layers of the pollen wall and toprinciples of pollination, but it is unclear if publish surveys on pollen morphology ofthey recognized the nature and power of many angiosperm families. The terms pol-pollen itself. Greeks and Romans, and the lenin, exine and intine go back to FRITZSCHE.Middle Ages up to the 16th century did not Johann Heinrich Robert GÖPPERT (1837)contribute substantially, as far as is known. and Christian Gottfried EHRENBERG (1838)The Era of the Light Microscope pollen grains. Eduard STRASBURGER (1882) A comprehensive historical survey is achieved ground-breaking insights intofound in WODEHOUSE (1935) and especially the development and internal structure ofin DUCKER and KNOX (1985). Only the most pollen. Hugo FISCHERimportant scientists can be mentioned here; to summarize the arguments for the phylo-the list is not exhaustive. genetic value of pollen characters. Pollen It was Nehemiah GREW who as early as1662 in his famous work "The Anatomy ofPlants" described the constancy of pollen von POSTform within the same species; in other words,he founded pollen morphology and was the The 20th century up to ca 1960 was domi- nated by the skilful use of the LM, with manypollen. Carl von LINNÉterm pollen (in Latin). During the 18th and a method for analyzing patterns of exinethe early 19th centuries there was consid- organization by light microscopy: focusingerable progress on pollen and the under- at different levels distinct features appearstanding of pollination. For example, Joseph bright (L = Lux) or dark (O = Obscuritas).Gottlieb KOELREUTER (1766), together with Textbooks by Roger WODEHOUSE (1935),Christian Konrad SPRENGEL, the founder of Gunnar ERDTMAN (1943, 1952, 1969), or Knut FÆGRI and Johannes IVERSEN (1950) sum- marized the knowledge on pollen at that time and to a great extent have maintainedimportant part in determining the characters their value. thof the offspring. century paly- SPRENGEL nology as a predominantly basic sciencepores and furrows in the pollen wall; he also “went applied”, giving rise to a series ofdemonstrated the effects of cross pollination,of dichogamy, and distinguished between in use, include aeropalynology, biostratig-entomo- and anemophily. raphy, copropalynology, cryopalynology, Johannes PURKINJE (1830) and Franz forensic palynology, iatropalynology, melisso-Andreas (Francis) BAUER, among others, palynology, paleopalynology, pharmaco-also made substantial contributions. BAUER palynology, among others.and watercolors of pollen, now held in The Era of the Electron Microscopethe Botanical Library of the Natural History As pointed out by KNOX (1984, p. 204):Museum, London. Only a few facsimiles "The terminology applied to the pollenhave been published, e.g., in KESSELER and wall is daunting, especially as it has beenHARLEY (2004). Robert BROWN (1828, 1833) developed from early light microscopy work, BAUER’s earlier and then transposed to the images seen in the transmission and scanning electronorigin of the pollen tube. microscopes".
  • 16. PALYNOLOGY Electron Microscopy with its two most Nowadays the LM (with basic andimportant types, TEM and SEM, facilitated advanced equipment) and the two mainthe major breakthrough in palynology: the types of EM form an expedient combinationultrastructure of developing and mature of imaging techniques. The LM remains thepollen and the stunning visualization of workhorse method (TRAVERSE 2007; seepollen morphological characters. the compendia by REILLE 1992, 1995 and During the 1950s and early 1960s con- 1998) but is limiting insofar as morphologicalsiderable progress in TEM preparation and structural features at species level, not observable by LM but of diagnostic value,staining) took place. The resolving power of are routinely determinable only by SEM. Thethe TEM was the basis for new information role of SEM as an essential part in illustratingon pollen grain ultrastructure and pollen exine sculpture and ornamentation cannotdevelopment. Nevertheless, EM-based infor- be overrated (HARLEY and FERGUSONmation on ornamentation details of pollen 1990).grains was rare up to the mid-1960s. OnlyTEM-based casts or replica methods wereavailable, all of them with limited resolution A Tentative Outlookand depth of focus (e.g., the single-stagecarbon replica technique; ROWLEY and Nowadays, palynology, as an organ-FLYNN 1966, FLYNN and ROWLEY 1967). The ismic-based science, can serve as an indis-time-consuming and laborious TEM replica pensable tool for various applied sciences,procedures were an obstacle to extensive but clearly also can stand alone as one ofsurveys of pollen morphology and have now the most developed basic sciences.been successfully replaced by SEM (HARLEY In general, compared to the diplontand FERGUSON 1990). the male gametophyte in seed plants Today barely conceivable, the intro- is yet poorly investigated. From at leastduction of SEM in palynology in the second 250.000 plant species onlyca 10 percenthalf of the 1970s was a key innovation in the have been studied with respect to pollen grain morphology, and regarding pollenAdvantages of SEM include the relatively grain anatomy it is much less.simple and rapid preparation methods, the In the 21st century, no matter what roleunsurpassed depth of focus revealing anoverwhelming vividness and power. SEM of science or more probably a bundle ofquantum leap in EM (HAY and SANDBERG of our knowledge of pollen grains and in this context the enhancement of pollen termi-published by THORNHILL et al. (1965) and nology. Modern palynologists, making useERDTMAN and DUNBAR (1966). of LM as well as EM, need for descriptive Since then palynologists have been pro-vided with a plethora of beautiful micro- pollen terminology, covering the richnessgraphs. "The scanning electron micro- of features and the enormous spectrum ofscope has provided a greater impetus palynology than any other technicaldevelopment during the history of thesubject." (BLACKMORE 1992). GENERAL CHAPTER 13
  • 17. POLLEN MORPHOLOGY Pollen Morphology A diagrammatic representation of the main morphological features of equatorial plane a palynomorph (preferably pollen grains or spores) is called palynogram. It includes parameters of symmetry, shape and size, aperture number and location, Polarity and Symmetry Mature pollen is shed in dispersal units. The post-meiotic products either remain per- manently united or become partly or usually completely disintegrated. In the latter case the dispersal unit is a single pollen grain, a monad; if the post-meiotic products remain united, dyads (a rare combination), tetrads or polyads (massulae, pollinia) are the result. Pollinaria are dispersal units of two pollinia including the sterile, interconnecting appendage. Tetrad stage orientation of microspores microspore’s center, perpendicular to the polar axis. Therefore, the equatorial plane divides the pollen grain into a proximal and a distal half. Isopolar pollen grains have identical proximal and distal poles, thus the equatorial distal poles plane is a symmetry plane. In heteropolarshaded green pollen grains the proximal and distal halves are different. Pollen shape and aperture location Polarity directly relate to pollen polarity, which is determined by the spatial orientation of the microspore in the meiotic tetrad and can be examined only in the tetrad stage. The of each microspore runs from the left: , orientated towards the tetrad isopolar center, to the distal pole at the outer tetrad right: side. The equatorial plane is located at the heteropolar GENERAL CHAPTER 15
  • 18. POLLEN MORPHOLOGY The various arrangements of the four (probably restricted to Proteaceae, no per- microspores within permanent or disinte- manent tetrads). grating tetrads depend on the simultaneous or successive type of cytokinesis and on Aperture arrangement the type of intersporal wall formation. The spatial arrangement of microspores after simultaneous cytokinesis is usually a tetra- hedral tetrad. This arrangement is of sys- tematic relevance. The spatial arrangement of microspores after successive cytokinesis leads to different tetrad types without any systematic relevance: planar (tetragonal, linear, T-shaped) or non-planar (decussate or tetrahedral). Fischer‘s lawTetrad arrangement tetrad tetrahedral Fagus sp. Fagaceae, fossil (exceptional Garside‘s law Pollen shape refers to the P/E-ratio: the ratio of the length of the polar axis (P) to the equatorial diameter (E). In spheroidal (or isodiametric) pollen grains the polar tetrad planar axis is ± equal to the equatorial diameter. Pollen grains with a polar axis longer than Typha latifolia Typhaceae the equatorial diameter are called prolate; grains where the polar axis is shorter than the equatorial diameter are described as In pollen grains with three apertures, two oblate. types of aperture arrangement occur after Pollen shape simultaneous cytokinesis (disintegrating or permanent tetrahedral tetrads). Fischer’s law refers to the most frequent arrangement where the apertures form pairs at six points left: oblate in the tetrad (e.g., Ericaceae, permanent mid: spheroidal tetrads). Garside’s law refers to the unusual right: prolate arrangement of apertures where they form groups of three at four points in the tetrad
  • 19. POLLEN MORPHOLOGY Pollen size an aperture are called inaperturate. Thesize the largest diameter is used. It also gymnosperm pollen, but in gymnospermsdepends on the degree of hydration and the type of aperture usually differs from thatthe preparation method. Because of this in angiosperms, since often a leptoma isand natural variation, a bandwidth desig- present. Note: unless stated otherwise, thenation is recommended. A diameter indi- following sections deal with angiospermcation in the range of, e.g., less than 1 μm is aperture constructs only.not recommended. The polarity of the pollen determines the The use of the following size categories aperture terminology. A circular aperture ismay be helpful: very small (<10 μm), small called a porus if situated equatorially or glo-(10–25 μm), medium (26–50 μm), large bally; if situated distally it is called an ulcus.(51–100 μm) and very large (>100 μm). An elongated aperture is called a colpus if situated equatorially or globally; if situated distally it is called a sulcus. A combinationApertures of porus and colpus is termed a colporus;The many facets of an allegedly simple character colpori are situated only equatorially or glo- bally. Colpi and colpori (colpi and pori) mayNomenclature and Typology be present simultaneously in some taxa; An aperture is a region of the pollen this condition is called heteroaperturate. A circular or elliptic aperture with indistinctthe wall in its morphology and/or anatomy, margins is a poroid.and is presumed to function usually as The number of equatorial aperturesthe site of germination and to play a role (pori, colpi, colpori) is indicated by the pre-in harmomegathy. Pollen grains lacking Pollen grain polarity dicots Bellis perennis Asteraceae polar view equatorial view GENERAL CHAPTER 17
  • 20. POLLEN MORPHOLOGYPollen grain polarity monocots Allium paradoxum Alliaceaeproximal polar view distal polar view equatorial view equatorial view
  • 21. POLLEN MORPHOLOGY Tetrad mark in spores hexa- are sometimes used. (Writing numbers 4-porate or tetraporate, 6-colpate or hexa- colpate. "Pollen Terminology. An illustrated Handbook" pollen grain with more than three apertures at the equator is also called stephanoaper- turate (stephanoporate, stephanocolpate, Polypodium sp. stephanocolporate). Pollen grains with Polypodiaceae, fossil globally distributed apertures are called monolete tetrad mark pantoaperturate. polar view The polarity gives rise to the polar and the equatorial view. In dicots there is usually one polar and one equatorial view. In monocots, due to the mostly distal aperture, there are four views: a proximal polar, a distal polar, and two different equatorial views. Proximal germination is unknown in seed plants and is restricted to spores, which germinate at the tetrad mark, the so-called Sphagnum sp. laesura (extensive overview: TRYON and Sphagnaceae, fossil LUGARDON 1991). trilete tetrad mark Pre-(prae-)pollen (microspores of certain polar view extinct seed plants) is characterized by proximal and distal apertures, and by presumed proximal germination, producing motile spermatozoids.Pre-pollen indet. Pteridaceae, fossil trilete tetrad mark polar viewpolar view Apertures are normally covered by an exinous layer, the aperture membrane. Aperture membranes can be ornamented, Cryptogramma crispa e.g., covered with various exine elements, or Pteridaceae can be smooth. In contrast, an operculum trilete tetrad mark is a thick, coherent exine shield and covers the aperture like a lid. In general, aperture membranes are infolded in dry pollen state; after acetolysis the aperture membrane may be lost. GENERAL CHAPTER 19
  • 22. POLLEN MORPHOLOGY Number, type and position of apertures Cephalotaxus sp. are genetically determined and usually Cephalotaxaceaeexine shedding prior to sometimes vary (e.g., number of apertures in pollen tube formation stephanoaperturate pollen grains). Structure and Function The aperture usually acts as the (exclusive) germination site. Pollen tubes in inaperturate angiosperm pollen are produced without a preformed exit zone. In pollen the exine ruptures during hydration at a spe- cialized region, the tenuitas, ulcus, or papilla in the center of a circular leptoma and is subsequently shed. The intine including the protoplast is released and a pollen tube can be formed anywhere (resembling functionally an inaperturate pollen grain). Furthermore some angiosperm taxa shed the exine fresh pollen in water before pollen tube formation, e.g., in some Annonaceae. Instant pollen tubes During germination, usually a single pollen tube is formed. However, sometimes tube-like structures ("instant pollen tubes") are simultaneously formed in the anther or very quickly in shed pollen immediately after water contact. Their production is interpreted as a pre-germinative process (BLACKMORE and CANNON 1983). Scabiosa caucasica Pollen Wall Dipsacaceae In general, the pollen wall (sporoderm) of seed plants consists of two main layers: the outer and the inner intine. The exine consists mainly of sporopollenins, which are acetolysis- and decay-resistant biopolymers. The intine is mainly composed of cellulose and pectin. Commonly, the pollen wall in apertural regions is characterized by the reduction of exinous structures or by a deviant exine, and a thick, often bilayered Morina longifolia intine. Morinaceae Two layers within the exine are distin- guished: an inner endexine and an outer ektexine. The ektexine consists of a basal
  • 23. POLLEN MORPHOLOGY supratectal pk elements pk: pollenkitt tectum ektexine sexine exine columellae pk pk foot layer nexine endexine intine tectate atectate tectate atectatefoot layer, an infratectum and a tectum, Costathe endexine is a mainly unstructured,single layer. There are many deviations fromthis principal construction: layers may bethickened, variably structured, or lacking. Inapertural regions the pollen wall is charac-terized by a different exine construction. The terms for the outer, structured,and for the inner, unstructured exine Nyssa sp.layer are widely used in light microscopy, Nyssaceae, fossilbut do not fully correspond to ekt- and equatorial viewendexine, respectively.The angiosperm pollen wall The consists in general oftectum, infratectum and foot layer. The outerlayer, the more-or-less continuous tectum,can be covered by supratectal elements.The infratectum beneath is columellateor granular (a second layer of columellae Austrobuxus nitidus Picrodendraceae, fossilmay form an internal tectum). The foot layermay be either continuous, discontinuous or broken grain, thickening around theabsent. The may be characterized endoapertureas continuous or discontinuous, spongy orcompact, is present overall, only in aper-tures, or even completely absent. Some tenuitas (see "Illustrated Glossary") and costatypical deviations of the wall thickness are (a thickening of the nexine/endexine bor-named with special terms: arcus, annulus, dering an endoaperture). GENERAL CHAPTER 21
  • 24. POLLEN MORPHOLOGY Pollen terminology in saccate gymnosperm pollen Abies sp. Pinaceae, fossil equatorial view left: corpus right: sacci left: cappa right: leptoma Pollen types in saccate Pinus pollen Pinus sp. Pinaceae, fossil left: polar view right: equatorial viewHaploxylon-pollen-typeDiploxylon-pollen-type
  • 25. POLLEN MORPHOLOGY Extreme examples of variable ektexine Structure and Sculpturedesign include massive forms lacking almost The internal construction of the pollenreduced forms, or even their complete wall is its structure; ornamenting elements onabsence. the pollen surface (ornamentation) are sum- The typical angiosperm aperture shows a marized under the term sculpture or sculp-thick, bilayered intine. turing. However, it is not always possible to distinguish between structure and sculptureThe Gymnosperm Pollen Wall (e.g., free-standing columellae). The “Gymnosperms” comprise cycads,Ginkgo, conifers and Gnetales. The gym- Ornamentationnosperm pollen wall differs from that in This general term in palynology isangiosperms in two characters: 1. the applied to surface features. All the orna-endexine is always lamellate in mature menting features (areola, clava, echinus,pollen stages. 2. the infratectum is never foveola, fossula, granulum, gemma, plicae,columellate. The four gymnosperm classes reticulum, rugulae, striae, verruca) are arti-exhibit diverse, special constructions of theapertures. a broad morphological series and are therefore regarded as extremely variable;endexine and intine) of the gymnosperm nevertheless, they are important in pollenpollen wall is identical to that of angiosperms. description.A tectum is present in all cycads, in Ginkgo, For practical purposes a distinct featurein all Gnetales, but not in all conifers: in can be subdivided into ornamenting ele-some taxa the tectum is completely lacking ments extending 1 μm in diameter, or if(sculpture elements are situated on the foot micro-.layer). The infratectum is either alveolate or Combinations of sculptural elements aregranular but never columellate. - A special terminology is appliedto saccate pollen, i.e., Pinaceae and because of the high plasticity of its orna-Podocarpaceae. The saccus is a large menting elements. A typical micrographhollow projection from the corpus, the characterizes sculptural elements to a muchcentral body of saccate pollen grains. It is a higher degree.typical deviation of the pollen wall confor- The arrangement of ornamenting ele-mation, composed only by the exine with an ments on the pollen surface is very oftenalveolate infrastructure. Most frequently, two disparate, particularly in apertural regions.sacci are present, in some taxa even three, Pollen coatings like pollenkitt or tryphineor only a single one. Saccate pollen grains may obscure the on the proximal side of the corpus aregion termed cappa, and on the distal sidea thinned region, the leptoma. Harmomegathy In Pinus two pollen types are recognized Harmomegathic Effect (Wodehouse Effect)as of systematic value. The -pollen-type is characterized by pollen grains All living pollen grains are able to absorbwith broadly attached half-spherical air and release water; thus, each living grainsacs – in LM the leptoma shows remarkable exists in two morphologically differentthickenings (black spots). The - states: the dry and the hydrated condition.pollen-type is characterized by pollen Harmomegathic mechanisms, e.g., infoldinggrains with narrowly attached, spherical of the pollen wall, accommodate theair sacs - the leptoma does not show any change of the osmotic pressure in the cyto-thickenings. plasm during hydration or dehydration. GENERAL CHAPTER 23
  • 26. POLLEN MORPHOLOGYHarmomegathic effect Cistus creticus Cistaceae left: spheroidal right: dry pollen prolate, lobate Galium rotundifolium Rubiaceae left: oblate right: dry pollen prolate, lobate Vriesea pabstii Bromeliaceae left: oblate right: dry pollen boat-shapedLamiastrum montanum Lamiaceae left: spheroidal right: dry pollenprolate, outline elliptic
  • 27. POLLEN MORPHOLOGY The main purpose of the harmomegathic Infolding of the pollen wall after ace-effect is to protect the male gametophyte tolysis is mostly not comparable with that inagainst desiccation during pollen presen- dry state.tation and dispersal, and is often related to The harmomegathic effect dependspollination biology. predominantly on the various characters of In mature anthers, pollen is turgescent the pollen wall. Several pollen features (har-before shedding. After anther dehiscenceand during pollen presentation, water loss the mode of infolding and cannot betakes place and the pollen grain becomes considered separately:typically infolded, depending on aperture — apertures (the most important char- acter): their position, number and form.thinnings or thickenings. The pollen grain — pollen wall structure: thinned or thick-in proper dry state represents the genuine ened regions; in particular, internalharmomegathic effect and its shape is very girdles or endoapertures. If the ektexineoften typical for a family and/or genus and is is considerably reduced, its role is takentherefore of systematic relevance. over by other wall strata, namely, by a The harmomegathic effect is to some thick endexine or intine. On the otherdegree reversible. Rehydrated pollen with hand, if the exine is extremely rigid,water uptake at the stigma, or under labo- then the harmomegathic effect is onlyratory conditions, is again turgescent and marginal.largely recalls the shape before shedding. — ornamentation type.A second dehydration does not necessarily — pollen size: small pollen grains withresult in the typical dry shape but, if pollen thin walls exhibit a lesser degree of - infolding.athic effect can be induced several times in — pollen coatings: if abundant, pollenthe same way. In the case of thin walls, the coatings act as an insulating layer orsusceptible internal structure may become sheath against desiccation.irreversibly damaged, and the harmomeg- Terms used for common phenotypes ofathic effect may result in differing shapes, dry pollen include: apertures sunken, boat-often randomly. shaped, cup-shaped, interapertural area The harmomegathic effect is also infolded, irregularly infolded, not infolded.observed in pollen taken from herbarium In addition, technical terms such as, e.g.,material, and to some degree in fossil barrel-like, disk-like, or kidney-like might bematerial (HALBRITTER and HESSE 2004). helpful for an adequate description. GENERAL CHAPTER 25
  • 28. WHY DO WE NEED CATEGORIES?Why Do We Need Categories?N ature itself neither needs catego- giving rise to a seamless transition between rization nor has any knowledge neighboring characters or to a combination of categories. However, for the of characters.scientist, categories are essential for classi- Seamless transitions between relatedfying natural characters in their diversity, for gemmate pollen and its “neighbor” clavatesystematic order. Nevertheless, categories pollen. Both types of ornamentation are very variable in shape and size and rather rare inindividual or collective convention, mostly their typical form.not by nature. Combination of ornamenting characters In addition to the theoretical concept, is very common. Often, the ornamentationcategorization always depends on the is composed of two or more characters,manner in which a character is perceived: such as reticulate and foveolate, or a com-i.e. on the visibility of a character, and/ bination of echinate and perforate (for examples see Illustrated Glossary). From thegreatly depends on the technical equipment observer’s viewpoint it is desirable to nameand method(s) used, as well as on the sub-jective interpretation of character(s)1. Thus, order: in the case of two or more combined characters, the most eye-catching, prom-standardize. A well known example is pollen inent character (the “leading term”) shouldsize2. However, depending on the prepa-ration method(s), the pollen sample may For example, in Aristolochia, the pollenshow pollen grains of one and the same grain surface bears very prominent verrucaecategory (pollen size categories: see "Pollen Combination of ornamenting charactersMorphology"). Moreover, sometimes the sizeof pollen grains is found just at the boundary Aristolochia arborea Aristolochiaceaebetween two adjacent pollen size cate-gories. Placing the pollen grain in one of thesize categories therefore depends entirelyon the material, the preparation method(s)and the observer’s evaluation. Characterization of pollen ornamen- - inaperturate, spheroidaltions of basic ornamentation characters or verrucate, perforatecombinations of different characters usually 1 To be successful in characterization considerthe following hints: be familiar with good microscopepractice. The microscope, LM or EM, should be in -quately high, but any enlarging of details beyond ashould be achieved. Quality of sample preparation isan all-too-often underrated item. 2 The importance for dimension measurementsis acknowledged but there is no need for decimalplaces, since dimensions vary considerably accordingto different treatments, as already shown by REITSMA surface detail(1969). verrucae and perforations GENERAL CHAPTER 27
  • 29. WHY DO WE NEED CATEGORIES? (the “leading term”) combined with a great and perforations. In some taxa the micro- number of small perforations. Such ornamen- echini are more prominent (microechinate, tation therefore should be called verrucate, perforate), in others the perforations (per- perforate. forate, microechinate). There are also taxa, Sometimes it is debatable which feature where the two features are on a par (micro- represents the “leading term”. As a sample, echinate and perforate). Micrographs elu- in Caryophyllaceae, there are numerous, cidate the actual situation at a glance. more-or-less regularly arranged microechini Combination of ornamenting characters Stellaria media Caryophyllaceaemicroechinate, perforate Caryophyllaceae microechinate and perforate Silene succulenta Caryophyllaceaeperforate, microechinate
  • 30. WHY DO WE NEED CATEGORIES? Distinct areas of the pollen grain surface — In Sideritis montana polar and inter-may show different ornamentation types. apertural areas are perforate to fove- The type of ornamentation may be irreg- olate, apertural regions are psilate.ularly distributed over the pollen surface, or — In Salvia austriaca the polar area isrestricted to distinct surface regions. psilate to perforate, all other areas Some examples may elucidate this being bireticulate.feature: — is an example where — The polar region of Fallopia convolvulus the polar areas are reticulate, while in is psilate to perforate, apertural regions equatorial view the ornamentation is are microechinate. striato-reticulate. Combination of ornamenting characters left: Fallopia convolvulus Polygonaceae polar view right: Sideritis montana Lamiaceae polar view Salvia austriaca Lamiaceae left: polar view right: equatorial view Solanaceae left: polar view right: equatorial view GENERAL CHAPTER 29
  • 31. WHY DO WE NEED CATEGORIES? Interpretation ofornamenting characters Sometimes it depends on the individual researcher to interpret ornamenting fea- Sanchezia nobilis Acanthaceae tures: for example, to call Sanchezia nobilis (Acanthaceae) plicate and striate, but also reticulate? And should the rod-like ele- ments be termed clavae, or free-standing columellae? Moreover, is the aperture to be interpreted as a porus or a colporus? A special case deserves attention. In heterostylous species two different pollenoblique equatorial view types occur. Size and number of apertures, e.g., in Primula, or the ornamentation e.g., in Linum, may differ. For better illustration and Primula styled and short-styled, pin and thrum morphs) is shown here. In the short-styled-morph pollen is baculate, and the long-styled- morph clavate. In Primula veris the pollen of the short- styled morph (thrum) is larger and has more surface detail apertures than the pollen of the long-styled morph (pin). Heterostyly Linaceae short-styled morph baculate long-styled morph clavate
  • 32. WHY DO WE NEED CATEGORIES? Heterostyly wart-like element more than 1 μm, broaderPrimula veris than high) would describe the ornamen-Primulaceae tation in a better manner. High SEM magni- granules (structure or sculpture elements of different size and shape; smaller than 1 μm). A typical rugulate left: ornamentation at SEM level is present in, short-styled e.g., Sanicula, which is quite dissimilar to the morph ornamentation seen in Ulmus at SEM high right: resolution level. long-styled morph This is a good place to mention interpre- tative pitfalls. The denotation of ornamen- tation frequently depends on the optical Terms derived from LM level cannot always . point resolution. Very many (paleo-)paly- A classical example: Ulmus pollen at LM nologists have relied on LM only. Even low- level was described as rugulate (rugulae: elongated exine elements longer than pollen grains unequivocally which are in LM 1 μm; irregularly arranged). In low SEM mag- very similar (for examples and discussion see verrucate (verrucae: FERGUSON et al. 2007). Ornamentation in LM and SEM view Ulmus laevis Ulmaceae left: rugulate (LM) right: verrucate (SEM) left: Ulmus laevis Ulmaceae surface detail verrucate, granulate right: Sanicula europaea Apiaceae surface detail rugulate GENERAL CHAPTER 31
  • 33. WHY DO WE NEED CATEGORIES? A second example is scabrate, a term “granules” depends on the much better used for light microscopy only, describing - cation, where a “granulate ornamentation” shape and of a size close to the resolution emerges as, for example, a great number of limit of the light microscope. As an example, very small spines (microechini), the pointed Juglans pollen is scabrate in LM and (with some reservation) under low power SEM, but The allegedly granulate ornamentation of microechinate at high resolution SEM. many Poaceae is in fact microechinate; see "Illustrated Glossary". Ornamentation in Another interpretative pitfall does LM and SEM view Juglans sp. Ornamentation sometimes depends entirely Juglandaceae or to a high degree on the preparation method. A striking example is the presence or complete absence of distinct echini on pollen of many Araceae/Aroideae: fresh or dry material exhibits a distinct echinate ornamentation, whereas after acetolysis the echini are completely removed. These polar viewscabrate to psilate (LM) echini are composed of polysaccharides (singular exception) and lack sporopollenin completely. The pollen is then – correctly – called psilate (WEBER et al. 1999). An example for different possible inter- pretations in relation with a differing degree of hydration is Trichosanthes anguina (Cucurbitaceae), where the ornamentation The overview micrograph on the left shows a fully turgescent pollen, and on the right a less turgescent one. The ornamentation microechinate (SEM) can be described as either areolate, or ver- rucate or even fossulate. Perforations are clearly visible in fully turgescent pollen only. Another example for different interpreta- So ornamentation should better be called tions in LM and SEM is the term psilate. Many verrucate and perforate. pollen grains are psilate in LM view, but show a distinct ornamentation at SEM level. For Hydration example, in LM view pollen of Allium is psilate (see "Illustrated Glossary" – psilate), in SEM view it is striate and perforate (see "Pollen Morphology"). The term granulate (describing minute and of a size close to the resolution limit Trichosanthes anguina of the LM) is adequate for features at low Cucurbitaceae pollen grains of different state resolution a more adequate description of hydration is often possible. The actual shape of such
  • 34. WHY DO WE NEED CATEGORIES? Hydration Trichosanthes anguina Cucurbitaceae left: surface detail areolate right: surface detail verrucate, perforateeven depends on peculiarities during pollen Palynology is the nomenclature question.development. Ubisch bodies are usually In Paleopalynology, for morphotaxafound as isolated particles between pollen often form-generic names are used.grains, or lining the mature locular wall The nomenclature of form-genera is(HUYSMANS et al. 1998, HALBRITTER andHESSE 2005, VINCKIER et al. 2005; equivalents not known at all (e.g., Oculopollis andare found in ferns: LUGARDON 1981). Pollen Trudopollis from the Normapolles group), orgrains of Cupressaceae and Taxaceae are "half-natural", when reference to an extantoften equipped with adhering (adnate) taxon is suspected but not proven (e.g.,Ubisch bodies, which are - strictly speaking Liliacidites). However, if reference to extant taxa is certain, then a "natural" nomen-(for example Chamaecyparis or Juniperus, clature is possible (e.g., Quercus sp.).see "Illustrated Glossary"). Nomenclature in Paleopalynology Oculopollis sp. Trudopollis sp. GENERAL CHAPTER 33
  • 35. POLLEN DEVELOPMENTPollen DevelopmentMicrosporogenesis and Microsporogenesis tetradsMicrogametogenesisT he unicellular pollen grain represents the microspore of seed plants, the multicel- lular pollen grain the male gametophyticgeneration of seed plants and is sourceand transport unit for the male gametes (ortheir progenitor cell). The development ofa pollen grain includes (micro)sporogenesis[1-4] and (micro)gametogenesis [5-9]. Scrophularia nodosaMicrosporogenesis starts with the differenti- Scrophulariaceaeation of microspore mother cells (MMC) resp. tetrad tetrahedralpollen mother cells (PMC) [1]. These diploid iodidcells become enclosed by a thick callosewall and undergo meiosis, forming a tetradof four haploid microspores, each encasedin a second callose wall insulating them fromeach other and from the surrounding diploidtapetal cells [2]. Cytokinesis following meiotic nucleardivisions is accompanied by the formationof cleavage planes determined by the con- Spiraea sp. Rosaceaespindle axes. In the case of successive tetrad tetrahedralcytokinesis PA+TCH+SPand second meiotic divisions leading to theformation of various tetrad types (see "PollenMorphology"). During simultaneous cytoki-nesis the cleavage planes are formed con-currently after the second meiotic division;in this case microspores are arranged in atetrahedral tetrad. Pollen wall formation starts when themicrospores are still arranged in tetrads Orobanche hederae Orobanchaceaeconsists of the deposition of the , tetrad planar KMnO4surface of the microspores. The primexineforms a template where sporopollenin pre- forming a single layer of cells circumscribing sporopollenin are subse- the loculus. Tapetal cells are specializedwall. Apertures are developed where the their cellular organization and are reab-endoplasmic reticulum has prevented the sorbed. Two types of tapetum are known:deposition of primexine. the secretory (or glandular or parietal) and During pollen formation and maturation the amoeboid (or periplasmodial). In thethe tapetum plays an important role, usually secretory type (e.g., in Apiaceae) the tapetal GENERAL CHAPTER 35
  • 36. POLLEN DEVELOPMENT The is followed byphysiological functions. In the amoeboid an asymmetric cell division, leading totapetum type (e.g., in Araceae) cells lose the formation of a smaller generative celltheir individuality in an early developmental and a larger vegetative cell [6]. When thestage by degeneration of the cell walls. The generative cell is formed it is pressed againstprotoplasts then fuse and intrude into the the pollen wall; it later separates and islocule where they enclose the pollen grains. then located within the cytoplasm of the The tapetum plays an important role vegetative cell [7]. After detachment, theduring several stages of pollen development. generative cell, which is sparse in organelles,Its main function is the nourishment of themicrospores but it also synthesizes enzymes spindle-shaped (the shape of the generative(e.g., callase), exine precursors, pollen nucleus changes correspondingly). Duringcoatings, forms Ubisch bodies and viscin the second pollen mitosis, which is followedthreads (both equivalents to the ektexine). by a symmetric cell division, the generativeThe most striking material produced bythe tapetum is pollenkitt (and tryphine in stage of gametophytic development [8]. InBrassicaceae, elastoviscin in Orchidaceae),a sticky, heterogeneous material composed the pollen grains are three-celled at the time -teins and polysaccharides. Pollenkitt serves pollen grains are shed from the anther atnumerous functions: for example, keeping a two-celled stage. In the latter case thepollen grains together during transport; second pollen mitosis takes place in theprotecting pollen from water loss, ultra- pollen tube, after germination of the pollenviolet radiation, hydrolysis and exocellular grain onto a stigma or a correspondingenzymes; maintaining sporophytic proteins structure [9].inside exine cavities. Microgametogenesis in gymnosperms Microgametogenesis in angiosperms includes several mitotic divisions. Normally, pollen grains of gymnosperms are multi-leading to the formation of the male gametes celled at anthesis, and comprise prothallial(sperm cells). Gametogenesis starts with for- cell(s), a large tube cell and a small anth-mation of a central vacuole within the uni- eridial cell. The tube cell becomes a pollennucleate microspore, pushing the nucleus tube; the antheridial cell undergoes divisiontowards the wall [5]. As long as the nucleus into the stalk cell and the spermatogenousis in a central position within the cytoplasm,the cell is called a microspore [4]. With the gametes (sperm cells or spermatozoids).dislocation of the microspore nucleus thecell becomes the young pollen grain.
  • 37. POLLEN DEVELOPMENT Pollen development in angiospermsGENERAL CHAPTER 37
  • 38. INHERENCE OF MISINTERPRETATIONInherence of Misinterpretation Tripartite featuresI nvestigation of recent and fossil pollen material often reveals interesting features that in some cases may be misinterpreted.Selected examples are various tripartitesurface features that may actually be oronly resemble apertures. Other examplesare conspicuous, even eye-catching orna-mentation features that are potentially mis- Abies cephalonicainterpreted as apertures, while the genuine, Pinaceaevery inconspicuous apertures might be proximal polar viewoverlooked. The study of a morphological indistinct impression markseries can be of help clarifying ambiguousfeatures.Tripartite Features Mature pollen of conifers, such as Abies,Larix and Pseudotsuga, often shows proxi-mally a Y-shaped bulge, comparable to a Larix sp.tetrad mark, which is called an impression Pinaceae, fossilmark (HARLEY 1999). The mark results from proximal polar viewthe close proximity of the four pollen grains Y-shaped impression markat the post-meiotic tetrad phase and isretained afterwards. Impression marks arealso found in palm pollen. Note: the termtetrad mark is restricted to spores, where it isthe germination feature, the impression markof pollen grains is no germination feature.are not comparable to that in gymnosperms.In recent and fossil Sapindaceae a three-armed feature (more precisely a triangle) Larix sp. Pinaceae, fossilis found. Cardiospermum has a narrow tri-angle (tenuitas) proximally, whereas other Y-shaped impression mark Tripartite features Cardiospermum corindum Sapindaceae tricolporate left: equatorial view right: proximal pole with triangular area GENERAL CHAPTER 39
  • 39. INHERENCE OF MISINTERPRETATION Tripartite featuressynaperturate pollenMelaleuca armillaris Myrtaceae syncolporate left: polar view right: polar area syncolpate left: Primula denticulata Primulaceae polar view right: Primula farinosa Primulaceae dry pollen Tripartite features trichotomosulcus recent and fossil Sapindaceae show such a feature at both poles. The triangular pollen as found in Myrtaceae, some Primulaceae (Primula farinosa or P. denticulata) or in some Loranthaceae is characterized by a trian- in both polar areas. The angles elongate to meridional rays (colpi) directed to the roundish pollen tips, the rays crossing Dianella tasmanica the equator and forming an equivalent tri- Phormiaceae angle on the antipodal polar area. Pollen is synaperturate (syncolpate, syncolporate). Another tripartite feature is the trichotomo- sulcus (HARLEY 2004), a three-armed sulcus found exclusively distally, as, e.g., in Dianella and Cretaceous fossils. Trichotomosulcate pollen has been discussed in relation to the evolution of the tricolpate dicot condition, but so far without success. In contrast to the trichotomosulcus also trisulcate pollen is found. The angiosperm- like pollen of the fossil genus Eucommiidites dry pollen has a distal sulcus and, at angles of ca proximal side of the pollen. This feature was
  • 40. INHERENCE OF MISINTERPRETATION Tripartite features erroneously misinterpreted as more-or-less tricolpate pollen (with “colpi” equatorially Thesium alpinum Santalaceae situated, which has proved to be incorrect). A similar arrangement of a distal sulcus and tricolpate, heteropolar two small additional "sulci" on the proximal face was described, for example, in some species of Tulipa (Liliaceae) and Tinantia (formerly Commelinantia, Commelinaceae), but these cases were never interpreted as equivalent to a tricolpate condition (HARLEY 2004). In some cases the three sulci are of triradiate colpus quite equal size. The aperture condition is very similar to a tricolpate one. The interpre- tation “trisulcate” is possible and of use only in context with a morphological series.Tripartite features polar view Tulipa kaufmanniana Liliaceae trisulcate equatorial (!) view Another three-armed feature is the triradiate aperture in Thesium alpinum (Santalaceae) pollen (an additional sug- gestive feature is the pollen shape forming a tetrahedron, the four triangular faces showing conspicuous reticulate areas that equatorial view apertures). In fact Thesium alpinum pollen is three-aperturate, the apertures placed in the three tapered edges of the tetra- hedron. Each aperture forms a very incon- equatorially. Two of the arms point towards the neighboring tetrahedron edge and are rather short; the third, elongated arm is directed to the rounded edge, which is probably the proximal pole. polar view GENERAL CHAPTER 41
  • 41. INHERENCE OF MISINTERPRETATION Apertures as Pitfalls The monads of the Calliandra emar- ginata (Mimosaceae) polyad are separated Sometimes the apertures are incon- by narrow groove-like depressions. At low Pachira aquatica (Bombacaceae) pollen of the apertures remain indistinct; high SEM three large, more-or-less hemispherical areas very inconspicuous pores, situated equato- be interpreted as three pores. However, a rially, usually at the conjunction of three or detailed observation reveals planaperturate four monads. pollen grains with three short colpi. Apertures as pitfalls Apertures as pitfalls Calliandra Pachira aquatica emarginata Bombacaceae Mimosaceae massula dry state polar view apertures (pores) at the junction of four monads equatorial view The apertural condition may be hidden by prominent features. The clypeate pollen of Phyllanthus × elongatus (Euphorbiaceae) seems to be inaperturate. Only close-ups reveal the inconspicuous pores between the exine shields. The disk-like pollen of Oryctanthus sp. (Loranthaceae) shows at both poles con- spicuous circular depressions that are not apertures (FEUER and KUIJT 1985). The pollen obliqueequatorial view (SEM) is tricolpate with inconspicuous short slit-like colpi between the polar depressions on
  • 42. INHERENCE OF MISINTERPRETATION Apertures as pitfalls Phyllanthus × elongatus Euphorbiaceae left: clypeate pollen seemingly inaperturate right: inconspicuous pores between the exine shields Apertures as pitfalls Oryctanthus alveolatus Loranthaceae acetolyzed left: tricolpate (short colpi on both sides, with bridge), pollen grains in polar view right: colpus Apertures as pitfalls both sides. The colpi are interrupted by a broad exine bridge at the equator plane; Trapa sp. Trapaceae, fossil thus calling the aperture condition “hexa- colpate” would be a possible interpretation. Trapa (Trapaceae) pollen is triaperturate (colpate or porate). Recent and fossil pollen grains are distinguished by unique merid- ional exine features (crests); these cover the apertures so that only after removal of the equatorial view crest the aperture is visible. crest in part broken colpus visible Apertures as pitfalls Trapa sp. Trapaceae, fossil Trapa sp.Trapaceae, fossil equatorial view crest broken equatorial view GENERAL CHAPTER 43
  • 43. INHERENCE OF MISINTERPRETATION Pollen Features can be Ambiguous - cially quite similar features. Case studies: A poroid is a circular or elliptic aperture — with indistinct margin. A tenuitas is a general conditions term for a pollen wall thinning, which has — been applied to many different features characters (KREMP 1968, HARLEY 2004, PUNT et al. — deviating pollen forms 2007). Investigation of a morphological series A tenuitas (in angiosperms) is normally within a genus can provide decisive nomen- found additional to regular apertures (e.g., clature or at least support such a decision; in some Myosotis species, see "Illustrated studying only an isolated sample of a Glossary"). morphological series may easily lead to mis- The harmomegathic effect may cause interpretations. misinterpretations. A distinct infolding type pollen is an example of a morphological suggests or pretends an erroneous aperture series concerning apertures. The apertures in condition, while the correct aperture con- cf. incarnata may be interpreted dition is inconspicuous or even hidden. as three ring-like apertures. An interpretation Pollen of Sparganium erectum as porate-operculate is likewise possible, (Sparganiaceae) is in dry stage infolded, and probably more correct, if compared boat-shaped, and would be considered with pollen of other species. as sulcate. In fact Sparganium pollen is Not infrequently the apertures in ulcerate, the ulcus is seen clearly in the angiosperms show indistinct margins, or hydrated, spherical pollen stage. appear as thin regions in the pollen wall. The Nymphaea alba (Nymphaeaceae) Illustrated Glossary makes use of two terms, pollen has asymmetrical halves. The features Ambiguous features cf. incarnata left: polar view right: equatorial view left: stephanocolpate operculate polar view right: stephanocolpateoperculate, dry pollen
  • 44. INHERENCE OF MISINTERPRETATIONof the smaller distal half can be interpreted polar area. Ultrastructural characters andeither as a large ulcus with a conspicuous germination experiments support the inter-operculum, or as a more-or-less equatorially pretation as a ring-like aperture (HESSE andsituated ring-like aperture surrounding the ZETTER 2005). Ambiguous features Myosotis palustris Boraginaceae left: equatorial view heteroaperturate, alter- nating colpori and colpi (pseudocolpi) right: polar view polar area with triangular tenuitas Ambiguous features Sparganium erectum Sparganiaceae ulcerate left: equatorial view right: dry pollen boat-shaped Ambiguous features Nymphaea sp. Nymphaeaceae ring-like aperture left: equatorial view right: dry pollen cup-shaped GENERAL CHAPTER 45
  • 45. INHERENCE OF MISINTERPRETATION Infratectum is a term which includes in Aberrant pollen may occur at a high per-fact a morphological series. The classical centage within a single pollen sac, anther orangiosperm character states simply com-prise columellar and granular. However, as, These aberrant, deformed pollen grainse.g., DOYLE (2005) has pointed out, inter- differ from normal pollen in shape andmediate conditions are not uncommon. dimension, in number and form of apertures,Even the areolate infratectum, usually in type and arrangement of ornamentation. Very often in hybrids, pollen ornamentationfound in some angiosperms (see "Illustrated is intermediate between the typical forms ofGlossary"). the parent species. Some species produceDeviating pollen forms – an underrated topic. only malformed pollen, a feature typical for Abnormal pollen grains occur regularly in plants with asexual reproduction (e.g., somesmall percentages in nearly all anthers and Alchemilla spp.).may vary from one individual to another The reasons for the production of devi-(heterogeneity of pollen forms). A much ating pollen forms are genetically, chemi-higher percentage of such deviating, more cally or environmentally induced. Whileprecisely, malformed pollen grains are found many reports dealing with the develop-in many cultivated plants (ornamental mental causes, a tiny minority of papers refersplants, agricultural crops) or in plants with predominantly to the habit of the deviatingasexual reproduction (autogamic plants, pollen forms (e.g., POZHIDAEV 2000a, b,apomicts). The effect also depends on the focusing on the aperture patterning). As aploidy level, hybrids may produce a series consequence, these outliers should neitherof pollen types. Pollen variation is generally be ignored nor overrated, but we should takeunderreported, because most studies focus notice of this issue as an ordinary feature.on normal rather than abnormal pollen mor-phology (BANKS et al. 2007).
  • 46. CONTROVERSIAL OR FUZZY TERMS Controversial or Fuzzy Terms Sometimes terms are ambiguous in Acalymmate misleading. Acalymmate/Calymmate In compound pollen grains or pollen units the individual grains are held together by different physical means of the pollen Annona muricata wall. Van CAMPO and GUINET (1961) recog- Annonaceae nized calymmate and acalymmate types. tetrad, dry pollen The term calymmate denotes a feature describing a dispersal unit of two or more Drosera sp. Droseraceae monads enclosed by a continuous ektexine. Calymmate tetradChlorospatha kolbii Araceae tetrads Acalymmate denotes a feature describing a dispersal unit of two or more monads enclosed by an exine, which is discontinuous at the junctions between the monads, and is absent from the internal walls. Since these basic types were described a lot of variations have been found, and detail of pollen wall the question was raised whether the basic distinction can remain (a survey and a detailed discussion was provided by KNOX small, mostly convex exine areas separated and McCONCHIE 1986). The micrographs by small grooves. Later on, the term was used show examples for either a continuous describing pollen with large, variably orna- (calymmate) or a discontinuous exine mented exine areas separated by grooves; enclosure (acalymmate). this type of ornamentation is better called clypeate, a pollen wall, in which the exine is subdivided into shields. Clypeate, however, Areolae/Areolate also denotes a pollen class; for examples see "Illustrated Glossary". The term areola/areolate was originally applied to pollen grains ornamented with GENERAL CHAPTER 47
  • 47. CONTROVERSIAL OR FUZZY TERMS Pseudocolpus pila instead of muri”) and Cuscuta lupuli- formis (Cuscutaceae) in ERDTMAN (1952, A pseudocolpus is a colpus in hetero- p. 128: „with a reticuloid pattern with pila aperturate pollen grains and is presumed instead of muri as non-functional. Pseudocolpi are always fact there are muri with prominent sculpture associated with colpori, never with colpi. elements (a reticulum cristatum) but no iso- Pseudocolpi mostly alternate with colpori lated pila. Nota bene: while ERDTMAN (1952) (e.g., in Boraginaceae, Lythraceae) or are provides a correct drawing, the diagram in situated on both sides of a colporus (in PUNT et al. (2007) is erroneous. Acanthaceae). Since germination experi- ments for pseudocolpi are absent, it cannot be assumed that pseudocolpi act as germi- Zona-, Zono- etc. nation sites. Without doubt they play a role in harmomegathy, but their effects have been poorly studied; for examples see "Illustrated together with its linguistic derivatives are Glossary". a source of endless confusion, misunder- zon- (in zonorate, for Retipilate a ring-like endoaperture, the os, at the equator), the outdated, rarely used zoni- There are yet no known examples for (however, with two quite different termino- retipilate, "a reticulum formed by rows of pila logical applications), but especially zona- instead of muri”. In contrast to earlier obser- (indicating exclusively a ring-like feature vations, investigations based on LM and SEM situated anywhere) and zono- (indicating have revealed that the examples Callitriche any feature located strictly equatorially). (Plantaginaceae) in PUNT et al. (2007: A curious example deserves special “describing a reticulum formed by rows of attention. Terms for ring-like (aperture) Retipilate left: drawings from PUNT et al. (2007) right: drawing from ERDTMAN (1952), p. 22, Fig. 5d left: Callitriche polymorpha Plantaginaceae reticulum cristatum withsmall gemmae on thin muri right: Cuscuta lupuliformis Cuscutaceae reticulum cristatum with microechini
  • 48. CONTROVERSIAL OR FUZZY TERMSfeatures include zona-aperturate, zona-sul- than two non-interchangeable terms areculus (addressing the polarity by anazona- necessary, without combination of syllables,sulculus and catazona-sulculus), zona-sulcus,zonate, zono-aperturate, and also related (“zona-aperturate”), irrespective of merid-names (e.g., “fully zonate condition” sensu ional or equatorial location, is simply calledGRAYUM 1992). Even the misleading and a ring-like aperture. The location or directioncontradictory zono-sulcus (a sulcus cannot regarding the pollen grains polarity is notbe situated equatorially) is used instead of easy to address, since the orientation ofthe correct, but phonetically confusable, the pollen grain in tetrad stage is relevant.zona-sulcus. The trained palynologist may 2. any case with more than three aperturesbe overstrained. It is proposed that all these at the equator (“zono-aperturate”) is calledterms should be avoided. stephanoaperturate. To avoid any confusion, not moreA typical meeting debating controversial terms at any Thursday within the last three years14:00 start of meeting, participants in time: 15:10 emotional discussion about “zona-" MH, HH, SU, RB, AFR, MW and “zono-aperturate”;14:38 RZ comes delayed and wants to have SU resigns while writing the protocol... “bisaccate” in the glossary MH to HH: “Heidi, think faster...!”14:40 RZ falls into a deep sleep MW and SU suffer from paroxysm of14:50 MH wants to include “cryptoaper- laughter turate” to the glossary AFR asks for more discipline all others: “noooooo…" 16:00 HH: “It‘s time for the four o‘clock-15:00 RZ wakes up and again calls for coffee!” “bisaccate” MH: “Forget about it!” all others: „nooooooooooo…!” 16:15 RZ (enervated) again calls for RZ: “Wish to be a squirrel … hide “bisaccate” terminology!” about “bisaccate”15:05 RB repeatedly yawns, because of low 17:00 end of meeting nicotin and coffeine levels tool for frustrate Reinhard Zetter, Ralf Buchner Heidemarie Halbritter, Andrea Frosch-Radivo Martina Weber, Silvia Ulrich, Michael Hesse GENERAL CHAPTER 49
  • 49. METHODSMethods Multiple techniques and methods should 2,2-dimethoxypropane (a drop of 0.2 M HCl addedbe used when investigating pollen grains to 30 ml DMP). After 20–30 min in DMP (or up to 24 h)in order to provide comprehensive and samples are transferred to pure acetone for a few minutes and critical-point dried in CO2 using acetoneaccurate information and help to avoidmisinterpretations. Good examples of such mounted on stubs using double-sided adhesive tape, sputter-coated with gold and observed with the approach are the endexine (mentionedbelow) and the endoaperture, the lattervisible only in the light microscope (LM) and Acetolysis and Light Microscopyhidden in the scanning electron microscope(SEM). Acetolysis is an indispensable method The selection of micrographs in "Pollen for illustrating pollen grains with the LM.Terminology. An illustrated Handbook" in Untreated or stained pollen grains will hidecludes both LM and EM pictures. much of the important information for the description of a pollen grain.Scanning Electron Microscopy Acetolysis is a combination of chlorination and acetylation: For chlorination, the samples are transferred to a SEM techniques cannot substitute LM test tube and covered with a layer (1.5 cm) of glacial acetic acid and a layer (approx. 3 cm) of a freshlybut they can provide a great deal more prepared solution of saturated sodium chlorate. Afterinformation, especially about ornamen- adding 3 or 4 drops of concentrated HCl, the mixture is stirred with a glass rod, heated in a bath of boilingtation. Methods of sample preparation for water for 3 min, centrifuged, and the liquid fractionSEM should preserve the living condition of decanted. The residue is carefully washed to eliminatea pollen grain as far as possible. In addition, in concentrated acetic acid or acetic anhydride topollen coatings should be removed from the remove the water.pollen surface in such a way that no details For the acetylation step, the samples are put into a mixture of 9 parts acetic anhydride and 1 partof the pollen grain are lost. For the SEM, ace- concentrated sulfuric acid and heated to 100° C fortolysis is not an optimal method for cleaning approximately 4 min. After the mixture has been cen- trifuged and the liquid fraction decanted, the residuethe pollen surface, as it will often destroy is washed in acetic acid and water. Glycerine is thenapertural details. Pollen with fragile exines added to the sample to form a suspension.may also be destroyed. As a routine, all pollen grains should beobserved in an air-dried condition, which Single-Grain Techniquegives the best information about the pollen (ZETTER 1989, FERGUSON et al. 2007)grains at anthesis and their harmomegathicsituation. For fossil pollen grains a combined LM/ The best results have been obtained using SEM investigation should be used. After the2,2-dimethoxypropane (DMP) (HALBRITTER LM investigation the same acetolyzed pollen1998). This method can be used for fresh grain is transferred to the SEM.material (pollen grains should be collected After extracting the pollen grains from the sed-when anthesis starts) and for herbarium iment, the samples undergo acetolysis (chlorinationsamples after short rehydration in water. plus acetylation as described above). GlycerineUnless stated otherwise, the pollen grains is then added to the organic residue to form a sus- pension and a drop transferred to a glass slide. Usingshown in "Pollen Terminology. An illustrated a dissecting needle to which a nasal hair has beenHandbook" represent the turgescent state. the edge of the glycerine, where they can be picked up and transferred to another glass slide for photog- raphy under the LM. Because no cover slip is used, it is possible to photograph the same grain in various GENERAL CHAPTER 51
  • 50. METHODSorientations. After this, the pollen is transferred to anSEM stub to which a drop of absolute ethanol has from the ektexine and the intine by thio-been added to remove all traces of the glycerinefrom the surface of the pollen grains, so that these carbohydrazide-silver proteinate (TCH+SP)can be examined in great detail under the SEM. periodic acid-thiocarbohydrazide-silver pro- teinate (PA+TCH+SP) staining in osmium-freeTransmission Electron Microscopy material. The endexine stains electron dense after TCH+SP staining [2], indicating lipidic For TEM studies of pollen from different compounds, and electron translucent afterplant species, more than one protocol for PA+TCH+SP staining [3], excluding this layer as part of the intine, as it is well known that intine reacts positively for polysaccharides. - A morphological characteristic of thedehyde in 0.1 M phosphate buffer (pH 7.4) for 8–18 hat room temperature. After rinsing in buffer and dis- endexine is its increasing thickness close to 4 plus the aperture.0.8 % phosphate-buffered potassium ferrocyanideK4Fe(CN)6 3 H2O (2:1) for 8 h at 6º C. Samples are thenwashed in distilled water, dehydrated in 2,2-DMP fol- PA+TCH+SP staining (localization of neutrallowed by pure acetone, and embedded in Spurrs polysaccharides):low-viscosity epoxy resin (SPURR 1969) or Agar low- Sections (80–100 nm) from osmium-free material areviscosity resin. placed on gold grids and treated with 1 % PA for 45 min, 0.2 % TCH for 8–15 h, and 1 % SP for 30 min (THIÉRY Sections of pollen grains are routinely 1967).stained using the following methods: TCH+SP-staining (detection of unsaturated lipids): placed on gold grids and treated with 0.2 % TCH forU+Pb 8–15 h and 1 % SP for 30 min (ROWLEY and DAHL 1977, WEBER 1992).URANYL ACETATE-LEAD CITRATE STAINING In many species investigated uranyl PA+TCH+SP (short)acetate-lead citrate staining has not proved MODIFIED THIÉRY TESTsatisfactory. WEBER and FROSCH 1995) is especially effective Staining is carried out in uranyl acetate solution(Leica Ultrastain-1) for 45 min followed by leadcitrate (Leica Ultrastain-2) for 1 min (all steps at room and potassium ferrocyanide and is a goodtemperature). method for general enhancement of con- trast in the cytoplasm and the pollen wall.TCH+SP, PA+TCH+SP Sections 80–100 nm thick are collected on goldTHIOCARBOHYDRAZIDE-SILVER PROTEINATE STAINING grids and stained with 1 % periodic acid (PA) for(TCH+SP) AND PERIODIC ACID-THIOCARBOHYDRAZIDE- 10 min, 0.2 % thiocarbohydrazide (TCH) for 15 min, andSILVER PROTEINATE STAINING (PA+TCH+SP) 1 % silver proteinate (SP) for 10 min (all steps at room temperature). After the staining steps with PA and SP, The endexine is a frequently misinter- sections are intensively washed in distilled water; afterpreted layer of the pollen wall. Using standard staining with TCH, washes are in 3 % acetic acid fol- lowed by distilled water.TEM staining techniques (uranyl acetate andlead citrate), ektexine and endexine maydiffer in their electron opaqueness in that Acetocarmine Stainingthe endexine is higher in electron density for Light Microscopythan the ektexine, or the situation may bereversed [1]. But in many species, especially For the detection of the generativewhen the endexine is thin and less compact nucleus and the sperm nuclei, fresh pollenor discontinuous, the differentiation of the grains are put into a drop of acetocarmine, warmed for a few seconds and observed The endexine can be differentiated with the LM (GERLACH 1969).
  • 51. METHODS Staining methods U+Pb TCH+SP PA+TCH+SPGENERAL CHAPTER 53
  • 52. HOW TO DESCRIBE A POLLEN GRAINHow to Describe a Pollen Grain The minimal features for describing a respectively.pollen grain are: LM- and SEM-diagnosis may be different size, shape, aperture condition, orna- from each other, due to the methods andmentation, and the method, how the techniques used.pollen grain was prepared for LM and EM, LM-diagnosis plant name: Centaurea jacea (Asteraceae) method: pollen grains acetolyzed size: medium (longest axis about 40 μm) shape (determined by equatorial and polar view): prolate aperture: tricolporate ornamentation: echinate peculiarities: remarkable endoaperture polar view equatorial view SEM-diagnosis method: pollen grains critical-point-dried (hydrated condition) and air-dried, respectively size: medium (longest axis about 40 μm) shape: spheroidal (in hydrated condition); prolate, lobate (in dry condition) aperture: tricolporate ornamentation: echinate, perforate peculiarities: — polar view equatorial view detail of exine ornamentation dry pollen GENERAL CHAPTER 55
  • 54. ILLUSTRATED GLOSSARY CONTENT Pollen Unit____________________ 59-67 polychotomosulcus __________________139 monad _____________________________ 59 ring-like aperture _________________140-141 dyad _______________________________ 60 margo ______________________________142 pseudomonad______________________ 61 annulus, annulate________________143-144 tetrad ___________________________ 62-65 aperture membrane _____________145-148 massula ____________________________ 66 operculum, operculate __________149-151 pollinium____________________________ 67 pontoperculum, pontoperculate _____152 pollinarium__________________________ 67 bridge_______________________________153 Pollen Class _________________ 68-72 papilla, papillate_____________________154 clypeate ___________________________ 68 Ornamentation _____________ 155-198 colpate ____________________________ 68 reticulum, reticulate ______________155-167 colporate___________________________ 68 bireticulate __________________________161 dyad _______________________________ 69 homobrochate ______________________162 inaperturate ________________________ 69 heterobrochate _____________________163 lophate_____________________________ 69 microreticulate ______________________164 plicate _____________________________ 70 reticulum cristatum_______________165-167 polyad _____________________________ 70 plicae, plicate _______________________168 porate______________________________ 70 striae, striate _____________________169-172 saccate ____________________________ 71 striato-reticulate _________________173-174 spiraperturate_______________________ 71 rugulae, rugulate ________________175-176 sulcate _____________________________ 71 granulum, granulate _________________177 synaperturate_______________________ 72 psilate ___________________________178-179 tetrad ______________________________ 72 perforate ________________________180-181 ulcerate ____________________________ 72 foveola, foveolate ___________________182 Shape & Size ________________ 73-100 fossula, fossulate _____________________183 Pollen size ____________________________73 lophae, lacunae, lophate ________184-185 spheroidal _________________________ 74-75 echinus, echinate________________186-189 prolate ____________________________ 76-77 microechinate_______________________190 oblate_____________________________ 78-79 verruca, verrucate ___________________191 outline_____________________________ 80-87 baculum, baculate __________________192 outline, pollen infoldings ____________ 88-93 clava, clavate ___________________193-194 isopolar_______________________________94 free-standing columellae_____________195 heteropolar________________________ 95-96 gemma, gemmate __________________196 saccus, saccate ___________________ 97-99 areola, areolate _____________________197 arcus, arcuate ______________________100 clypeate ____________________________198 Aperture ___________________ 101-154 Pollen Wall _________________ 199-211 aperture, aperturate _____________101-102 pollen wall___________________________199 inaperturate _________________________103 infratectum ______________________200-202 angulaperturate _____________________104 internal tectum ______________________203 planaperturate ______________________105 foot layer ____________________________204 stephanoaperturate _____________106-109 endexine ________________________205-208 pantoaperturate ________________110-112 intine ________________________________209 brevicolpus, brevicolpate ____________113 semitectum, semitectate _____________210 brevicolporus, brevicolporate_________113 atectate ____________________________211 synaperturate _______________________114 Miscellaneous______________ 212-223 spiraperturate _______________________115 primexine____________________________212 heteroaperturate ____________________116 vegtative nucleus ____________________213 pseudocolpus _______________________117 generative cell_______________________214 colpus, colpate __________________118-120 sperm cell ___________________________215 porus, porate ____________________121-125 tapetum_____________________________216 poroid, poroidate ____________________126 pollenkitt ____________________________217 tenuitas _____________________________127 primexine matrix _____________________218 colporus, colporate ______________128-132 tryphine _____________________________218 ulcus, ulcerate ___________________133-134 viscin thread _____________________219-220 sulcus, sulcate ___________________135-138 Ubisch body _____________________221-223 trichotomosulcus_____________________139
  • 55. POLLEN UNIT monad LM SEM TEM mo ana fncmonad: dispersal unit consisting of a single pollen grain. Dactylis glomerata Pinus strobus Poaceae Pinaceae ulcerate, equatorial view bisaccate, equatorial view Tragopogon orientalis Leuchtenbergia principis Asteraceae Cactaceae tricolporate, oblique polar view tricolpate, oblique polar view Iris pumila Iridaceae Gentianaceae sulcate, oblique distal polar view tricolporate, oblique polar view ILLUSTRATED GLOSSARY 59
  • 56. dyad POLLEN UNITLM SEM TEM mo ana fncdyad: dispersal unit of two pollen grains. Polypleurum stylosum Polypleurum stylosum Podostemaceae Podostemaceae acetolyzed, pollen collapsed Zeylanidium olivaceum Zeylanidium subulatum Podostemaceae Podostemaceae Podostemaceae Podostemaceae acetolyzed, pollen collapsed
  • 57. POLLEN UNIT pseudomonad LM SEM TEM mo ana fncpseudomonad: dispersal unit of a permanent tetrad with three rudimentary pollengrains. Carex sp. Carex atrata Cyperaceae Cyperaceae Schoenoplectus lacustris Scirpus sylvaticus Cyperaceae Cyperaceae Carex distans Cyperus longus Cyperaceae Cyperaceae ILLUSTRATED GLOSSARY 61
  • 58. tetrad tetrahedral POLLEN UNITLM SEM TEM mo ana fnctetrad tetrahedral: dispersal unit of four pollen grains in which the centers of the grains Erica herbacea Arbutus unedo Ericaceae Ericaceae Drimys granatensis Winteraceae Ericaceae Mimosa pudica Mimosaceae Onagraceae dry pollen, viscin threads
  • 59. POLLEN UNIT tetrad tetrahedral LM SEM TEM mo ana fnctetrad tetrahedral: dispersal unit of four pollen grains in which the centers of the grains Epilobium montanum Luzula campestris Onagraceae Juncaceae viscin threads Oxyanthus subpunctatus Dionaea muscipula Rubiaceae Droseraceae Juncus effusus Rhododendron hirsutum Juncaceae Ericaceae viscin threads ILLUSTRATED GLOSSARY 63
  • 60. tetrad POLLEN UNITLM SEM TEM mo ana fnctetrad: dispersal unit of four pollen grains (spores). Chlorospatha kolbii Chlorospatha ceronii Araceae Araceae tetrads planar (tetrahedral and T-shaped) tetrad planar (left) and decussate (right) Chlorospatha dodsonii Chlorospatha dodsonii Araceae Araceae tetrad planar tetrad decussate Catalpa bungei Epipactis helleborine Bignoniaceae Orchidaceae tetrad decussate tetrads decussate
  • 61. POLLEN UNIT tetrad planar LM SEM TEM mo ana fnctetrad planar: dispersal unit of four pollen grains arranged in one plane; can be:tetragonal, T-shaped, linear. Typha latifolia Typha latifolia Typhaceae Typhaceae tetrad tetragonal tetrad tetragonal Typha latifolia Typha latifolia Typhaceae Typhaceae tetrad T-shaped tetrad T-shaped Typha latifolia Typha latifolia Typhaceae Typhaceae tetrad linear tetrad linear ILLUSTRATED GLOSSARY 65
  • 62. massula POLLEN UNITLM SEM TEM mo ana fncmassula: dispersal unit of more than four pollen grains and fewer than the locularcontent. Acacia myrtifolia Acacia binerva Mimosaceae Mimosaceae Calliandra emarginata Nigritella rhellicani Mimosaceae Orchidaceae massulae connected by elastoviscin threads Anteriorchis coriophora Platanthera bifolia Orchidaceae Orchidaceae
  • 63. POLLEN UNIT pollinium, pollinarium LM SEM TEM mo ana fncpollinium: dispersal unit of a more or less interconnected loculiform pollen mass.pollinarium: dispersal unit of pollinium (or pollinia) and a single interconnecting sterileappendage. Ophrys sphegodes Anteriorchis coriophora Orchidaceae Orchidaceae Polystachya sp. Orchidaceae Asclepiadaceae Vincetoxicum hirundinaria Asclepiadaceae Orchidaceae ILLUSTRATED GLOSSARY 67
  • 64. clypeate, colpate, colporate POLLEN CLASSLM SEM TEM mo ana fncpollen class:pollen class: clypeatepollen class: colpatepollen class: colporate Iris bucharica Ibicella lutea Iridaceae Martyniaceae Bunias orientalis Corylopsis glabrescens Brassicaceae Hamamelidaceae Viola alba Violaceae Apiaceae
  • 65. POLLEN CLASS dyad, inaperturate, lophate LM SEM TEM mo ana fncpollen class: dyadpollen class: inaperturatepollen class: lophate Zeylanidium subulatum Polypleurum munnarense Podostemaceae Podostemaceae Hedychium gardnerianum Sauromatum venosum Zingiberaceae Araceae Prenanthes purpurea Gazania sp. Asteraceae Asteraceae ILLUSTRATED GLOSSARY 69
  • 66. plicate, polyad, porate POLLEN CLASSLM SEM TEM mo ana fncpollen class: plicatepollen class: polyadpollen class: porate Ephedra distachya Welwitschia mirabilis Ephedraceae Welwitschiaceae Acacia myrtifolia Himantoglossum adriaticum Mimosaceae Orchidaceae Pachypodium saundersii Caryophyllaceae Apocynaceae
  • 67. POLLEN CLASS saccate, spiraperturate, sulcate LM SEM TEM mo ana fncpollen class: saccatepollen class: spiraperturatepollen class: sulcate Abies cephalonica Pinus mugo Pinaceae Pinaceae dry pollen Berberis thunbergii Thunbergia alata Berberidaceae Acanthaceae dry pollen Sandersonia aurantiaca Gagea villosa Colchicaceae Liliaceae ILLUSTRATED GLOSSARY 71
  • 68. synaperturate, tetrad, ulcerate POLLEN CLASSLM SEM TEM mo ana fncpollen class: synaperturatepollen class: tetradpollen class: ulcerate Acca sellowiana Primula farinosa Myrtaceae Primulaceae polar view equatorial view Listera ovata Ericaceae Orchidaceae Sesleria uliginosa Typha minima Poaceae Typhaceae
  • 69. SHAPE & SIZE very small, small, medium sized, large, very large LM SEM TEM mo ana fnc Myosotis palustris Boraginaceae very small (<10 μm) Alkanna orientalis Boraginaceae small (10 - 25 μm) Syringa vulgaris Oleaceae medium sized (25 - 50 μm) Plumbago auriculata Plumbaginaceae large (50 - 100 μm) Cucurbita pepo Cucurbitaceae very large (>100 μm) ILLUSTRATED GLOSSARY 73
  • 70. spheroidal SHAPE & SIZELM SEM TEM mo ana fncspheroidal Lavatera thuringiaca Silene alba Malvaceae Caryophyllaceae pantoporate pantoporate Cirsium oleraceum Phlox paniculata Asteraceae Polemoniaceae tricolporate, equatorial view pantoporate Pinellia ternata Luffa cylindrica Araceae Cucurbitaceae inaperturate tricolporate, equatorial view
  • 71. SHAPE & SIZE spheroidal LM SEM TEM mo ana fncspheroidal Oxalis acetosella Adansonia gregorii Oxalidaceae Bombacaceae tricolpate, equatorial view triporate Stellaria holostea Cistus creticus Caryophyllaceae Cistaceae pantoporate tricolporate, polar view Ruellia macrantha Sagittaria sagittifolia Acanthaceae Alismataceae tricolporate, polar view pantoaperturate ILLUSTRATED GLOSSARY 75
  • 72. prolate SHAPE & SIZELM SEM TEM mo ana fncprolate: pollen grain with the polar axis longer than the equatorial diameter. Jurinea mollis Acanthaceae Asteraceae equatorial view dry pollen Torilis arvensis Peucedanum cervaria Apiaceae Apiaceae dry pollen equatorial view Astragalus onobrychis Fabaceae Boraginaceae equatorial view dry pollen
  • 73. SHAPE & SIZE prolate LM SEM TEM mo ana fncprolate: pollen grain with the polar axis longer than the equatorial diameter. Buglossoides purpurocaerulea indet. Boraginaceae Sapotaceae, fossil equatorial view equatorial view Stenandriopsis guineensis Campanulaceae Acanthaceae dry pollen equatorial view Lathyrus tuberosus Salvia sclarea Fabaceae Lamiaceae dry pollen dry pollen ILLUSTRATED GLOSSARY 77
  • 74. oblate SHAPE & SIZELM SEM TEM mo ana fncoblate: pollen grain with the polar axis shorter than the equatorial diameter. Salvia argentea Carya sp. Lamiaceae Juglandaceae, fossil equatorial view equatorial view Knautia drymeia Cuphea purpurea Dipsacaceae Lythraceae dry pollen dry pollen Hakea kippistiana Corylus avellana Proteaceae Betulaceae dry pollen, equatorial view
  • 75. SHAPE & SIZE oblate LM SEM TEM mo ana fncoblate: pollen grain with the polar axis shorter than the equatorial diameter. Impatiens glandulifera Aechmea caudata Balsaminaceae Bromeliaceae Vriesea neoglutinosa Godetia purpurea Bromeliaceae Onagraceae equatorial view dry pollen Veratrum album Heliconia sp. Melanthiaceae Heliconiaceae dry pollen dry pollen ILLUSTRATED GLOSSARY 79
  • 76. outline circular SHAPE & SIZELM SEM TEM mo ana fncoutline circular Fraxinus ornus Ligustrum sp. Oleaceae Oleaceae, fossil polar view equatorial view Anthurium trisulcatum Ginkgo biloba Araceae Ginkgoaceae oblique distal polar view Galium lucidum Phleum pratense Rubiaceae Poaceae polar view distal polar view
  • 77. SHAPE & SIZE outline elliptic LM SEM TEM mo ana fncoutline elliptic Allium oleraceum Salvia coccinea Alliaceae Lamiaceae distal polar view polar view Aechmea dealbata Galeopsis tetrahit Bromeliaceae Lamiaceae dry pollen Physostegia virginiana Balsaminaceae Lamiaceae polar view dry pollen ILLUSTRATED GLOSSARY 81
  • 78. outline quadrangular SHAPE & SIZELM SEM TEM mo ana fncoutline quadrangular Nonea pulla Boraginaceae Boraginaceae dry pollen polar view Viola tricolor Violaceae Boraginaceae polar view polar view Herniaria glabra Impatiens glandulifera Caryophyllaceae Balsaminaceae polar view
  • 79. SHAPE & SIZE outline polygonal LM SEM TEM mo ana fncoutline polygonal Stellaria holostea Viola arvensis Caryophyllaceae Violaceae dry pollen polar view Arbutus unedo Opuntia basilaris Ericaceae Cactaceae tetrads, dry pollen dry pollen Talinum paniculatum Silene nutans Portulacaceae Caryophyllaceae dry pollen dry pollen ILLUSTRATED GLOSSARY 83
  • 80. outline triangular SHAPE & SIZELM SEM TEM mo ana fncoutline triangular Callistemon coccineus Hypoestes phyllostachya Myrtaceae Acanthaceae polar view dry pollen Echinops ritro Bupleurum rotundifolium Asteraceae Apiaceae polar view polar view Paullinia tomentosa Primula denticulata Sapindaceae Primulaceae polar view dry pollen
  • 81. SHAPE & SIZE outline triangular LM SEM TEM mo ana fncoutline triangular Circaea lutetiana Apiaceae Onagraceae dry pollen polar view, viscin threads Jovibarba hirta Cunonia capensis Crassulaceae Cunoniaceae polar view polar view Dipsacus fullonum Potentilla inclinata Dipsacaceae Rosaceae polar view polar view ILLUSTRATED GLOSSARY 85
  • 82. outline lobate SHAPE & SIZELM SEM TEM mo ana fncoutline lobate Acer pseudoplatanus Artemisia pontica Sapindaceae Asteraceae dry pollen polar view Orthilia secunda Rosaceae Ericaceae dry pollen dry pollen Gunnera chilensis Gunnera chilensis Gunneraceae Gunneraceae polar view dry pollen, equatorial (left) and polar view (right)
  • 83. SHAPE & SIZE outline lobate LM SEM TEM mo ana fncoutline lobate Sedum rupestre Viola alba Crassulaceae Violaceae dry pollen dry pollen Clematis heracleifolia Sanicula europaea Ranunculaceae Apiaceae dry pollen dry pollen Pinguicula ehlersiae Bellis perennis Lentibulariaceae Asteraceae dry pollen dry pollen ILLUSTRATED GLOSSARY 87
  • 84. outline, pollen infoldings, irregular SHAPE & SIZELM SEM TEM mo ana fncoutline, pollen infoldings, irregular Urtica dioica Populus alba Urticaceae Salicaceae dry pollen dry pollen Sesleria albicans Anthurium radicans Poaceae Araceae dry pollen dry pollen Coriaria sinica Orobanche hederae Coriariaceae Orobanchaceae dry pollen dry pollen
  • 85. SHAPE & SIZE outline, pollen infoldings, apertures sunken LM SEM TEM mo ana fncoutline, pollen infoldings, apertures sunken Artemisia pontica Carex alba Asteraceae Cyperaceae tricolporate, dry pollen pseudomonads with poroids, dry pollen Lachenalia aloides Luzula sylvestris Liliaceae Juncaceae sulcate, dry pollen tetrads ulcerate, dry pollen Moehringia muscosa Anemone hortensis Caryophyllaceae Ranunculaceae pantoporate, dry pollen stephanocolpate to spiraperturate, dry pollen ILLUSTRATED GLOSSARY 89
  • 86. outline, pollen infoldings, interapertural area sunken SHAPE & SIZELM SEM TEM mo ana fncoutline, pollen infoldings, interapertural area sunken Alnus glutinosa Erica arborea Betulaceae Ericaceae dry pollen dry pollen Bupleurum rotundifolium Melampyrum arvense Apiaceae Scrophulariaceae dry pollen dry pollen Leucadendron discolor Proteaceae Verbenaceae dry pollen dry pollen
  • 87. SHAPE & SIZE outline, pollen infoldings, cup-shaped LM SEM TEM mo ana fncoutline, pollen infoldings, cup-shaped: characteristic shape of pollen grains causedby infoldings as a consequence of harmomegathy; see "Pollen Morphology" Bougainvillea sp. Heliconia sp. Nyctaginaceae Heliconiaceae dry pollen dry pollen Tilia euchlora Elaeagnus angustifolia Tiliaceae Elaeagnaceae dry pollen dry pollen Luzula campestris Tsuga canadensis Juncaceae Pinaceae tetrads, dry pollen dry pollen ILLUSTRATED GLOSSARY 91
  • 88. outline, pollen infoldings, boat-shaped SHAPE & SIZELM SEM TEM mo ana fncoutline, pollen infoldings, boat-shaped: characteristic shape of sulcate pollengrains caused by an infolding as a consequence of harmomegathy; see "PollenMorphology". Asphodeline lutea Billbergia seidelii Asphodelaceae Bromeliaceae sulcate, dry pollen sulcate, dry pollen Lilium candidum Nuphar luteum Liliaceae Nymphaeaceae sulcate, dry pollen sulcate, dry pollen Ginkgo biloba Galanthus nivalis Ginkgoaceae Amaryllidaceae sulcate, dry pollen sulcate, dry pollen
  • 89. SHAPE & SIZE outline, pollen infoldings, boat-shaped LM SEM TEM mo ana fncoutline, pollen infoldings, boat-shaped: characteristic shape of sulcate pollengrains caused by an infolding as a consequence of harmomegathy; see "PollenMorphology". Lysichiton americanus Piper nigrum Araceae Piperaceae sulcate, dry pollen sulcate, dry pollen Gagea lutea Sparganium erectum Liliaceae Sparganiaceae sulcate, dry pollen ulcerate (exception), dry pollen Dioon edule Symplocarpus foetidus Zamiaceae Araceae sulcate, dry pollen sulcate, dry pollen ILLUSTRATED GLOSSARY 93
  • 90. isopolar SHAPE & SIZELM SEM TEM mo ana fncisopolar: pollen grain with identical proximal and distal faces. Cerinthe minor Asperula tinctoria Boraginaceae Rubiaceae dry pollen dry pollen Viburnum tinus Myosotis palustris Viburnaceae Boraginaceae equatorial view dry pollen Monotropa hypopitys Hippocastanaceae Ericaceae equatorial view equatorial view
  • 91. SHAPE & SIZE heteropolar LM SEM TEM mo ana fncheteropolar: pollen grain with different proximal and distal faces. Onosma visianii Billbergia seidelii Boraginaceae Bromeliaceae equatorial view Microrrhinum minus Limnanthes douglasii Scrophulariaceae Limnanthaceae dry pollen dry pollen Sesleria albicans Elaeagnus angustifolia Poaceae Elaeagnaceae oblique view oblique polar view ILLUSTRATED GLOSSARY 95
  • 92. heteropolar SHAPE & SIZELM SEM TEM mo ana fncheteropolar: pollen grain with different proximal and distal faces. Heliconia sp. Heliconiaceae Bromeliaceae dry pollen Erica arborea Pinus strobus Ericaceae Pinaceae tetrad Nuphar luteum Sansevieria dooneri Nymphaeaceae Dracaenaceae equatorial view dry pollen
  • 93. SHAPE & SIZE saccus, saccate LM SEM TEM mo ana fncsaccus: exinous expansion forming an air sac. Tsuga sp. Tsuga sp. Pinaceae, fossil Pinaceae, fossil monosaccate, polar view monosaccate, equatorial view Tsuga canadensis Pinus nigra Pinaceae Pinaceae monosaccate bisaccate, equatorial view Pinus heldreichii Pinus sp. Pinaceae Pinaceae, fossil bisaccate, dry pollen bisaccate, oblique distal polar view ILLUSTRATED GLOSSARY 97
  • 94. saccus, saccate SHAPE & SIZELM SEM TEM mo ana fncsaccus: exinous expansion forming an air sac. Abies cephalonica Picea abies Pinaceae Pinaceae bisaccate, distal polar view bisaccate, dry pollen Picea abies Pinus mugo Pinaceae Pinaceae bisaccate, equatorial view bisaccate, equatorial view Abies nordmanniana Picea pungens Pinaceae Pinaceae bisaccate bisaccate, distal polar view
  • 95. SHAPE & SIZE saccus, saccate LM SEM TEM mo ana fncsaccus: exinous expansion forming an air sac. Podocarpus sp. Podocarpus sp. Podocarpaceae Podocarpaceae bisaccate, proximal polar view bisaccate, oblique equatorial view Microstrobus niphophilus Microstrobus niphophilus Podocarpaceae Podocarpaceae trisaccate, equatorial view trisaccate, proximal polar view Dacrycarpos dacrydioides Dacrycarpos dacrydioides Podocarpaceae Podocarpaceae trisaccate, distal polar view trisaccate, proximal polar view ILLUSTRATED GLOSSARY 99
  • 96. arcus, arcuate SHAPE & SIZELM SEM TEM mo ana fncarcus: a curved wall thickening interconnecting apertures. Alnus glutinosa Alnus sp. Betulaceae Betulaceae, fossil equatorial view polar view Alnus glutinosa Alnus viridis Betulaceae Betulaceae polar view Alnus incana Alnus incana Betulaceae Betulaceae dry pollen polar view
  • 97. APERTURE aperture, aperturate LM SEM TEM mo ana fncaperture:and/or anatomically from the rest of the pollen wall, presumed to function usually asgermination site and to play a role in harmomegathy. Eupatorium cannabinum Clinopodium vulgare Asteraceae Lamiaceae tricolporate, equatorial view hexacolpate, polar view Amaryllidaceae Alismataceae sulcate, distal polar view pantoporate, dry pollen Sesleria sadleriana Carex alba Poaceae Cyperaceae ulcerate, equatorial view poroids, pseudomonad ILLUSTRATED GLOSSARY 101
  • 98. aperture, aperturate APERTURELM SEM TEM mo ana fncaperture:or anatomically from the rest of the pollen wall, presumed to function usually asgermination site and to play a role in harmomegathy. Apiaceae Apiaceae PA+TCH+SP U+Pb Pseudolysimachion barrelieri Scrophulariaceae Lamiaceae KMnO4 PA+TCH+SP (short) Ophiorrhiza sp. Geranium robertianum Rubiaceae Geraniaceae PA+TCH+SP PA+TCH+SP apertural intine protrusion; becomes elimi- apertural intine protrusion nated during pollen maturation
  • 99. APERTURE inaperturate LM SEM TEM mo ana fncinaperturate: pollen grain without distinct aperture(s). Pinellia ternata Populus alba Araceae Salicaceae Chlorospatha dodsonii Araceae Araceae tetrad Phoebe sheareri Posidonia sp. Lauraceae Posidoniaceae ILLUSTRATED GLOSSARY 103
  • 100. angulaperturate APERTURELM SEM TEM mo ana fncangulaperturate: pollen grain with an angular outline, where the apertures aresituated at the angles. Leucadendron brunoides Symplocos sp. Proteaceae Symplocaceae, fossil dry pollen polar view Oenothera biennis Isopogon dawsonii Onagraceae Proteaceae polar view, viscin threads polar view Tropaeolum majus Anthyllis vulneraria Tropaeolaceae Fabaceae dry pollen polar view
  • 101. APERTURE planaperturate LM SEM TEM mo ana fncplanaperturate: pollen grain with an angular outline, where the apertures are situatedin the middle of the sides. Centaurea cyanus Persicaria bistorta Asteraceae Polygonaceae polar view dry pollen Bombacaceae Bombacaceae tricolpate, polar view Beloperone guttata Pedilanthus smallii Acanthaceae Euphorbiaceae dry pollen polar view ILLUSTRATED GLOSSARY 105
  • 102. stephanoaperturate APERTURELM SEM TEM mo ana fncstephanoaperturate: apertures situated at the equator (term usually used for morethan three apertures). Boraginaceae Campanulaceae equatorial view polar view Dracocephalum austriacum Cyclanthera pedata Lamiaceae Cucurbitaceae polar view oblique equatorial view Galium mollugo Pinguicula ehlersiae Rubiaceae Lentibulariaceae U+Pb oblique equatorial view cross section
  • 103. APERTURE stephanoaperturate, stephanocolpate LM SEM TEM mo ana fncstephanoaperturate: apertures situated at the equator (term usually used for morethan three apertures). Asperula tinctoria Galium glaucum Rubiaceae Rubiaceae hexacolpate, polar view polar view Primula veris Balsaminaceae Primulaceae tetracolpate, equatorial view hexacolpate, polar view Lycopus europaeus Galium lucidum Lamiaceae Rubiaceae hexacolpate, dry pollen dry pollen ILLUSTRATED GLOSSARY 107
  • 104. stephanoaperturate, stephanocolporate APERTURELM SEM TEM mo ana fncstephanoaperturate: apertures situated at the equator (term usually used for morethan three apertures). Viola arvensis Violaceae Rosaceae pentacolporate, equatorial view equatorial view Nicotiana tabacum Symphytum caucasicum Solanaceae Boraginaceae tetracolporate, polar view dry pollen Justicia menesii Polygala chamaebuxus Acanthaceae Polygalaceae polar view equatorial view
  • 105. APERTURE stephanoaperturate, stephanoporate LM SEM TEM mo ana fncstephanoaperturate: apertures situated at the equator (term usually used for morethan three apertures). Campanula alpina Carpinus sp. Campanulaceae Betulaceae, fossil equatorial view polar view Pterocarya sp. Juglandaceae, fossil Campanulaceae polar view polar view Myriophyllum spicatum Ulmus minor Haloragaceae Ulmaceae polar view equatorial view ILLUSTRATED GLOSSARY 109
  • 106. pantoaperturate, pantocolpate, pantocolporate APERTURELM SEM TEM mo ana fncpantoaperturate: pollen grain with apertures distributed more or less regularly overthe whole surface. Opuntia basilaris Portulacaceae Cactaceae pantocolpate pantocolpate Sideritis syriaca Talinum paniculatum Lamiaceae Portulacaceae pantocolpate, hexacolpate, dry pollen pantocolpate, dry pollen Ranunculus lanuginosus Banisteria argentea Ranunculaceae Malpighiaceae pantocolpate, dry pollen pantocolporate
  • 107. APERTURE pantoaperturate, pantocolpate, pantoporate LM SEM TEM mo ana fncpantoaperturate: pollen grain with apertures distributed more or less regularly overthe whole surface. Trichostigma peruvianum Hepatica transsylvanica Phytolaccaceae Ranunculaceae pantocolpate, dry pollen pantocolpate Corydalis cava Fumaria vaillantii Fumariaceae Fumariaceae pantocolpate, hexacolpate pantoporate Costus barbatus Opuntia sp. Zingiberaceae Cactaceae pantoporate pantoporate ILLUSTRATED GLOSSARY 111
  • 108. pantoaperturate, pantoporate APERTURELM SEM TEM mo ana fncpantoaperturate: pollen grain with apertures distributed more or less regularly overthe whole surface. Cucurbita pepo Cucurbitaceae Fumariaceae pantoporate pantoporate Stellaria graminea Phaleria capitata Caryophyllaceae Thymelaeaceae pantoporate pantoporate Chenopodium hybridum Ribes aureum Chenopodiaceae Grossulariaceae pantoporate, dry pollen pantoporate
  • 109. APERTURE brevicolpus, brevicolpate, brevicolporus, brevicolporate LM SEM TEM mo ana fncbrevicolpus: short colpusbrevicolporus: short colpus in a compound aperture. Impatiens columbaria Mendoncia albida Balsaminaceae Acanthaceae brevicolpate, equatorial view brevicolpate, equatorial view Scabiosa ochroleuca Tilia americana Dipsacaceae Tiliaceae brevicolpate, equatorial view brevicolporate, equatorial view, acetolyzed Dalechampia roezliana Symphytum orientale Euphorbiaceae Boraginaceae brevicolporate, equatorial view brevicolporate, equatorial view ILLUSTRATED GLOSSARY 113
  • 110. synaperturate, syncolpate, syncolporate APERTURELM SEM TEM mo ana fncsynaperturate: pollen grain with anastomosing apertures. Pedicularis verticillata Nymphoides peltata Scrophulariaceae Menyanthaceae syncolpate, dry pollen syncolpate, polar view Cuphea purpurea Onosma visianii Lythraceae Boraginaceae syncolporate, polar view syncolporate Cassia pulcherrima Callistemon coccineus Caesalpiniaceae Myrtaceae syncolporate syncolporate, equatorial view
  • 111. APERTURE spiraperturate LM SEM TEM mo ana fncspiraperturate: pollen grain with one or more spiral aperture(s). Mimulus guttatus Mimulus guttatus Scrophulariaceae Scrophulariaceae dry pollen Thunbergia alata Crocus speciosus Acanthaceae Iridaceae Claytonia perfoliata Berberis vulgaris Portulacaceae Berberidaceae dry pollen ILLUSTRATED GLOSSARY 115
  • 112. heteroaperturate APERTURELM SEM TEM mo ana fncheteroaperturate: pollen grain with two different types of apertures; only one typepresumed to function as germination site.Comment:the term "heterocolpate" is commonly used for pollen grains with alternating colpiand colpori but "heterocolpate" means two different types of colpi; therefore weprefer the more general term "heteroaperturate". Pardoglossum sp. Lythrum hyssopifolia Boraginaceae Lythraceae equatorial view Tetramerium nervosum Acanthaceae Boraginaceae equatorial view equatorial view Phacelia tanacetifolia Myosotis ramosissima Hydrophyllaceae Boraginaceae polar view
  • 113. APERTURE pseudocolpus LM SEM TEM mo ana fncpseudocolpus: colpus in heteroaperturate pollen grains, presumably non-functional. Lythrum salicaria Asperugo procumbens Lythraceae Boraginaceae equatorial view equatorial view Lumnitzera racemosa Combretaceae Boraginaceae equatorial view Justicia furcata Pachystachys lutea Acanthaceae Acanthaceae colporus colporus ILLUSTRATED GLOSSARY 117
  • 114. colpus, colpate APERTURELM SEM TEM mo ana fnccolpus: elongated aperture (length : width ratio > 2) situated at the equatorial regionor regularly distributed over the pollen grain. Cruciata laevipes Chimonanthus praecox Rubiaceae Calycanthaceae stephanocolpate, equatorial view dicolpate, polar view Melampyrum arvense Clinopodium vulgare Scrophulariaceae Lamiaceae tricolpate, polar view hexacolpate, equatorial view Sherardia arvensis Talinum paniculatum Rubiaceae Portulacaceae stephanocolpate, oblique equatorial view pantocolpate
  • 115. APERTURE colpus, tricolpate LM SEM TEM mo ana fnctricolpate: pollen grain with three colpi. Lamium maculatum Erysimum odoratum Lamiaceae Brassicaceae polar view Nelumbo nucifera Lonicera fragrantissima Nelumbonaceae Caprifoliaceae polar view equatorial view Stachys palustris Acer sp. Lamiaceae Sapindaceae, fossil dry pollen equatorial view ILLUSTRATED GLOSSARY 119
  • 116. colpus, tricolpate APERTURELM SEM TEM mo ana fnctricolpate: pollen grain with three colpi. Fraxinus excelsior Odontites luteus Oleaceae Scrophulariaceae equatorial view dry pollen Nandina domestica Corylopsis platypetala Berberidaceae Hamamelidaceae polar view equatorial view Trollius europaeus Veronica serpyllifolia Ranunculaceae Scrophulariaceae polar view equatorial view
  • 117. APERTURE porus, porate LM SEM TEM mo ana fncporus: more or less circular aperture situated at the equator or regularly spread overthe pollen grain. Arenaria pungens Campanula sp. Caryophyllaceae Caryophyllaceae, fossil pantoporate stephanoporate, polar view Urtica dioica Juglans regia Urticaceae Juglandaceae triporate, oblique equatorial view equatorial view pores irregularly spread (exception) Aechmea allenii Chenopodium glaucum Bromeliaceae Chenopodiaceae diporate, equatorial view pantoporate ILLUSTRATED GLOSSARY 121
  • 118. porus, diporate APERTURELM SEM TEM mo ana fncdiporate: pollen grains with two pori. Colchicum autumnale Aechmea drakeana Colchicaceae Bromeliaceae equatorial view Sanchezia nobilis Acanthaceae Acanthaceae dry (left) and turgescent pollen (right) Broussonetia papyrifera Quesnelia lateralis Moraceae Bromeliaceae
  • 119. APERTURE porus, triporate, stephanoporate LM SEM TEM mo ana fnctriporate: pollen grain with three pori.stephanoporate Betula pendula Cannabis sativa Betulaceae Cannabaceae equatorial view equatorial view Campanula saxatilis Carya sp. Campanulaceae Juglandaceae, fossil polar view polar view Alnus viridis Caryophyllaceae Betulaceae equatorial view oblique equatorial view ILLUSTRATED GLOSSARY 123
  • 120. porus, pantoporate APERTURELM SEM TEM mo ana fncpantoporate Bassia scoparia Thalictrum minus Chenopodiaceae Ranunculaceae dry pollen Cobaea scandens Ipomoea batatas Polemoniaceae Convolvulaceae Calystegia sepium Alismataceae Convolvulaceae
  • 121. APERTURE porus, pantoporate LM SEM TEM mo ana fncpantoporate Plantago major Aechmea azurea Plantaginaceae Bromeliaceae Malva moschata sp. Malvaceae Hamamelidaceae, fossil Arenaria ciliata Buxus sempervirens Caryophyllaceae Buxaceae ILLUSTRATED GLOSSARY 125
  • 122. poroid, poroidate APERTURELM SEM TEM mo ana fncporoid: circular or elliptic aperture, with indistinct margin. Carex remota Cercidiphyllum japonicum Cyperaceae Cercidiphyllaceae pseudomonad triporoidate (in turgescent state) Sagittaria sagittifolia Caldesia parnassifolia Alismataceae Alismataceae Schoenoplectus lacustris Scirpus sylvaticus Cyperaceae Cyperaceae
  • 123. APERTURE tenuitas LM SEM TEM mo ana fnctenuitas: general term for a thinning of the pollen wall. Agapetes variegata Agapetes variegata Ericaceae Ericaceae tetrad Viola tricolor Viola tricolor Violaceae Violaceae polar view Odontites vulgaris Odontites vulgaris Scrophulariaceae Scrophulariaceae dry pollen dry pollen ILLUSTRATED GLOSSARY 127
  • 124. colporus, colporate APERTURELM SEM TEM mo ana fnccolporus: compound aperture composed of a colpus (ektoaperture) combined withan endoaperture of variable size and shape. Lathyrus vernus Fabaceae Rubiaceae tricolporate, equatorial view tricolporate, equatorial view Hieracium hoppeanum Erica herbacea Asteraceae Ericaceae tricolporate, equatorial view tricolporate, tetrad Poncirus trifoliata Cerinthe minor Rutaceae Boraginaceae tetracolporate, polar view stephanocolporate, equatorial view
  • 125. APERTURE colporus, colporate LM SEM TEM mo ana fnccolporus: compound aperture composed of a colpus (ektoaperture) combined withan endoaperture of variable size and shape. Justicia xylosteoides Adhatoda schimperiana Acanthaceae Acanthaceae dicolporate dicolporate, equatorial view Centaurea scabiosa Rhododendron hirsutum Asteraceae Ericaceae tricolporate, polar view tricolporate, tetrad Tricolporopollenites wackersdorfensis Pulmonaria mollissima Fabaceae, fossil Boraginaceae equatorial view stephanocolporate, equatorial view ILLUSTRATED GLOSSARY 129
  • 126. colporus, tricolporate APERTURELM SEM TEM mo ana fnctricolporate: pollen grain with three colpori. Fagus sp. Fagaceae, fossil Verbenaceae equatorial view polar view Rumex acetosa Echium vulgare Polygonaceae Boraginaceae equatorial view equatorial view Parnassia palustris Fatsia japonica Parnassiaceae Araliaceae equatorial view
  • 127. APERTURE colporus, tricolporate LM SEM TEM mo ana fnctricolporate: pollen grain with three colpori. Antennaria dioica Erica arborea Asteraceae Ericaceae equatorial view tetrad Lycium barbarum Myrrhis odorata Solanaceae Apiaceae equatorial view dry pollen Potentilla erecta Cirsium oleraceum Rosaceae Asteraceae equatorial view equatorial view ILLUSTRATED GLOSSARY 131
  • 128. colporus, stephanocolporate APERTURELM SEM TEM mo ana fncstephanocolporate Moltkia petraea Symphytum caucasicum Boraginaceae Boraginaceae oblique polar view oblique polar view Justicia menesii Echinopepon wrightii Acanthaceae Cucurbitaceae equatorial view equatorial view Polygala major Buglossoides arvensis Polygalaceae Boraginaceae oblique polar view equatorial view
  • 129. APERTURE ulcus, ulcerate LM SEM TEM mo ana fnculcus: more or less circular aperture situated distally. Poa annua Sparganium erectum Poaceae Sparganiaceae distal polar view Cephalanthera longifolia Luzula luzuloides Orchidaceae Juncaceae oblique distal polar view tetrads Sansevieria dooneri Juniperus communis Dracaenaceae Cupressaceae dry pollen distal polar view ILLUSTRATED GLOSSARY 133
  • 130. ulcus, ulcerate APERTURELM SEM TEM mo ana fnculcus: more or less circular aperture situated distally. Heliconia sp. Cyrtosperma beccarianum Heliconiaceae Araceae equatorial view, dry pollen distal polar view Bromus erectus Poaceae Orchidaceae oblique distal polar view tetrad Amborella trichopoda Drimys granatensis Amborellaceae Winteraceae tetrad
  • 131. APERTURE sulcus, sulcate LM SEM TEM mo ana fncsulcus: elongated aperture situated distally. Lilium martagon Galanthus nivalis Liliaceae Amaryllidaceae distal polar view distal polar view Doryanthes palmeri Allium ursinum Agavaceae Alliaceae dry pollen distal polar view Cabomba palaeformis Asphodeline lutea Cabombaceae Liliaceae oblique distal polar view ILLUSTRATED GLOSSARY 135
  • 132. sulcus, sulcate APERTURELM SEM TEM mo ana fncsulcus: elongated aperture situated distally. Lachenalia aloides Iris reichenbachii Hyacinthaceae Iridaceae oblique distal polar view Vriesea neoglutinosa Bromeliaceae Bromeliaceae distal polar view dry pollen Paradisea liliastrum Chamaedorea microspadix Anthericaceae Arecaceae equatorial view dry pollen
  • 133. APERTURE sulcus, sulcate LM SEM TEM mo ana fncsulcus: elongated aperture situated distally. Nuphar luteum Nuphar luteum Nymphaeaceae Nymphaeaceae oblique distal polar view equatorial view Liriodendron tulipifera Liriodendron tulipifera Magnoliaceae Magnoliaceae PA+TCH+SP PA+TCH+SP detail of sulcus Anaphyllopsis americana Anaphyllopsis americana Araceae Araceae U+Pb U+Pb detail of sulcus ILLUSTRATED GLOSSARY 137
  • 134. sulcus, disulcate APERTURELM SEM TEM mo ana fncdisulcate: pollen grain with two sulci. equatorial view dry pollen Convallariaceae Convallariaceae equatorial view dry pollen Eichhornia crassipes Crinum augustum Pontederiaceae Amaryllidaceae dry pollen dry pollen
  • 135. APERTURE sulcus, trichotomosulcus, polychotomosulcus LM SEM TEM mo ana fnctrichotomosulcus: three-radiate sulcus.polychotomosulcus: sulcus with more than three arms. Dianella intermedia Dianella intermedia Phormiaceae Phormiaceae oblique distal polar view Dianella tasmanica Dianella tasmanica Phormiaceae Phormiaceae distal polar view dry pollen Hedyosmum goudotianum Hedyosmum goudotianum Chloranthaceae Chloranthaceae polar view, acetolyzed polar view, acetolyzed ILLUSTRATED GLOSSARY 139
  • 136. ring-like aperture APERTURELM SEM TEM mo ana fncring-like aperture: circumferential aperture (situated more or less equatorially or,rarely, meridionally). Limnanthes douglasii Cephalostemon riedelianus Limnanthaceae Rapateaceae ring-like aperture running equatorially oblique equatorial view, ring-like aperture running equatorially Iris histrioides Pedicularis rostrato–capitata Iridaceae Scrophulariaceae dry pollen, ring-like aperture running equa- dry pollen, ring-like aperture running meridi- torially onally Pedicularis palustris Pedicularis palustris Scrophulariaceae Scrophulariaceae dry pollen, ring-like aperture running meridi- ring-like aperture running meridionally onally
  • 137. APERTURE ring-like aperture LM SEM TEM mo ana fncring-like aperture: circumferential aperture (situated more or less equatorially or,rarely, meridionally). Zamioculcas zamiifolia Zamioculcas zamiifolia Araceae Araceae equatorial view, acetolyzed acetolyzed Zamioculcas zamiifolia Monstera deliciosa Araceae Araceae equatorial view equatorial view Gonatopus angustus Gonatopus angustus Araceae Araceae oblique polar view, dry pollen equatorial view ILLUSTRATED GLOSSARY 141
  • 138. margo APERTURELM SEM TEM mo ana fncmargo: exine area surrounding an aperture and differentiated in ornamentation. Discocleidion rufescens Medicago minima Euphorbiaceae Fabaceae tricolporate, polar view tricolporate Fatsia japonica Begonia heracleifolia Araliaceae Begoniaceae tricolporate tricolporate, equatorial view Lysimachia vulgaris Limnanthes douglasii Primulaceae Limnanthaceae tricolporate ring-like aperture, equatorial view
  • 139. APERTURE annulus, annulate LM SEM TEM mo ana fncannulus: ring-like thickening of the pollen wall surrounding a porus or ulcus.Comment:"anulus" orthographical variant of "annulus". Betula humilis Secale cereale Betulaceae Poaceae distal polar view Trichosanthes anguina Fumariaceae Cucurbitaceae Morina longifolia Circaea lutetiana Morinaceae Onagraceae equatorial view equatorial view, viscin threads ILLUSTRATED GLOSSARY 143
  • 140. annulus, annulate APERTURELM SEM TEM mo ana fncannulus: ring-like thickening of the pollen wall surrounding a porus or ulcus.Comment:"anulus" orthographical variant of "annulus". Myriophyllum spicatum Epilobium angustifolium Haloragaceae Onagraceae dry pollen viscin threads Triticum aestivum Triticum aestivum Poaceae Poaceae U+Pb U+Pb Zea mays indet. Poaceae Poaceae U+Pb acetolyzed
  • 141. APERTURE aperture membrane, smooth LM SEM TEM mo ana fncaperture membrane: exine layer covering an aperture; aperture membrane can besmooth or ornamented.Comment:the terms "smooth" and "ornamented" should be used when the feature is remarkablyexpressed. Scrophularia vernalis Doryanthes palmeri Scrophulariaceae Agavaceae tricolporate, equatorial view sulcate, distal polar view Melampyrum subalpinum Aechmea caesia Scrophulariaceae Bromeliaceae tricolpate diporate Kickxia spuria Tragopogon dubius Scrophulariaceae Asteraceae tricolporate, equatorial view tricolporate ILLUSTRATED GLOSSARY 145
  • 142. aperture membrane, ornamented APERTURELM SEM TEM mo ana fncaperture membrane: exine layer covering an aperture; aperture membrane can besmooth or ornamented.Comment:the terms "smooth" and "ornamented" should be used when the feature is remarkablyexpressed. Convolvulus tricolor Salix alba Convolvulaceae Salicaceae tricolpate, polar view tricolpate, equatorial view Aesculus hippocastanum Moltkia petraea Hippocastanaceae Boraginaceae tricolporate stephanocolporate Billbergia macrocalyx Arenaria serpyllifolia Bromeliaceae Caryophyllaceae sulcate, distal polar view pantoporate
  • 143. APERTURE aperture membrane, ornamented LM SEM TEM mo ana fncaperture membrane: exine layer covering an aperture; aperture membrane can besmooth or ornamented.Comment:the terms "smooth" and "ornamented" should be used when the feature is remarkablyexpressed. Saxifraga vandellii Galeopsis tetrahit Saxifragaceae Lamiaceae tricolpate, equatorial view tricolpate Veronica cinerea Clarkia pulchella Scrophulariaceae Onagraceae tricolpate triporate Nuphar luteum Gagea villosa Nymphaeaceae Liliaceae sulcate sulcate ILLUSTRATED GLOSSARY 147
  • 144. aperture membrane, ornamented APERTURELM SEM TEM mo ana fncaperture membrane: exine layer covering an aperture; aperture membrane can besmooth or ornamented.Comment:the terms "smooth" and "ornamented" should be used when the feature is remarkablyexpressed. Chenopodium hybridum Aesculus carnea Chenopodiaceae Hippocastanaceae U+Pb U+Pb Mercurialis perennis Ulmus minor Euphorbiaceae Ulmaceae PA+TCH+SP (short) U+Pb Lamiastrum montanum Aconitum lycoctonum Lamiaceae Ranunculaceae
  • 145. APERTURE operculum, operculate LM SEM TEM mo ana fncoperculum: coherent exine structure covering an aperture. Dianthus carthusianorum Teucrium pyrenaicum Caryophyllaceae Lamiaceae Babiana velutina Zea mays Iridaceae Poaceae sulcate, two opercula oblique equatorial view Dionaea muscipula Potentilla arenaria Droseraceae Rosaceae ILLUSTRATED GLOSSARY 149
  • 146. operculum, operculate APERTURELM SEM TEM mo ana fncoperculum: coherent exine structure covering an aperture. Knautia drymeia Tulipa sylvestris Dipsacaceae Liliaceae distal polar view Cucurbita pepo Camellia japonica Cucurbitaceae Theaceae Agrostemma githago Caryophyllaceae oblique equatorial view
  • 147. APERTURE operculum, operculate LM SEM TEM mo ana fncoperculum: coherent exine structure covering an aperture. Rosa pendulina Rosaceae equatorial view Poa pratensis Triticum aestivum Poaceae Poaceae PA+TCH+SP (short) PA+TCH+SP (short) Plantago lanceolata Poa angustifolia Plantaginaceae Poaceae U+Pb PA+TCH+SP (short) ILLUSTRATED GLOSSARY 151
  • 148. pontoperculum, pontoperculate APERTURELM SEM TEM mo ana fncpontoperculum: operculum covering a colpus, not completely isolated from theremainder of the sexine. Veratrum nigrum Sanguisorba minor Melanthiaceae Rosaceae dry pollen polar view Sanguisorba cretica Sanguisorba cretica Rosaceae Rosaceae equatorial view
  • 149. APERTURE bridge LM SEM TEM mo ana fncbridge: exine connection between the margins of a colpus in the equatorial region.Comment:the term is often used in a more general context, e.g., for exine connections withintetrads. Elaeagnus angustifolia Rehderodendron sp. Elaeagnaceae Styracaceae, fossil equatorial view Cunonia capensis Epilobium hirsutum Cunoniaceae Onagraceae equatorial view tetrad Typha latifolia Typhaceae Podostemaceae tetrad dyad ILLUSTRATED GLOSSARY 153
  • 150. papilla, papillate APERTURELM SEM TEM mo ana fncpapilla: small protuberance typical for Taxoidoideae-pollen (Cupressaceae). Cryptomeria japonica Cryptomeria sp. Cupressaceae Cupressaceae, fossil equatorial view equatorial view Cryptomeria japonica Cupressaceae Cupressaceae dry pollen Cunninghamia lanceolata Cupressaceae Cupressaceae oblique distal polar view
  • 151. ORNAMENTATION reticulum, reticulate LM SEM TEM mo ana fncreticulum: network-like pattern formed by exine elements (muri), where the luminaare wider than 1 μm. Cardamine pratensis Veratrum album Brassicaceae Melanthiaceae Polygala major Aechmea azurea Polygalaceae Bromeliaceae Luffa cylindrica Razisea citrina Cucurbitaceae Acanthaceae equatorial view ILLUSTRATED GLOSSARY 155
  • 152. reticulum, reticulate ORNAMENTATIONLM SEM TEM mo ana fncreticulum: network-like pattern formed by exine elements (muri), where the luminaare wider than 1 μm. Persicaria sp. Cephalanthera longifolia Polygonaceae, fossil Orchidaceae equatorial view Ruellia brevifolia Beloperone guttata Acanthaceae Acanthaceae reticulate, perforate Buxus sempervirens Impatiens glandulifera Buxaceae Balsaminaceae
  • 153. ORNAMENTATION reticulum, reticulate LM SEM TEM mo ana fncreticulum: network-like pattern formed by exine elements (muri), where the luminaare wider than 1 μm. Lupinus polyphyllus Sollya heterophylla Fabaceae Pittosporaceae reticulate, perforate reticulate to rugulate Opuntia paraguayensis Ibicella lutea Cactaceae Martyniaceae free standing columellae clypeate, reticulate Poncirus trifoliata Lathyrus vernus Rutaceae Fabaceae reticulate, perforate ILLUSTRATED GLOSSARY 157
  • 154. reticulum, reticulate ORNAMENTATIONLM SEM TEM mo ana fncreticulum: network-like pattern formed by exine elements (muri), where the luminaare wider than 1 μm. Salix daphnoides Persicaria mitis Salicaceae Polygonaceae polar view pantoporate, free standing columellae Paradisea liliastrum Trifolium rubens Liliaceae Fabaceae reticulate, perforate Ecballium elaterium Ajuga genevensis Cucurbitaceae Lamiaceae reticulate, perforate
  • 155. ORNAMENTATION reticulum, reticulate LM SEM TEM mo ana fncreticulum: network-like pattern formed by exine elements (muri), where the luminaare wider than 1 μm. Aechmea allenii Adenia fruticosa Bromeliaceae reticulate to foveolate incomplete reticulum Epipactis helleborine Orchidaceae Fabaceae incomplete reticulum Tropaeolum majus Physostegia virginiana Tropaeolaceae Lamiaceae reticulate, perforate reticulate, perforate ILLUSTRATED GLOSSARY 159
  • 156. reticulum, reticulate ORNAMENTATIONLM SEM TEM mo ana fncreticulum: network like pattern formed by exine elements (muri), where the luminaare wider than 1 μm. Pisum sativum Harpochilus neesianus Fabaceae Acanthaceae reticulate, perforate reticulate, brochi with inclined columellae Werauhia tarmaensis Plectranthus ornatus Bromeliaceae Lamiaceae bireticulate Thladiantha hookeri Pinguicula alpina Cucurbitaceae Lentibulariaceae oblique equatorial view, incomplete reticulum incomplete reticulum
  • 157. ORNAMENTATION bireticulate LM SEM TEM mo ana fncbireticulate: special type of reticulate ornamentation, where the brochi of the large- Salvia argentea Salvia glutinosa Lamiaceae Lamiaceae Phlox paniculata Lamiaceae Polemoniaceae Pachystachys lutea Melittis melissophyllum Acanthaceae Lamiaceae ILLUSTRATED GLOSSARY 161
  • 158. reticulum, brochus, homobrochate ORNAMENTATIONLM SEM TEM mo ana fncbrochus: mesh of a reticulum consisting of one lumen and the adjoining half of themuri.homobrochate: reticulate pollen wall with lumina of uniform size.Comment:the term "homobrochate" should be used when the feature is remarkablyexpressed. Acantholimon glumaceum Abeliophyllum distichum Plumbaginaceae Hamamelidaceae Eranthemum wattii Strobilanthes roseus Acanthaceae Acanthaceae polar view Ruellia graecizans Thlaspi montanum Acanthaceae Brassicaceae
  • 159. ORNAMENTATION reticulum, brochus, heterobrochate LM SEM TEM mo ana fncbrochus: mesh of a reticulum consisting of one lumen and the adjoining half of themuri.heterobrochate: reticulate pollen wall with lumina of different sizes.Comment:the term "heterobrochate" should be used when the feature is remarkablyexpressed. Hedera helix Lachenalia aloides Araliaceae Hyacinthaceae equatorial view Fritillaria meleagris Anthericum ramosum Liliaceae Anthericaceae Billbergia seidelii Limodorum abortivum Bromeliaceae Orchidaceae ILLUSTRATED GLOSSARY 163
  • 160. reticulum, microreticulate ORNAMENTATIONLM SEM TEM mo ana fncmicroreticulate Kickxia spuria Pseudolysimachion longifolium Scrophulariaceae Scrophulariaceae Lamium purpureum Cytisus nigricans Lamiaceae Fabaceae Dianella tasmanica Reseda luteola Phormiaceae Resedaceae
  • 161. ORNAMENTATION reticulum cristatum LM SEM TEM mo ana fncreticulum cristatum: special type of reticulum; muri with prominent sculptureelements. Lilium martagon Fumana procumbens Liliaceae Cistaceae equatorial view Lilium candidum Mercurialis perennis Liliaceae Euphorbiaceae reticulum with microechini Phaleria capitata Bombacaceae Thymelaeaceae reticulum with gemmae or clavae ILLUSTRATED GLOSSARY 165
  • 162. reticulum cristatum ORNAMENTATIONLM SEM TEM mo ana fncreticulum cristatum: special type of reticulum; muri with prominent sculptureelements. Pachysandra terminalis Aponogeton masoalaensis Buxaceae Aponogetonaceae reticulum with microechini Geranium canariense Thymelaea passerina Geraniaceae Thymelaeaceae reticulum with clavae reticulum with echini, croton pattern Erdtmanipollis sp. Garcia nutans Buxaceae, fossil Euphorbiaceae croton pattern
  • 163. ORNAMENTATION reticulum cristatum, croton pattern LM SEM TEM mo ana fnccroton pattern: special type of reticulum cristatum formed by regularly arrangedsculpture elements on muri. Euphorbiaceae Euphorbiaceae Jatropha podagrica Daphne laureola Euphorbiaceae Thymelaeaceae Daphne cneorum Thymelaea passerina Thymelaeaceae Thymelaeaceae surface detail with porus ILLUSTRATED GLOSSARY 167
  • 164. plicae, plicate ORNAMENTATIONLM SEM TEM mo ana fncplicae: cirumferential, parallel ridge-like folds. Ephedra distachya Pistia stratiotes Ephedraceae Araceae Ephedra sp. Pistia stratiotes Ephedraceae, fossil Araceae equatorial view PA+TCH+SP cross section of pollen grain and plicae Hemigraphis primulaefolia Pseudodracontium siamense Acanthaceae Araceae polar (left) and equatorial view (right)
  • 165. ORNAMENTATION striae, striate LM SEM TEM mo ana fncstriae: elongated exine elements separated by grooves predominantly parallelarranged.Comment:the term "striae" is used inconsistently in the literature. We use the term for the elevatedelements and not for the grooves. Acer pseudoplatanus Prunus avium Sapindaceae Rosaceae striate, perforate dry pollen Potentilla inclinata Veronica cinerea Rosaceae Scrophulariaceae striate, perforate striate, perforate Datura suaveolens Gentiana lutea Solanaceae Gentianaceae polar view, striate, foveolate striate, perforate ILLUSTRATED GLOSSARY 169
  • 166. striae, striate ORNAMENTATIONLM SEM TEM mo ana fncstriae: elongated exine elements separated by grooves predominantly parallelarranged.Comment:the term "striae" is used inconsistently in the literature. We use the term for the elevatedelements and not for the grooves. Saxifraga rotundifolia Aesculus hippocastanum Saxifragaceae Hippocastanaceae striate, microgemmate equatorial view, striate, perforate Lycium barbarum Cydonia sinensis Solanaceae Rosaceae striate, perforate Rubus caesius Rosaceae Alliaceae striate, perforate striate, perforate
  • 167. ORNAMENTATION striae, striate LM SEM TEM mo ana fncstriae: elongated exine elements separated by grooves predominantly parallelarranged.Comment:the term "striae" is used inconsistently in the literature. We use the term for the elevatedelements and not for the grooves. Menyanthes trifoliata Saxifraga tridactylites Menyanthaceae Saxifragaceae oblique polar view striate, microechinate Sanguisorba minor Begonia heracleifolia Rosaceae Begoniaceae striate, granulate Crataegus laevigata Cabomba palaeformis Rosaceae Cabombaceae striate, perforate ILLUSTRATED GLOSSARY 171
  • 168. striae, striate ORNAMENTATIONLM SEM TEM mo ana fncstriae: elongated exine elements separated by grooves predominantly parallelarranged.Comment:the term "striae" is used inconsistently in the literature. We use the term for the elevatedelements and not for the grooves. Geum reptans Helianthemum nummularium Rosaceae Cistaceae polar (left) and equatorial (right) view striate, perforate Prunus laurocerasus Ruta graveolens Rosaceae Rutaceae striate, perforate polar view Neoalsomitra sarcophylla Malus sylvestris Cucurbitaceae Rosaceae polar view striate, perforate, polar area
  • 169. ORNAMENTATION striato-reticulate LM SEM TEM mo ana fncstriato-reticulate: ornamentation intermediate between striate and reticulate. Pelargonium ferulaceum Erodium cicutarium Geraniaceae Geraniaceae Gentianella austriaca Polemonium caeruleum Gentianaceae Polemoniaceae Pelargonium tetragonum Geraniaceae Solanaceae polar view ILLUSTRATED GLOSSARY 173
  • 170. striato-reticulate ORNAMENTATIONLM SEM TEM mo ana fncstriato-reticulate: ornamentation intermediate between striate and reticulate. Ailanthus altissima Gentiana acaulis Simaroubaceae Gentianaceae polar view Pelargonium carnosum Ptelea trifoliata Geraniaceae Rutaceae striato-microreticulate Veronica prostrata Campanula persicifolia Scrophulariaceae Campanulaceae striato-microreticulate microechinate, striato-microreticulate
  • 171. ORNAMENTATION rugulae, rugulate LM SEM TEM mo ana fncrugulae: elongated exine elements longer than 1 μm; irregularly arranged. Securigera varia Zelkova sp. Fabaceae Ulmaceae, fossil polar view Peucedanum cervaria Fagus sp. Apiaceae Fagaceae, fossil Sedum acre Circaea lutetiana Crassulaceae Onagraceae rugulate, perforate rugulate, perforate ILLUSTRATED GLOSSARY 175
  • 172. rugulae, rugulate ORNAMENTATIONLM SEM TEM mo ana fncrugulae: elongated exine elements longer than 1 μm; irregularly arranged. Carpinus betulus Acer negundo Betulaceae Sapindaceae rugulate, granulate rugulate, perforate Nymphoides peltata Leucadendron discolor Menyanthaceae Proteaceae rugulate, perforate Nicotiana tabacum Myrrhis odorata Solanaceae Apiaceae rugulate, perforate
  • 173. ORNAMENTATION granulum, granulate LM SEM TEM mo ana fncgranulum: structure- or sculpture element of different size and shape; smaller than1 μm. Larix decidua Humulus lupulus Pinaceae Cannabaceae Rhaphidophora africana Clarkia pulchella Araceae Onagraceae Quercus robur Luzula campestris Fagaceae Juncaceae ILLUSTRATED GLOSSARY 177
  • 174. psilate ORNAMENTATIONLM SEM TEM mo ana fncpsilate: pollen wall with smooth surface. Hedychium gardnerianum Anthyllis vulneraria Zingiberaceae Fabaceae inaperturate Vinca minor Boraginaceae Apocynaceae equatorial view oblique polar view Dorycnium germanicum Jovibarba hirta Fabaceae Crassulaceae oblique view dry pollen
  • 175. ORNAMENTATION psilate LM SEM TEM mo ana fncpsilate: pollen wall with smooth surface. Allium ursinum Lathyrus niger Alliaceae Fabaceae equatorial view equatorial view Trigonia nivea Maxillaria densa Trigoniaceae Orchidaceae equatorial view tetrad, part of massula Costus speciosus Zingiberaceae Acanthaceae pantoporate equatorial view ILLUSTRATED GLOSSARY 179
  • 176. perforate ORNAMENTATIONLM SEM TEM mo ana fncperforate: pollen wall with holes less than 1 μm in diameter. Colutea arborescens Gonatopus angustus Fabaceae Araceae equatorial view Myosotis arvensis Euphorbia palustris Boraginaceae Euphorbiaceae Lysimachia nemorum Cucumis sativa Primulaceae Cucurbitaceae
  • 177. ORNAMENTATION perforate LM SEM TEM mo ana fncperforate: pollen wall with holes less than 1 μm in diameter. Hippocrepis emerus Boraginaceae Fabaceae equatorial view Napoleonaea imperialis Euphorbia helioscopia Napoleonaeaceae Euphorbiaceae Rumex acetosa Trifolium montanum Polygonaceae Fabaceae perforate, granulate ILLUSTRATED GLOSSARY 181
  • 178. foveola, foveolate ORNAMENTATIONLM SEM TEM mo ana fncfoveola: roundish lumen more than 1 μm in diameter; distance between two adjacentlumina larger than their diameter. Streptocalyx poeppigii Canistrum camacaense Bromeliaceae Bromeliaceae Lavandula angustifolia Smilacina stellata Lamiaceae Convallariaceae Cyrtosperma beccarianum Hohenbergia stellata Araceae Bromeliaceae foveolate to reticulate
  • 179. ORNAMENTATION fossula, fossulate LM SEM TEM mo ana fncfossula: irregularly shaped groove in the surface of a pollen wall. Mendoncia albida Erica herbacea Acanthaceae Ericaceae fossulate, granulate Rhododendron hirsutum Ledum palustre Ericaceae Ericaceae Aristolochia manshuriensis Aristolochiaceae Pyrolaceae fossulate, perforate monads ILLUSTRATED GLOSSARY 183
  • 180. lophae, lacunae, lophate ORNAMENTATIONLM SEM TEM mo ana fnclophae: a network-like pattern of ridges (= lophae) formed by the outer exinesurrounding window-like spaces or depressions (= lacunae). Leontodon saxatilis Cichorium intybus Asteraceae Asteraceae equatorial view, lophae colored polar view, lacunae colored Opuntia basilaris Cactaceae Amaranthaceae Gazania sp. Hieracium hoppeanum Asteraceae Asteraceae polar view dry pollen
  • 181. ORNAMENTATION lophae, lacunae, lophate LM SEM TEM mo ana fnclophae: a network-like pattern of ridges (= lophae) formed by the outer exinesurrounding window-like spaces or depressions (= lacunae). Taraxacum sp. Crepis biennis Asteraceae, fossil Asteraceae equatorial view polar view Scorzonera cana Tragopogon dubius Asteraceae Asteraceae polar view equatorial view Opuntia polyacantha Ipomoea caerulea Cactaceae Convolvulaceae ILLUSTRATED GLOSSARY 185
  • 182. echinus, echinate ORNAMENTATIONLM SEM TEM mo ana fncechinus: pointed ornamentation element longer and/or wider than 1 μm. Galinsoga ciliata Carduus acanthoides Asteraceae Asteraceae Hibiscus trionum Pinellia ternata Malvaceae Araceae Lavatera thuringiaca Pinellia ternata Malvaceae Araceae PA+TCH+SP (short)
  • 183. ORNAMENTATION echinus, echinate LM SEM TEM mo ana fncechinus: pointed ornamentation element longer and/or wider than 1 μm. Stratiotes aloides Zomicarpa riedeliana Hydrocharitaceae Araceae Ipomoea batatas Knautia drymeia Convolvulaceae Dipsacaceae Campanula alpina Ulearum sagittatum Campanulaceae Araceae ILLUSTRATED GLOSSARY 187
  • 184. echinus, echinate ORNAMENTATIONLM SEM TEM mo ana fncechinus: pointed ornamentation element longer and/or wider than 1 μm. Patrinia gibbosa Hieracium hoppeanum Valerianaceae Asteraceae Ambrosia artemisiifolia Aster amellus Asteraceae Asteraceae Nuphar luteum Portulacaceae Nymphaeaceae
  • 185. ORNAMENTATION echinus, echinate LM SEM TEM mo ana fncechinus: pointed ornamentation element longer and/or wider than 1 μm. Petasites albus Antennaria dioica Asteraceae Asteraceae dry pollen Malva neglecta Tanacetum corymbosum Malvaceae Asteraceae Lonicera fragrantissima Pharbitis purpurea Caprifoliaceae Convolvulaceae ILLUSTRATED GLOSSARY 189
  • 186. echinus, microechinate ORNAMENTATIONLM SEM TEM mo ana fncmicroechinate Claytonia perfoliata Babiana velutina Portulacaceae Iridaceae microechinate, perforate microechinate, perforate Pulsatilla pratensis Ranunculaceae Campanulaceae microechinate, perforate microechinate, striato-microreticulate Galium lucidum Petrorhagia prolifera Rubiaceae Caryophyllaceae microechinate, perforate microechinate, perforate
  • 187. ORNAMENTATION verruca, verrucate LM SEM TEM mo ana fncverruca: wart-like element more than 1 μm broad, broader than high. Aristolochia salvadorensis Plantago media Aristolochiaceae Plantaginaceae verrucate, perforate verrucate, microechinate Aristolochia tricaudata Calliandra emarginata Aristolochiaceae Mimosaceae verrucate, perforate Corydalis cava Teucrium chamaedrys Fumariaceae Lamiaceae dry pollen microverrucate, perforate ILLUSTRATED GLOSSARY 191
  • 188. baculum, baculate ORNAMENTATIONLM SEM TEM mo ana fncbaculum: rod-like, free standing element, more than 1 μm in height and neverpointed. Viscum laxum Viscum laxum Viscaceae Viscaceae Viscum album Nymphaea alba Viscaceae Nymphaeaceae polar view Erythrochiton brasiliensis Erythrochiton brasiliensis Rutaceae Rutaceae equatorial view large bacula and smaller bacula or clavae
  • 189. ORNAMENTATION clava, clavate LM SEM TEM mo ana fncclava: club-shaped element, higher than 1 μm. Iris alata Ilex sp. Iridaceae Aquifoliaceae, fossil equatorial view Plumbago auriculata Aquifoliaceae Plumbaginaceae equatorial view Aratitiyopea lopezii Linaceae Xyridaceae heterostylous, long-styled morph clavae of two different sizes ILLUSTRATED GLOSSARY 193
  • 190. clava, clavate ORNAMENTATIONLM SEM TEM mo ana fncclava: club-shaped element, higher than 1 μm. Geranium robertianum Geranium robertianum Geraniaceae Geraniaceae toluidine blue PA+TCH+SP (short) Geranium pratense Geranium sibiricum Geraniaceae Geraniaceae reticulum cristatum with clavae reticulum cristatum with clavae
  • 191. ORNAMENTATION free-standing columellae LM SEM TEM mo ana fncfree-standing columellae: columellae in the infratectal layer not covered by a tectumin semitectate pollen grains. Dipteracanthus devosianus Acanthaceae Balsaminaceae Erophila verna Bougainvillea sp. Brassicaceae Nyctaginaceae Viburnum opulus Thladiantha hookeri Caprifoliaceae Cucurbitaceae ILLUSTRATED GLOSSARY 195
  • 192. gemma, gemmate ORNAMENTATIONLM SEM TEM mo ana fncgemma: globular exine element more than 1 μm in diameter. Dionaea muscipula Cephalopentandra ecirrhosa Droseraceae Cucurbitaceae gemmate, clavate gemmate, reticulate, polar view Stenandrium dulce Asarum europaeum Acanthaceae Aristolochiaceae large and small gemmae and granules gemmate, microgemmate Fatsia japonica Hakea kippistiana Araliaceae Proteaceae gemmate, reticulate gemmate, microreticulate
  • 193. ORNAMENTATION areola, areolate LM SEM TEM mo ana fncareola: small, mostly convex exine island. Peperomia rubella Dracunculus vulgaris Piperaceae Araceae Mimosa pudica Poikilacanthus macranthus Mimosaceae Acanthaceae tetrad areolae reticulate Cynodon dactylon Beloperone guttata Poaceae Acanthaceae areolae in apertural area ILLUSTRATED GLOSSARY 197
  • 194. clypeate ORNAMENTATIONLM SEM TEM mo ana fncclypeate: pollen wall where the exine is subdivided into shields. Ibicella lutea Corydalis lutea Martyniaceae Fumariaceae inaperturate pantocolpate, syncolpate Phyllanthus sp. Iris bucharica Euphorbiaceae Iridaceae pantoporate inaperturate Banisteria argentea Catalpa bignonioides Malpighiaceae Bignoniaceae pantocolporate tetrads, inaperturate, dry pollen
  • 195. POLLEN WALL pollen wall LM SEM TEM mo ana fncpollen wall: layer(s) enclosing the cytoplasm of a pollen grain. supratectal pk elements ektexine tectum sexine exine columellae pk foot layer nexine endexine intine structure of the pollen wall Ambrosia artemisiifolia schematic drawing Asteraceae pollenkitt (pk) acetolyzed Ambrosia artemisiifolia Ambrosia artemisiifolia Asteraceae Asteraceae PA+TCH+SP (short) Scrophularia nodosa Scrophularia nodosa Scrophulariaceae Scrophulariaceae KMnO4 ILLUSTRATED GLOSSARY 199
  • 196. infratectum, alveolate POLLEN WALLLM SEM TEM mo ana fncinfratectum: layer between tectum and foot layer or endexine (if foot layer is missing);infratectum can be alveolate, columellate, granular or absent. Abies sp. Pinus sp. Pinaceae, fossil Pinaceae, fossil fractured pollen wall, proximal area (cappa) alveolae inside detached saccus Pinus sp. Tsuga sp. Pinaceae, fossil Pinaceae, fossil Gonatopus angustus Zamioculcas zamiifolia Araceae Araceae PA+TCH+SP U+Pb
  • 197. POLLEN WALL infratectum, columellate LM SEM TEM mo ana fncinfratectum: layer between tectum and foot layer or endexine (if foot layer is missing);infratectum can be alveolate, columellate, granular or absent. Microrrhinum minus Lamiaceae Scrophulariaceae KMnO4 PA+TCH+SP (short) Melampyrum pratense Bassia scoparia Scrophulariaceae Chenopodiaceae PA+TCH+SP (short) U+Pb Gladiolus illyricus indet. Iridaceae Asteraceae fractured pollen wall acetolyzed honey sample fractured pollen wall ILLUSTRATED GLOSSARY 201
  • 198. infratectum, granular, absent POLLEN WALLLM SEM TEM mo ana fncinfratectum: layer between tectum and foot layer or endexine (if foot layer is missing);infratectum can be alveolate, columellate, granular or absent.infratectum: layer between tectum and foot layer or endexine (if foot layer is missing);infratectum can be alveolate, columellate, granular or absent. Amydrium medium Corylus colurna Araceae Betulaceae U+Pb PA+TCH+SP (short) Viola tricolor Juglans regia Violaceae Juglandaceae U+Pb PA+TCH+SP (short) Dieffenbachia humilis Araceae Berberidaceae U+Pb U+Pb
  • 199. POLLEN WALL internal tectum LM SEM TEM mo ana fncinternal tectum: a ± continuous layer between foot layer and tectum, separated fromthem by columellae. Argyranthemum sp. Asteraceae U+Pb Agrimonia eupatoria Centaurea cyanus Rosaceae Asteraceae PA+TCH+SP (short) PA+TCH+SP (short) ILLUSTRATED GLOSSARY 203
  • 200. foot layer POLLEN WALLLM SEM TEM mo ana fncfoot layer: inner layer of the ektexine; foot layer can be continuous, discontinuous,perforated or absent. Microrrhinum minus Plantago maritima Scrophulariaceae Plantaginaceae PA+TCH+SP (short) TCH+SP continuous continuous Clinopodium vulgare Acinos alpinus Lamiaceae Lamiaceae PA+TCH+SP (short) KMnO4 discontinuous discontinuous Pachypodium succulentum Fraxinus excelsior Apocynaceae Oleaceae PA+TCH+SP (short) PA+TCH+SP (short) absent absent
  • 201. POLLEN WALL endexine LM SEM TEM mo ana fncendexine: distinct exine layer between ektexine and intine; endexine (E) can becompact, spongy or lamellar as well as continuous, discontinuous, absent or inaperture only. Odontites luteus Ailanthus altissima Scrophulariaceae Simaroubaceae KMnO4 TCH+SP compact, continuous compact, continuous Microrrhinum minus Boraginaceae Scrophulariaceae PA+TCH+SP U+Pb compact, continuous compact, continuous ILLUSTRATED GLOSSARY 205
  • 202. endexine POLLEN WALLLM SEM TEM mo ana fncendexine: distinct exine layer between ektexine and intine; endexine (E) can becompact, spongy or lamellar as well as continuous, discontinuous, absent or inaperture only. Arophyton buchetii Lamiaceae Araceae KMnO4 U+Pb spongy, continuous spongy, continuous Pistia stratiotes Spathiphyllum blandum Araceae Araceae PA+TCH+SP TCH+SP spongy, continuous spongy, continuous Orobanche hederae Orobanchaceae Ranunculaceae KMnO4 PA+TCH+SP (short) lamellar, continuous lamellar, continuous
  • 203. POLLEN WALL endexine LM SEM TEM mo ana fncendexine: distinct exine layer between ektexine and intine; endexine (E) can becompact, spongy or lamellar as well as continuous, discontinuous, absent or inaperture only Odontites vulgaris Papaveraceae Scrophulariaceae U+Pb PA+TCH+SP (short) compact, discontinuous compact, discontinuous Ranunculus trichophyllos Delphinium elatum Ranunculaceae Ranunculaceae PA+TCH+SP PA+TCH+SP (short) compact, discontinuous compact, discontinuous ILLUSTRATED GLOSSARY 207
  • 204. endexine POLLEN WALLLM SEM TEM mo ana fncendexine: distinct exine layer between ektexine and intine; endexine (E) can becompact, spongy or lamellar as well as continuous, discontinuous, absent or inaperture only. Brassica napus Chenopodium album Brassicaceae Chenopodiaceae PA+TCH+SP (short) PA+TCH+SP absent absent Cereus sp. Poaceae Cactaceae PA+TCH+SP (short) PA+TCH+SP (short) absent absent Corylus avellana Corylus avellana Betulaceae Betulaceae U+Pb TCH+SP in aperture only in aperture only
  • 205. POLLEN WALL intine LM SEM TEM mo ana fncintine: part of the pollen wall next to the cytoplasm, mainly consisting ofpolysaccharides. Apiaceae U+Pb ektintine (electron dense) endintine (electron transparent) Quercus robur Apiaceae Fagaceae PA+TCH+SP TCH+SP ILLUSTRATED GLOSSARY 209
  • 206. semitectum, semitectate POLLEN WALLLM SEM TEM mo ana fncsemitectum: discontinuous tectum, covering less than 50 % of pollen grain surface. Salix fragilis Salix fragilis Salicaceae Salicaceae reticulate U+Pb Quesnelia lateralis Alangium sp. Bromeliaceae Cornaceae, fossil reticulate reticulate, equatorial view Lomatogonium carinthiacum Pachysandra terminalis Gentianaceae Buxaceae striato-microreticulate, polar area reticulum cristatum
  • 207. POLLEN WALL atectate LM SEM TEM mo ana fncatectate: pollen grain lacking a tectum. Rhaphidophora africana Orobanche hederae Araceae Orobanchaceae U+Pb KMnO4 Sauromatum venosum Globba schomburgkii Araceae Zingiberaceae PA+TCH+SP U+Pb ILLUSTRATED GLOSSARY 211
  • 208. primexine MISCELLANEOUSLM SEM TEM mo ana fncprimexine: polysaccharidic layer formed during early developmental stage whereinthe later exine structures are preformed. Smyrnium perfoliatum Smyrnium perfoliatum Apiaceae Apiaceae U+Pb U+Pb pollen mother cell, primexine within callose pollen mother cell, primexine within callose wall wall Smyrnium perfoliatum Smyrnium perfoliatum Apiaceae Apiaceae U+Pb U+Pb free microspore stage, ektexine developed within primexine
  • 209. MISCELLANEOUS vegetative nucleus LM SEM TEM mo ana fncvegetative nucleus ( ) Iris pumila Consolida regalis Iridaceae Ranunculaceae PA+TCH+SP (short) PA+TCH+SP (short) complex vegetative nucleus in mature vegetative nucleus enclosing generative pollen grain cell Acinos alpinus Zantedeschia aethiopica Lamiaceae Araceae PA+TCH+SP (short) U+Pb complex vegetative nucleus in mature pollen grain ILLUSTRATED GLOSSARY 213
  • 210. generative cell MISCELLANEOUSLM SEM TEM mo ana fncgenerative cell ( ) Melampyrum nemorosum Scrophulariaceae Lamiaceae acetocarmine acetocarmine Melampyrum nemorosum Scrophulariaceae Lamiaceae PA+TCH+SP (short) PA+TCH+SP (short) Acinos alpinus Ajuga reptans Lamiaceae Lamiaceae PA+TCH+SP (short) PA+TCH+SP (short)
  • 211. MISCELLANEOUS sperm cell LM SEM TEM mo ana fncsperm cell: male gamete. Smyrnium perfoliatum Triticum aestivum Apiaceae Poaceae acetocarmine acetocarmine Smyrnium perfoliatum Galium mollugo Apiaceae Rubiaceae PA+TCH+SP PA+TCH+SP sperm cells in Apiaceae extremely poor in organelles Zantedeschia aethiopica Araceae Oleaceae PA+TCH+SP (short) TCH+SP sperm cells still in contact with each other; enclosed by the vegetative nucleus ILLUSTRATED GLOSSARY 215
  • 212. tapetum MISCELLANEOUSLM SEM TEM mo ana fnctapetum: specialized layer of cells lining the locule and participating in the nourishmentof pollen grains, pollen wall formation and synthesis of pollen coatings. Zantedeschia aethiopica Apiaceae Araceae PA+TCH+SP U+Pb secretory tapetum in young anther amoeboid tapetum
  • 213. MISCELLANEOUS pollen coatings, pollenkitt LM SEM TEM mo ana fncpollenkitt: pollen coating consisting of sticky substances, mainly lipids. Salvia nemorosa Ambrosia artemisiifolia Lamiaceae Asteraceae unstained acetocarmine Nigella arvensis Oleaceae Ranunculaceae TCH+SP PA+TCH+SP Melampyrum nemorosum Scrophulariaceae Lamiaceae PA+TCH+SP (short) PA+TCH+SP (short) ILLUSTRATED GLOSSARY 217
  • 214. pollen coatings, primexine matrix, tryphine MISCELLANEOUSLM SEM TEM mo ana fncprimexine matrix: pollen coating consisting of primexine remnants in mature pollengrains.tryphine: pollen coating consisting mainly of lipids mixed with membrane remnants. Convolvulus tricolor Apiaceae Convolvulaceae without osmium, PA+TCH+SP PA+TCH+SP (short) Pseudolysimachion barrelieri Sambucus nigra Scrophulariaceae Sambucaceae PA+TCH+SP (short) PA+TCH+SP Brassica nigra Sinapis alba Brassicaceae Brassicaceae PA+TCH+SP (short) PA+TCH+SP (short)
  • 215. MISCELLANEOUS viscin thread LM SEM TEM mo ana fncviscin thread: acetolysis resistant thread arising from the exine. Epilobium angustifolium Onagraceae Onagraceae acetolyzed Oenothera biennis Oenothera biennis Onagraceae Onagraceae oblique view Kalmia latifolia Godetia purpurea Ericaceae Onagraceae tetrads ILLUSTRATED GLOSSARY 219
  • 216. viscin thread MISCELLANEOUSLM SEM TEM mo ana fncviscin thread: acetolysis resistant thread arising from the exine. Circaea lutetiana Onagraceae Onagraceae tetrads Ledum palustre Clarkia pulchella Ericaceae Onagraceae tetrad equatorial view Epilobium dodonaei Rhododendron hirsutum Onagraceae Ericaceae
  • 217. MISCELLANEOUS Ubisch body LM SEM TEM mo ana fncUbisch body: sporopolleninous element produced by the tapetum.Comment:the "Ubisch body" is named after Gerta von Ubisch, who described these bodies for Corylus avellana Poaceae Betulaceae two pollen grains attached to locular wall Atriplex sagittata Stellaria graminea Chenopodiaceae Caryophyllaceae Acacia binerva Beloperone guttata Mimosaceae Acanthaceae ILLUSTRATED GLOSSARY 221
  • 218. Ubisch body MISCELLANEOUSLM SEM TEM mo ana fncUbisch body: sporopolleninous element produced by the tapetum.Comment:the "Ubisch body" is named after Gerta von Ubisch, who described these bodies for Quercus robur Gladiolus illyricus Fagaceae Iridaceae Cyperus longus Ruspolia seticalyx Cyperaceae Acanthaceae pollen grain attached to reticulate locular wall Chamaecyparis lawsoniana Chamaecyparis lawsoniana Cupressaceae Cupressaceae Ubisch bodies on locular wall Ubisch bodies attached on pollen surface
  • 219. MISCELLANEOUS Ubisch body LM SEM TEM mo ana fncUbisch body: sporopolleninous element produced by the tapetum.Comment:the "Ubisch body" is named after Gerta von Ubisch, who described these bodies for Nigella arvensis Odontites luteus Ranunculaceae Scrophulariaceae PA+TCH+SP (short) U+Pb Ruspolia seticalyx Sauromatum venosum Acanthaceae Araceae U+Pb U+Pb Tilia platyphyllos Ranunculaceae Tiliaceae PA+TCH+SP (short) U+Pb ILLUSTRATED GLOSSARY 223
  • 220. a- | acalymmate | acetolysis | actuopalynology | aeropalynologyturate | aperture | aperture membrane | apocolpium | apoporiumbaculate | baculum | bi- | biporate | bireticulate | bisaccate | bisul| brevicolporus | brevicolpus | bridge | brochus | calymmate | cap| clavate | clypeate | colpate | colporate | colporoidate | colporucompact | compound aperture | copropalynology | corpus | costadi- | diaperturate | dicolpate | dicolporate | diploxylon-pollentype || echinolophate | echinus | ektexine | ektintine | ekto- | ektoapertu| endoplica | equator | equatorial | equatorial diameter | equatoria| Fischer‘s rule | foot layer | forensic palynology | fossula | fossulate| Garside‘s rule | gemma | gemmate | generative cell | geniculumharmomegathy | hetero- | heteroaperturate | heterobrochate | hete| impression mark | in- | inaperturate | infoldings | infra- | infratectuinternal tectum | interporium | interstitium | intine | intra- | irregular || lamellar | leptoma | LO-analysis | lobate | lolongate | LO-patternlynology | melittopalynology | meridian | meridional | meso- | mesmonad | mono- | monoaperturate | monocolpate | monolete | moNormapolles | oblate | oblique view | omniaperturate | oncus | op| outline in equatorial view | outline in polar view | P/E-ratio | palaepanto- | pantoaperturate | pantocolpate | pantoporate | papilla || pilate | pilum | planaperturate | plicae | plicate | pluricolumellapollen | pollen analysis | pollen class | pollen coatings | pollen grawall | pollenkitt | pollinarium | pollination | pollinium | poly- | polya| polyplicate | pontoperculate | pontoperculum | porate | poroidprae(pre)-pollen | primexine | primexine matrix | prolate | proximaldrangular | reticulate | reticulum | reticulum cristatum | retipilate || scabrate | sculpture | semi- | semitectate | semitectum | sexinespiraperturate | spongy | spore | sporoderm | sporopollenin | stenopnocolporate | stephanoporate | stephano- | striae | striate | striato| syn- | synaperturate | syncolpate | syncolporate | tapetum | tec| tetrad mark | tetrad planar | tetrad stage | tetrad tetrahedral | trimosulcus | tricolpate | tricolporate | trilete | triporate | tryphine | Unucleus | verruca | verrucate | vesiculate | vestibulum | viscin thre
  • 221. ALPHABETIC GLOSSARY | alveolate | angulaperturate | annulate | annulus | aper- | arcuate | arcus | areola | areolate | atectate | atrium | cate | boat-shaped | brevi- | brevicolpate | brevicolporateppa | cappula | caput | cavea | caveate | circular | clavaus | colpus | colpus membrane | columella | columellate | | costate | croton pattern | cryopalynology | cup-shaped | diporate | dispersal unit | distal | disulcate | dyad | echinate ure | elliptic | endexine | endintine | endo- | endoapertureal view | eu- | eurypalynous | eutectate | exine | fenestratee | foveola | foveolate | free-standing columellae | frustrate | granular | granulate | granulum | haploxylon-pollentype |eropolar | hexa- | homo- | homobrochate | iatropalynology um | intectate | inter- | interapertural area | intercolpium | iso- | isodiametric | isopolar | lacuna | laesura | lalongate | lophae | lophate | lumen | margo | massula | melissopa-socolpium | micro- | microspore | microspore mother cell |onoporate | monosaccate | monosulcate | muri | nexine |perculate | operculum | orbicule | ornamentation | outlineeopalynology | palynogram | palynology | palynomorph | pedium | penta- | perforate | peri- | pharmacopalynologyate | polar area | polar axis | polar view | polarity | pole |ain | pollen mother cell | pollen tube | pollen type | pollen ad | polychotomosulcate | polychotomosulcus | polygonal| poroidate | pororate | porus | porus membrane | prae- | | pseudocolpus | pseudomonad | psilate | punctate | qua- ring-like aperture | rugulae | rugulate | saccate | saccus | shape | size | sperm cell | spheroidal | spine | spinose |palynous | stephanoaperturate | stephanocolpate | stepha-o-reticulate | structure | sub- | sulcate | sulcus | symmetryctate | tectum | tenuitas | tetra- | tetrad | tetrad decussate i- | triangular | triaperturate | trichotomosulcate | trichoto- bisch body | ulcerate | ulcus | vegetative cell | vegetative ead | zona-aperturate | zono-aperturate | Zwischenkörper
  • 222. ALPHABETIC GLOSSARY A strict rationalization of terms on the basis of practical criteria has been attempted. For consist- ency, phrases are standardized as far as possible; for example, features of ornamentation are pollen wall with ….”, and pollen wall features (or pollen shape and pollen grain with ….”. Three categories of terms are used: important terms are printed in bold and are usually illus- trated; terms of minor importance are printed in regular script, usually without illustrations; terms printed in italics are not recommended and often provided with an explanatory comment.
  • 223. a- boat-shapeda- feature is remarkably expressed. apocolpium, see polar areaacalymmate ___________________________ 47 Comment: "polar area" is the more feature describing a dispersal unit of two general term independent of the aper- or more monads enclosed by an exine, ture type which is discontinuous at the junctions apoporium, see polar area between the monads, and is absent from Comment: "polar area" is the more the internal walls. general term independent of the aper- Antonym: calymmate ture type.acetolysis _______________ 7, 19-20, 25, 32, 51 arcuate _______________________________ 100 widely used technique for preparing pollen grain with curved wall thickenings pollen and spore exines especially for interconnecting apertures. [18] light microscopy. [23] arcus (lat., pl. arcus) ________________21, 100actuopalynology a curved wall thickening interconnect- the study of pollen grains and spores of ing apertures. [18] extant plants. areola (lat., pl. areolae)_________ 23, 47, 197aeropalynology ________________________ 12 small, mostly convex exine island. the study of palynomorphs found in the areolate _________________ 32-33, 46-47, 197 atmosphere. [24] pollen wall with areolae.alveolate _____________________ 23, 200-202 atectate ______________________________ 211 infratectum with compartments of irreg- pollen grain lacking a tectum. [128] ular size and shape. [122] Antonym: tectateangulaperturate _______________________ 104 atrium (lat., pl. atria) pollen grain with an angular outline space between diverging exine layers where the apertures are situated at the within the aperture. [115] angles. [21] baculate________________________ 8, 30, 192 Antonym: planaperturate pollen wall with bacula. [64]annulate __________________________143-144 baculum (lat., pl. bacula) ______________ 192 pollen grain with an annulus or annuli. rod-like, free standing element, moreannulus (lat., pl. annuli) ________ 21, 143-144 than 1 μm in height and never pointed. [83] ring-like thickening of the pollen wall sur- bi- rounding a porus or ulcus. [4] Comment: "anulus" is an orthographical biporate, see diporate variant of "annulus". Comment: "diporate" is the moreaperturate __________________________41, 49 common term. pollen grain with one or more apertures. bireticulate____________________ 29, 160-161 [20] special type of reticulate ornamentation, Antonym: inaperturate. where the brochi of the large-meshedaperture _______15-17, 19-20, 23, 25, 101-154 region of the pollen wall which differs sig- reticulum. - bisaccate __________________ 8, 49, 59, 97-99 tomically from the rest of the pollen wall, pollen grain with two sacci. [84] presumed to function usually as germina- Comment: nomen conservandum tion site and to play a role in harmome- bisulcate, see disulcate [20] gathy. [20] Comment: "disulcate" is the moreaperture membrane ___________ 19, 145-148 common term. exine layer covering an aperture; aper- boat-shaped _________ 7, 24-25, 44-45, 92-93 ture membrane can be smooth or orna- characteristic shape of sulcate pollen mented. [21] grains caused by an infolding as a con- Comment: the terms "smooth" and "or- namented" should be used when the 227
  • 224. brevi corpusbrevi- circular, see outline clava (lat., pl. clavae) ______ 23, 30, 193-194brevicolpate __________________________ 113 club-shaped element, higher than 1 μm. pollen grain with brevicolpi. [21] [20, 64, 83]brevicolporate ________________________ 113 clavate __________________ 8, 27, 30, 193-194 pollen grain with brevicolpori. pollen wall with clavae. [20, 64]brevicolporus (lat., pl. brevicolpori) _____ 113 clypeate _______________ 9, 42-43, 47, 68, 198 short colpus in a compound aperture. pollen wall, in which the exine is subdi-brevicolpus (lat., pl. brevicolpi)_________ 113 vided into shields. short colpus. [21] colpate ___________________9, 19, 43, 68, 118bridge _____________________________43, 153 pollen grain with colpi. exine connection between the margins colporate ___________________ 9, 68, 128-132 of a colpus in the equatorial region. [30] pollen grain with colpori. Comment: the term is often used in a colporoidate more general context, e.g., for exine pollen grain with compound apertures connections within tetrads. composed of a colpus (ektoaperture)brochus (lat., pl. brochi)____________162-163 with an indistinct endoaperture. [21] mesh of a reticulum consisting of one Comment: a rare character, e.g., for de- lumen and the adjoining half of the muri. ciduous Quercus pollen. [21] colporus (lat., pl. colpori) ____ 17, 30, 45, 48,calymmate ____________________________ 47 128-132 feature describing a dispersal unit of two compound aperture composed of a or more monads enclosed by a continu- colpus (ektoaperture) combined with ous ektexine. an endoaperture of variable size and Antonym: acalymmate shape.cappa (lat., pl. cappae)_____________ 22-23 colpus (lat., pl. colpi) ____ 17, 41, 43, 48, 113, the thick-walled proximal side of the 118-120 corpus of a saccate pollen grain. [22]cappula, see leptoma [22] > 2) situated at the equatorial region Comment: may be confused with or regularly distributed over the pollen "cappa" which points to the proximal grain. [18] side, while "cappula" refers to distal. colpus membranecaput (lat., pl. capita) aperture membrane of a colpus; see apex of a clava. [21] aperture membrane.cavea (lat., pl. caveae) columella (pl. columellae) _______ 21, 23, 30 infratectal cavity in the interapertural 200-202 area. [109] rod-like structure element, supporting acaveate tectum. [64] pollen wall with caveae. columellate ________________ 21, 23, 200-202 infratectum with rod-like elements. [117] compact, see endexine compound aperture __________ 113, 128-129 aperture with two or more components that are situated in more than one wall layer, e.g., colporus. [24] copropalynology the study of palynomorphs in coprolitescaput colporoidate or faeces. [24]Iris alata Eucommia sp. corpus (lat., pl. corpora) _____________ 22-23pollen surface with clavae equatorial view body of a saccate pollen grain. [22]
  • 225. costa exinecosta (lat., pl. costae) __________________ 21 ektintine ______________________________ 209 - the outer layer of a two-layered intine dering an endoaperture. [64] which is adjacent to the exine. [72]costate ekto- pollen grain with costae.croton pattern __________________ 8, 166-167 ektoaperture ______________________128-129 special type of reticulum cristatum outer part of a compound aperture. formed by regularly arranged sculpture [121] elements on muri. elliptic, see outlinecryopalynology ________________________ 12 endexine ______20-21, 23, 25, 51-52, 205-208 the study of palynomorphs found in ice. distinct exine layer between ektexinecup-shaped___________________ 7, 25, 45, 91 and intine; endexine can be compact, characteristic shape of pollen grains spongy or lamellar as well as continuous, caused by infoldings as a consequence of discontinuous, absent or in aperture only. [83, 107]di- endintine _____________________________ 209 inner layer of a two-layered intine whichdiaperturate is adjacent to the cytoplasm. [72] pollen grain with two apertures. endo-dicolpate _____________________________ 118 pollen grains with two colpi. [107] endoaperture _______ 21, 48, 51, 55, 128-129dicolporate inner part of a compound aperture. pollen grain with two colpori. [107] [121]diploxylon-pollen-type _______________ 22-23 endoplica bisaccate pollen grain with balloon-like fold of the inner exine layer. [115] sacci. equator _____________________________ 15-19diporate _____________________ 121-122, 145 imaginary line around a pollen grain pollen grains with two pori. at the distance half-way between thedispersal unit _________________ 15, 47, 59-67 (proximal and distal) poles. [134] unit in which pollen is shed (monad, equatorial___________________________ 15-19 dyad, tetrad, polyad, massula, pollinium, preposition indicating a direction on the pollinarium). pollen surface; see equator.distal _______________ 15, 18-19, 23, 40-41, 44 equatorial diameter ____________________ 16 pollen features that face or are directed diameter of a pollen grain or spore in the outwards in the tetrad. [65] equatorial plane. [18] Antonym: proximal equatorial view______________________ 15-19disulcate______________________________ 138 the view of a pollen grain or spore per- pollen grain with two sulci. [20, 107] pendicular to the polar axis. [18]dyad _______________________________60, 69 eu- dispersal unit of two pollen grains.echinate _____________ 8, 27, 32, 55, 186-189 eurypalynous pollen wall with echini. [133]echinolophate variation in pollen (or spore) morphol- lophate pollen grains with echinate ogy. [21] ridges. [133] Antonym: stenopalynousechinus (lat., pl. echini) __23, 28, 32, 186-189 eutectate pointed ornamentation element longer pollen grain with a continuous tectum. exine _____ 12-13, 19-21, 23, 25, 205-208, 210ektexine ___________ 20-21, 23, 25, 36, 47, 52 outer layer of the pollen wall which is the outer layer of the exine. [18] usually resistant to acetolysis. [36] 229
  • 226. fenestrate heteropolarfenestrate, see lophate generative cell ________________ 36, 213-214 Comment: as there is no corresponding substantive to "fenestrate", we prefer the geniculum (lat., pl. genicula) terms "lophate" and "lophae". bulge of a colpus in the equatorial regionFischer‘s law/rule ____________________12, 16 of a pollen grain. [83] granular _____________ 8, 21, 23, 46, 200-202foot layer __________________ 21, 23, 200-204 infratectum composed of granula, cluster inner layer of the ektexine; foot layer can of granula or elements of different size and be continuous, discontinuous, perforated shape (never solid and rod-like). [124] or absent. [29] Comment: not to be confused withforensic palynology ____________________ 12 "granulate", which is a type of ornamen- the study of palynomorphs found in fo- tation. rensic samples. granulate ____________________________ 8, 32fossula (lat., pl. fossulae) ____________23, 183 pollen wall with granula. [20] irregularly shaped groove in the surface Comment: not to be confused with "gran- of a pollen wall. [30] ular", which is a feature of the pollen wallfossulate ___________________________32, 183 structure. pollen wall with fossulae. [30] granulum (lat., pl. granula) _______ 8, 23, 177foveola (lat., pl. foveolae) __________23, 182 structure- or sculpture element of differ- roundish lumen more than 1 μm in diam- ent size and shape; smaller than 1 μm. eter; distance between two adjacent [20, 124] lumina larger than their diameter. [21] haploxylon-pollen-type ______________ 22-23foveolate ______________________ 27, 29, 182 bisaccate pollen grain with hemispheri- pollen wall with foveolae. [21] cal columellae ____________23, 30 harmomegathy _______________23-25, 91-93 columellae in the infratectal layer not mechanism permitting changes in shape covered by a tectum in semitectate and size of the pollen grain (by varying pollen grains. the hydration status). [134]frustrate ________________________________ 49 hetero- special mental condition of palynolo- gists discussing terminology of pollen heteroaperturate ________17, 45, 48, 116-117 pollen grain with two different types of apertures; only one type presumed toGarside‘s law/rule ______________________ 16 function a germination site. Comment: the term "heterocolpate" isgemma (lat., pl. gemmae) ______ 23, 48, 196 commonly used for pollen grains with al- globular exine element more than 1 μm ternating colpi and colpori; but "hetero- in diameter. [64] colpate" [64] means two different typesgemmate _______________________ 8, 27, 196 of colpi; therefore we prefer the more pollen wall with gemmae. [64] general term "heteroaperturate". heterobrochate _____________________8, 163 reticulate pollen wall with lumina of dif- ferent sizes. [21] Comment: the term should be used when the feature is remarkably expressed Antonym: homobrochate heteropolar __________________ 15, 41, 95-96 pollen grain with different proximal andgeniculum distal faces. [21]Quercus sp. Antonym: isopolarFagaceae, fossilequatorial view
  • 227. hexa- lobatehexa- interporium, see interapertural area Comment: "interapertural area" is thehomo- more general term independently from the aperture typehomobrochate ________________________ 162 interstitium, see infratectum reticulate pollen wall with lumina of Comment: outdated term uniform size. [21] intine Comment: the term should be used when part of the pollen wall next to the cyto- the feature is remarkably expressed plasm, mainly consisting of polysaccha- Antonym: heterobrochate rides. [36]iatropalynology ________________________ 12 intra- the study of palynomorphs causing human allergies. irregular, see outlineimpression mark________________________ 39 iso- - mal polar area of a pollen grain retained isodiametric , see shape from the tetrad stage. isopolar _____________________________15, 94in- pollen grain with identical proximal and distal faces. [20]inaperturate________________________17, 103 Antonym: heteropolar. pollen grain without distinct aperture(s). lacuna (lat., pl. lacunae)___________184-185 [64, 113] depressed area surrounded by ridges Antonym: aperturate. (lophae) in lophate pollen grains. [133]infoldings ___________________________ 88-93 laesura (lat., pl. laesurae) _______________ 19 a consequence of harmomegathy (ap- a single arm of a tetrad mark; abbrevia- erture sunken, interapertural area sunken, - irregularly infolded).infra- lalongate endoaperture elongated equatorially.infratectum ________________ 21, 23, 200-202 lamellar, see endexine layer between tectum and foot layer or leptoma (gr., pl. leptomata)___ 17, 20, 22-23 endexine (if foot layer is missing); infra- thinning of the pollen wall at the distal tectum can be alveolate, columellate, pole (of a pollen grain) in conifers, pre- granular or absent. [1] sumed to function as germination area;intectate, see atectate special case of tenuitas. [22, 27] Comment: "atectate" is the more LO-analysis ____________________________ 12 common term light microscopical method for analysinginter- lobate, see outlineinterapertural area __________________25, 29 region between apertures.intercolpium, see interapertural area Comment: "interapertural area" is the more general term independently from the aperture type.internal tectum _____________________21, 203 a ± continuous layer between foot layer and tectum, separated from them by lalongate columellae. [109] Symplocos sp. equatorial view 231
  • 228. lolongate nexinelolongate mesocolpium, see interapertural area endoaperture elongated meridionally. Comment: "interapertural area" is theLO-pattern more general term independent of the aperture type. micro-lophae (lat., sing. lopha) ___________184-185 a network-like pattern of ridges (=lophae) 1 μm: -baculate, -clavate, -echinate, formed by the outer exine surround- -gemmate, -pilate, -rugulate, -reticulate, ing window-like spaces or depressions -verrucate; not used in combination with (=lacunae). striate, foveolate, perforate.lophate ___________________________184-185 microspore_________________15-16, 19, 35-36 pollen wall with lophae. [133]lumen (lat., pl. lumina) _________________ 182 microspore mother cell, see pollen mother general term for the space enclosed by cell e.g., muri. [83] monad ________________________________ 59margo (lat., pl. margines) ______________ 142 dispersal unit consisting of a single pollen exine area surrounding an aperture and grain. [107] differentiated in ornamentation. [64] mono-massula (lat., pl. massulae) __ 15, 42, 66, 179 dispersal unit of more than four pollen monoaperturate grains and fewer than the locular pollen grain with a single aperture. [80] content. [83] monocolpate, see sulcate [134]melissopalynology _____________________ 12 the study of palynomorphs found in known there is no example of a pollen honey. [21] grain with a single colpus (situated equa-melittopalynology, see melissopalynology torially); in all pollen grains with a single Comment: the term melittopalynology elongated aperture the latter is situated is the Greek variant of the Latin "melis- distally (sulcus). sopalynology". monolete, see laesura and tetrad markmeridian monoporate, see ulcerate imaginary line on the pollen surface con- necting proximal and distal poles. [64] known there is no example of a pollenmeridional grain with a single porus (situated equa- preposition indicating a direction on the torially); in all pollen grains with a single pollen surface; see meridian. [64] porus the latter is situated distally (ulcus).meso- monosaccate __________________________ 97 pollen grain with a single saccus. [84] monosulcate, see sulcate [20] "sulcate" implies a single elongated ap- erture (sulcus). muri (lat., sing. murus)__________ 48, 155-167 exine elements forming the meshes in a reticulum. [18] nexine _________________________________ 21lolongate term used for light microscopy, describ-Rumex sp.Polygonaceae, fossil the exine. [21, 30]equatorial view
  • 229. Normapolles polar axisNormapolles ___________________________ 33 logical features of a palynomorph. [21] - palynology__________________________ 11-13 gene pollen, usually triaperturate, with a the study of palynomorphs. complex pore apparatus. palynomorph _______________________11, 15oblate _______________________ 16, 24, 78-79 general term for all entities found in paly- pollen grain with a polar axis shorter than nological preparations. the equatorial diameter. [21] panto- Antonym: prolateoblique view pantoaperturate_______________ 19, 110-112 view of a pollen grain neither in polar nor pollen grain with apertures distributed in equatorial view. more or less regularly over the wholeomniaperturate, see inaperturate surface. Comment: the term refers to the func- pantocolpate, see pantoaperturate tional aspect only, therefore we prefer pantoporate, see pantoaperturate "inaperturate". papilla (lat., pl. papillae) ____________20, 154oncus (lat., pl. onci) small protuberance typical for Taxodioi- lens-shaped body located in the aper- tural region. [62] pedium, see foot layeroperculate ________________________149-152 Comment: outdated term aperture with an operculum. [89] penta-operculum (lat., pl. opercula) _______ 19, 44, 149-152 perforate___________________ 27-29, 180-181 coherent exine structure covering an ap- pollen wall with holes less than 1 μm in erture. [89] diameter. [64, 83]orbicule, see Ubisch body [25] peri-, see panto- Comment: "orbicule" implies a globular pharmacopalynology __________________ 12 element, a too restrictive term; we rec- the study of palynomorphs in drugs. ommend "Ubisch body" because they pilate, see clavate [20] are polymorphic. Comment: see pilumornamentation ________________ 23, 155-198 pilum (lat., pl. pila), see clava [83] general term, applied in palynology to Comment: the term "pilum" does not surface features. [89] refer to the palynological feature; "pilum"outline ___________________________24, 80-93 means "dart" or "javelin". general term used to describe the planaperturate _____________________42, 105 pollen grain with an angular outline, equatorial view (can be circular, elliptic, where the apertures are situated in the triangular, quadrangular, polygonal, ir- middle of the sides. [21] regular, lobate). [70] Antonym: angulaperturateoutline in equatorial view plicae (lat., sing. plica)______________23, 168 outline of a pollen grain formed by two cirumferential, parallel ridge-like folds. opposite meridians. [21]outline in polar view plicate _________________________ 30, 70, 168 outline of a pollen grain formed by the pollen wall with plicae. [21] equator. pluricolumellateP/E-ratio _______________________________ 16 reticulate pollen wall with more than one ratio of the length of the polar axis to the row of columellae beneath a murus. equatorial diameter. polar areapalaeopalynology region at and around the pole(s). the study of fossil palynomorphs. polar axis ___________________________ 15-16palynogram____________________________ 15 imaginary line between the proximal and diagram summarising the main morpho- the distal pole of a pollen grain. [134] 233
  • 230. polar view pororatepolar view pollen wall ______________ 20-21, 23, 199-211 view of a pollen grain in which the polar layer(s) enclosing the cytoplasm of a axis is directed towards the observer. pollen grain. [18] pollenkitt____________________ 21, 23, 36, 217polarity ___________________ 15, 17-19, 35, 49 pollen coating consisting of sticky sub- orientation of a pollen grain in tetrad stances, mainly lipids. stage. pollinarium (lat., pl. pollinaria) ________15, 67pole dispersal unit of pollinium (or pollinia) and a single interconnecting sterile append- a pollen grain. [20] age.pollen, see pollen grain pollination __________________________12, 25pollen analysis _________________________ 11 transfer of pollen from the male to the study of assemblages of dispersed paly- female reproductive organs in seed nomorphs. plants. Comment: it does not mean the mor- pollinium (lat., pl. pollinia) ____________15, 67 phological description of a pollen grain; dispersal unit of a more or less intercon- see palynogram. nected loculiform pollen mass. [65]pollen class _____________________ 8-9, 68-72 poly- share a single distinctive character. polyad______________________________42, 70pollen coatings__________23, 25, 36, 217-218 dispersal unit of more than four united generic term applied to organic com- pollen grains. [64] pounds usually produced by the polychotomosulcate pollen grain with a polychotomosulcus. exine cavities. polychotomosulcuspollen grain (pl. pollen grains or pollen) sulcus with more than three arms. the male gametophyte of seed plants; polygonal, see outline the point of origin and the carrier for the polyplicate, see plicate male gametes (spermatozoids or sperm Comment: a "plicate" pollen grain has cells). always more than one plica, thereforepollen mother cell pontoperculate _______________________ 152pollen tube aperture with a pontoperculum. pontoperculum (lat., pl. pontopercula) _ 152pollen type_______________ 5, 8, 22-23, 30, 46 operculum covering a colpus, not com- a general term categorising pollen pletely isolated from the remainder of grains; often used in connection with a the sexine. distinct taxon. porate _______________ 17, 43-44, 70, 121-125 pollen grain with pori. [21] poroid _____________________ 17, 44, 126-127 circular or elliptic aperture, with indistinct margin. [20] poroidate pollen grain with poroid aperture(s). pororate pollen grain with compound aperturespororate composed of a circular ekto- (porus)Corylus sp. and endoaperture. [21]polar view equatorial view
  • 231. porus semitectumporus (lat., pl. pori; engl. pore, pl. pores) __8, punctate, see perforate [83] 17, 30, 121-125 Comment: "punctum" [21] does not de- more or less circular aperture situated at scribe the three dimensional character the equator or regularly spread over the of a perforation. pollen grain. [84] quadrangular, see outlineporus membrane reticulate _______________ 27, 29-30, 155-167 aperture membrane of a porus; see ap- pollen wall with reticulum. [134] erture membrane. reticulum (lat., pl. reticula) _________155-167prae- network like pattern formed by exine ele- ments (muri), where the lumina are widerprae(pre)-pollen _______________________ 19 than 1 μm. [134] microspores of certain extinct seed reticulum cristatum ____________ 48, 165-167 plants characterised by proximal and special type of reticulum; muri with prom- distal apertures, and presumed proximal inent sculpture elements. [84] germination. retipilate [21] ___________________________ 48primexine _____________________ 35, 212, 218 Comment: to the best of our know- polysaccharidic layer formed during ledge there is no example of a reticulum early developmental stage wherein the formed by rows of pila instead of muri. later exine structures are preformed. Earlier observations where based on lightprimexine matrix ______________________ 218 microscopy, SEM-investigations reveal pollen coating consisting of primexine that the given examples of Cuscuta and remnants in mature pollen grains.prolate____________________ 16, 24, 55, 76-77 ring-like aperture ________ 44-45, 49, 140-141 pollen grain with a polar axis longer than circumferential aperture (situated more the equatorial diameter. [18] or less equatorially or, rarely, meridion- Antonym: oblate ally).proximal _________________________ 15, 18-19 rugulae (lat., sing. rugula) ___ 23, 31, 175-176 pollen features that face or are directed elongated exine elements longer than towards the centre of the tetrad. [83] 1 μm; irregularly arranged. Antonym: distal rugulate ____________________ 8, 31, 175-176pseudocolpus ______________________48, 117 pollen wall with rugulae. colpus in heteroaperturate pollen grains, saccate_________________ 9, 22-23, 71, 97-99 presumably non-functional. [64] pollen grain with one or more air sacs.pseudomonad _________________________ 61 saccus (lat., pl. sacci)__________22-23, 97-99 dispersal unit of a permanent tetrad with exinous expansion forming an air sac. three rudimentary pollen grains. [107] scabrate _______________________________ 32psilate _____________________ 29, 32, 178-179 a term used for light microscopy only, de- pollen wall with smooth surface. [134] scribing minute sculpture elements of un- resolution limit of the light microscope. sculpture_______________________________ 23 elements of ornamentation on the pollen surface. semi- semitectate ___________________________ 210scabrate pollen grain with a semitectum.Fagus sp. semitectum ___________________________ 210Fagaceae, fossil discontinuous tectum, covering less thanpolar view 50 % of pollen grain surface. 235
  • 232. sexine tetradsexine _____________________________21, 152 Comment: the term "striae" is used incon- term used for light microscopy, describ- sistently in the literature. We use the term for the elevated elements and not for of the exine. the grooves.shape____________________ 15-16, 25, 74-100 striate______________________ 30, 32, 169-172 pollen wall with striae. [64]size ____________________________________ 74 striato-reticulate_______________ 29, 173-174 ornamentation intermediate betweensperm cell _____________________ 11, 36, 215 striate and reticulate. [21] - structure ____________________ 20, 23, 25, 199 the construction of a pollen wall.spheroidal, see shape sub-spine, see echinus Comment: the terms "spine", "spinulate", sulcate ____________________ 44, 71, 135-137 "spinus", "spinous" and "spinose" are lin- pollen grain with a sulcus. [20, 134] guistically inconsequent. sulcus (lat., pl. sulci)___ 17, 40-41, 49, 135-139spinose, see echinate elongated aperture situated distally. [20, Comment: see spine 134]spiraperturate _____________________ 71, 115 symmetry ___________________________15, 35 pollen grain with one or more spiral aperture(s). syn-spongy, see endexinespore synaperturate ________________ 9, 40, 72, 114 general term for a reproductive unit pollen grain with anastomosing aper- (sexual, asexual) of cryptogams and tures. fungi. syncolpate_________________________40, 114sporoderm __________________________11, 20 pollen grain with anastomosing colpi. syncolporate _______________________40, 114 or pollen. pollen grain with anastomosing colpori.sporopollenin __________________________ 35 tapetum ________________________35-36, 216 the main component of the exine, con- specialized layer of cells lining the locule sisting of acetolysis-resistant biopolymers. and participating in the nourishment ofstenopalynous pollen grains, pollen wall formation and plant taxa characterised by only slight synthesis of pollen coatings. variation in pollen (or spore) morphol- tectate ogy. [21] pollen grain with a tectum. [30] Antonym: eurypalynous Antonym: atectatestephanoaperturate _____ 19-20, 49, 106-109 tectum (lat., pl. tecta) apertures situated at the equator (term outer more or less continuous ektexine usually used for more than three aper- layer; tectum condition can be eutec- tures). tate, semitectate or atectate. [30]stephanocolpate, see stephanoaperturate tenuitas (lat., pl. tenuitates) ______20-21, 127stephanocolporate, see stephanoaperturate general term for a thinning of the pollenstephanoporate, see stephanoaperturate wall. [84]stephano- tetra-striae (lat., sing. stria)___________ 23, 169-174 tetrad _______________15-16, 35, 39, 62-65, 72 elongated exine elements separated dispersal unit of four pollen grains (spores). by grooves predominantly parallel ar- [83, 128] ranged. [64]
  • 233. tetrad decussate Zwischenkörpertetrad decussate Ubisch body _______________ 33, 36, 221-223 dispersal unit of four pollen grains ar- sporopolleninous elements produced by ranged in two planes with two pairs at the tapetum. [25] right angles. Comment: the "Ubisch body" is namedtetrad mark _________________________18, 39 after Gerta von Ubisch, who described a mark on the proximal face of a spore retained from the postmeiotic stage ulcerate ______________________ 72, 133-134 functioning as germination area (linear = pollen grain with an ulcus. [21] monolete, y-shaped = trilete). ulcus (lat., pl. ulci) __________ 17, 20, 133-134tetrad planar ___________________________ 16 more or less circular aperture situated dispersal unit of four pollen grains ar- distally. [21] ranged in one plane; can be: tetrago- vegetative cell nal, T-shaped, linear.tetrad stage vegetative nucleus ____________________ 213 - verruca (lat., pl. verrucae) __________23, 191tetrad tetrahedral_______________________ 16 wart-like element more than 1 μm, dispersal unit of four pollen grains in broader than high. [64] verrucate ________________ 27-28, 31-33, 191 tetrahedron. pollen wall with verrucae. [64]tri- vesiculate, see saccate Comment: "saccate" is the more generaltriangular, see outline term.triaperturate vestibulum (lat., pl. vestibula), see atrium pollen grain with three apertures. Comment: "atrium" is the more commontrichotomosulcate __________________40, 139 term. pollen grain with a trichotomosulcus. viscin thread ______________________219-220 [21] acetolysis resistant thread arising fromtrichotomosulcus ___________________40, 139 the exine. [65] three-radiate sulcus. [21] zona-aperturate, see ring-like aperturetricolpate Comment: source of constant confusion. pollen grain with three colpi. [64] zono-aperturate, see stephanoaperturatetricolporate Comment: source of constant confusion. pollen grain with three colpori. [64] Zwischenkörper, see oncustrilete __________________________________ 19 Comment: "oncus" is the more common term.triporate pollen grain with three pori. [30]tryphine________________________ 23, 36, 218 pollen coating consisting mainly of lipids mixed with membrane remnants. [24] 237
  • 234. 239
  • 235. ANNEX
  • 236. ANNEX
  • 237. APLF ERDTMANBIBLIOGRAPHYREFERENCES AND SUGGESTIONS FOR FURTHER READING1. APLF (1975) Morphologie pollinique: Owens SJ, Rudall PJ (eds) Reproduc- problèmes de terminologie, taxons- tive Biology. Royal Botanic Gardens, guides et pollens périporés. Bull Soc Bot Kew France 122: 1-272 11. BLACKMORE S, WORTLEY A, SKVARLA2. BANKS H (2003) Structure of pollen JJ, ROWLEY JR (2007) Pollen wall deve- apertures in the Detarieae sensu stricto (Leguminosae: Caesalpinioideae), 174: 483-498 with particular reference to underlying 12. BOR J (1979) Pollen morphology structures (Zwischenkörper). Ann Bot and the bi-reticulate exine of the 92: 425-435 Phyllanthus species (Euphorbia-3. BANKS H, STAFFORD P, CRANE PR (2007) ceae) from Mauritius and Réunion. Aperture variation in the pollen of Rev Palaeobot Palynol 27: 149-172 Nelumbo (Nelumbonaceae). Grana 13. BUCHNER R, WEBER M (2000 onwards) 46: 157–163 PalDat - a palynological database:4. BEUG HJ (1961) Leitfaden der Pollenbe- stimmung. Lief. 1. Gustav Fischer, Stutt- and information retrieval. http://www. gart BEUG HJ (2004) Leitfaden der Pollenbe- 14. DICKINSON HG, ELLEMAN CJ, DOUGHTY J stimmung für Mitteleuropa und angren- (2000) Pollen coatings - chimaeric zende Gebiete. Verlag Dr. Friedrich genetics and new functions. Sex Pl Pfeil, München Reprod 12: 302-3096. BLACKMORE S (1992) Scanning electron 15. DOYLE J (2005) Early evolution of angio- microscopy in palynology. In: Nilsson sperm pollen as inferred from mole- S, Praglowski J (eds) Erdtman’s Hand- cular and morphological phylogenetic book of Palynology. 2nd ed. Munksg- analyses. Grana 44: 227-251 aard, Copenhagen, pp 403-431 16. DUCKER S, KNOX B (1985) Pollen and7. BLACKMORE S (2000) The palynological pollination: a historical review. Taxon compass: the contribution of palyno- 34: 401-419 logy to systematics. In: Nordenstam 17. EHRENBERG CG (1838) Über die Bildung B, El-Ghazaly G, Kassas M (eds) Plant der Kreidefelsen und des Kreidemer- Systematics for the 21st Century. Port- gels durch unsichtbare Organismen. land Press, London, pp 161-177 Abh Kgl Akademie Wiss Berlin: 59-1478. BLACKMORE S, BARNES SH (1995) 18. ERDTMAN G (1943) An introduction to Garside’s rule and the microspore pollen analysis. Chronica Botanica, tetrads of Grevillea rosmarinifolia A. Waltham, Massachusetts Cunningham and Dryandra polyce- 19. ERDTMAN G (1945) Pollen morphology phala Bentham (Proteaceae). Rev and plant taxonomy. Vol. 3 Morina L. Palaeobot Palynol 85: 111-121 Svensk Bot Tidskr 39: 187-1919. BLACKMORE S, CANNON MJ (1983/84) 20. ERDTMAN G (1947) Suggestions for the Palynology and systematics of Mori- naceae. Rev Palaeobot Palynol 40: grains and spores. Svensk Bot Tidskr 41: 207-226 104-11410. BLACKMORE S, CRANE PR (1998) The 21. ERDTMAN G (1952) Pollen Morphology evolution of apertures in the spores and Plant Taxonomy. Angiosperms. and pollen grains of embryophytes. In: Almqvist & Wiksell, Stockholm ANNEX 243
  • 238. ERDTMAN HALBRITTER22. ERDTMAN G (1957) Pollen and Spore 36. FRITZSCHE J (1837) Über den Pollen. Morphology. Plant Taxonomy. Gymno- Mém Sav Étrang Acad Sci Pétersbourg spermae, Pteridophyta, Bryophyta. 3: 649-672 Almqvist & Wiksell, Stockholm 37. FUJIKI T, ZHOU Z, YASUDA Y (2005) Asian23. ERDTMAN G (1960) The acetolysis enviromental history 1. The Pollen Flora method. Svensk Bot Tidskr 54: 561-564 of Yunnan, China. Vol. I. Lustre Press/24. ERDTMAN G (1969) Handbook of Paly- Roli Books nology - An Introduction to the Study 38. FURNESS CA (2007) Why does some of Polllen Grains and Spores. Munksg- pollen lack apertures? A review of aard, Copenhagen inaperturate pollen in eudicots. Bot J25. ERDTMAN G, BERGLUND B, PRAGLOWSKI Linn Soc 155: 29-48 L, NILSSON S (1961) An Introduction to 39. FURNESS CA, RUDALL PJ (1999) Micro- sporogenesis in Monocotyledons. Ann Wiksell, Stockholm Bot 84: 475-49926. ERDTMAN G, DUNBAR A (1966) Notes 40. FURNESS CA, RUDALL PJ (2003) Aper- on electron micrographs illustrating the - pollen morphology in Armeria maritima cance of operculate pollen in Mono- and Armeria sibirica. Grana Palynol 6: cotyledons. Int J Plant Sci 164: 835-854 338-354 41. FURNESS CA, RUDALL PJ, SAMPSON FB27. ERDTMAN G, STRAKA H (1961) Cormo- (2002) Evolution of microsporogenesis in angiosperms. Int J Plant Sci 163: Förenhandl 83: 65-78 235-26028. ERDTMAN G, VISHNU-MITTRE (1956) 42. GARSIDE S (1946) The developmental On terminology in pollen and spore morphology of the pollen of Protea- morphology. The Palaeobotanist 5: ceae. J S African Botany 11: 27-34 109-111 (reprinted in Grana Palynolo- 43. GERLACH D (1969) Botanische Mikro- gica 1: 6-9, 1958) technik. Georg Thieme Verlag, Stutt-29. FÆGRI K (1956) Recent trends in paly- gart nology. Bot Rev 22: 639-664 44. GÖPPERT HR30. FÆGRI K, IVERSEN J (1950) Textbook of fossili, commentatio botanica. Grass, modern pollen analysis. Munksgaard, Bart & Co, Vratislaviae (Thesis of Univer- Copenhagen sity)31. FÆGRI K, IVERSEN J (1989) Textbook 45. GRAYUM MH (1992) Comparative of Pollen analysis. 4th ed. John Wiley & external pollen ultrastructure of the Sons, Chichester Araceae and putatively related taxa.32. FERGUSON DF, ZETTER R, PAUDAYAL KN Monogr Syst Bot Missouri Bot Gard 43 (2007) The need for the SEM in paleo- 46. GUPTA A, UDAR R (1986) Palyno-Taxo- palynology. C R Palevol 6: 423-430 nomy of Selected Indian Liverworts. J.33. FEUER SM, KUIJT J (1985) Fine struc- Cramer, Berlin-Stuttgart - 47. HALBRITTER H (1998) Preparing living ered neotropical Loranthaceae. Ann pollen material for scanning electron Missouri Bot Gard 72: 187-212 microscopy using 2,2-dimethoxypro-34. FISCHER H (1890) Beiträge zur verglei- pane (DMP) and critical-point drying. chenden Morphologie der Pollen- Biotech Histochem 73: 137-143 körner. Thesis, Berlin 48. HALBRITTER H, HESSE M (1995) The35. FLYNN JJ, ROWLEY JR (1967) Methods convergent evolution of exine shields in for direct observation and single-stage Angiosperm pollen. Grana 34: 108-119 surface replication of pollen exines. 49. HALBRITTER H, HESSE M (2004) Principal Rev Palaeobot Palynol 3: 227-236 modes of infoldings in tricolp(or)ate Angiosperm pollen. Grana 43: 1-14
  • 239. HALBRITTER KRESS50. HALBRITTER H, HESSE M aperturate pollen grains. Pl Syst Evol ornamentation of orbicular walls 255: 145-176 60. HUYSMANS S, EL-GHAZALY G, SMETS Acanthaceae. Grana 44: 308-313 E (1998) Orbicules in angiosperms:51. HALBRITTER H, WEBER M, ZETTER R, morphology, function, distribution, and FROSCH-RADIVO A, BUCHNER R, HESSE relation with tapetum types. Bot Rev M (2008) PalDat - Illustrated Handbook 64: 240-272 on Pollen Terminology. http://www. 61. HYDE HA (1944) Pollen analysis and the, Wien museums. Mus J 44: 145-14952. HARLEY MM (1999) Tetrad variation: 62. HYDE HA (1955) Oncus, a new term in - pollen morphology. New Phytologist matics in the Palmae. In: Kurmann MH, 54: 255 Hemsley AR (eds) The Evolution of Plant 63. HYDE HA, WILLIAMS DW (1944) The right Architecture. Royal Botanic Gardens, word. Pollen Analysis Circular 8: 6 Kew, pp 289-304 64. IVERSEN J, TROELS-SMITH J (1950)53. HARLEY MM (2004) Triaperturate pollen - und Typen. Danm Geol Unders, ser 4, 3: tion and conjecture. Pl Syst Evol 247: 1-54 75-122 65. JACKSON DD (1928) A glossary of54. HARLEY MM, FERGUSON IK (1990) The botanic terms. 4th ed. Duckworth, role of the SEM in pollen morphology London and plant systematics. In: Claugher D 66. KESSELER R, HARLEY MM (2004) Pollen. (ed) Scanning Electron Microscopy in - Taxonomy and Functional Morpho- dakis Publisher, London logy. Syst Ass Special Volume 41: 45-68. 67. KLAUS W (1987) Einführung in die Clarendon Press, Oxford55. HARRIS WF (1955) A manual of the Rohstoffbildung, Band I. Grundlagen - spores of New Zealand Pteridophyta. Kohlebildung - Arbeitsmethoden/Paly- A discussion of spore morphology and nologie. Franz Deuticke, Wien - 68. KNOX RB (1984) The pollen grain. In: cation of the spores in surface samples Johri BM (ed) Embryology of Angio- and as microfossils. New Zealand Dept sperms. Springer, Berlin, pp 197-271 Sci Industr Res Bull 116: 1-186. R.E. Owen, 69. KNOX RB, McCONCHIE CA (1986) Government Printer, Wellington. Structure and function of compound56. HAY WW, SANDBERG PA (1967) The pollen. In: Blackmore S, Ferguson IK Scanning Electron Microscope, a (eds) Pollen and Spores, Form and major break-through for micropaleon- Function. Linnean Society of London, tology. Micropaleontology 13: 407-418 London, pp 265-28257. HESLOP-HARRISON J, HESLOP- 70. KOSANKE RM (1950) Pennsylvanian HARRISON Y (1980) Cytochemistry and spores of Illinois and their use in corre- function of the Zwischenkörper in grass lation. Illinois State Geol Survey Bull 74: pollens. Pollen Spores 22: 5-10 1-12858. HESSE M, HALBRITTER H, WEBER M, 71. KREMP GOW (1968) Morphologic Ency- BUCHNER R, FROSCH-RADIVO A, ULRICH clopedia of Palynology. 2nd ed. Arizona S (1999) Frustrate. In: Buchner R, Weber Press, Tucson M (2000 onwards) PalDat - a palyno- 72. KRESS WJ, STONE DE (1982) Nature of logical database: Descriptions, illust- the sporoderm in monocotyledons, with special reference to the pollen retrieval. grains of Canna and Heliconia. Grana59. HESSE M, ZETTER R (2005) Ultrastructure 21: 129-148 and diversity of recent and fossil-zona- ANNEX 245
  • 240. KUPRIYANOVA REITSMA73. KUPRIYANOVA LA (1956) K voprosu o ihre Morphographie und Stratigra- stroenii obolochki pyl’tsevykh zeren phie mit Ausblicken auf Arten anderer [The structure of the membrane of the Gebiete und Zeitabschnitte. Palaeon- pollen grains]. Bot Zhurn 41: 1212-1216 tographica Abt B 98: 1-13674. LUGARDON B (1981) Les globules des 86. POZHIDAEV AE (2000a) Pollen variety Filicinées, homologues des corps and aperture patterning. In: Harley d’Ubisch des Spermatophytes. Pollen MM, Morton CM, Blackmore S (eds) Spores 23: 93-124 Pollen and Spores: Morphology and75. MOAR NT (1993) Pollen Grains of Biology. Royal Botanic Gardens, Kew, New Zealand Dicotyledonous Plants. pp 205-225 Lincoln, Canterbury, New Zealand 87. POZHIDAEV AE (2000b) Hypothetical76. MOHL H (1834) Über den Bau und die way of pollen aperture patterning. 2: Formen der Pollenkörner. Beiträge Formation of polycolpate patterns and zur Anatomie und Physiologie der pseudoaperture geometry. Rev Pala- Gewächse. Erstes Heft. Chr. Fischer eobot Palynol 109: 235-254 und Comp., Bern 88. PRAGLOWSKI J, PUNT W (1973) An eluci-77. MOON H-K, VINCKIER S, SMETS E, HUYS- dation of the micro-reticulate structure MANS S (2008) Comparative pollen of the exine. Grana 13: 45-50 morphology and ultrastructure of 89. PUNT W, BLACKMORE S, NILSSON S, LE Mentheae subtribe Nepetinae (Lamia- THOMAS A (1994) Glossary of Pollen ceae). Rev Palaeobot Palynol: 149: and Spore Terminology. LPP Contribu- 174-186 tions Series 1, LPP Foundation, Labora-78. MOORE PD, WEBB JA, COLLINSON ME tory of Palaeobotany and Palynology, (1991) Pollen analysis. 2nd ed. Blackwell, University of Utrecht, Utrecht Oxford 90. PUNT W, HOEN PP, BLACKMORE S,79. NADOT S, FORCHIONI A, PENET L, NILSSON S, Le THOMAS A (2007) Glos- SANNIER J, RESSAYRE A (2006) Links sary of pollen and spore terminology. between early pollen development Rev Palaeobot Palynol 143: 1-81 and aperture pattern in monocots. 91. PURKINJE J (1830) De cellulis anther- Protoplasma 228: 55-6480. NOREM WL (1958) Keys for the classi- pollinarium formis commentatio phyto- - tomica. Accedunt Tabulae Lithogra- ontol 32: 666-676 phicae XVIII. Vratislaviae81. PACINI E (1997) Tapetum character 92. REILLE M (1992) Pollen et Spores states: analytical keys for tapetum d’Europe et d’Afrique du Nord. Labo- types and activities. Can J Bot 75: 1448- ratoire de Botanique Historique et Paly- 1459 nologie, Marseille82. PACINI E, HESSE M (2005) Pollenkitt - its 93. REILLE M (1995) Pollen et Spores composition, forms and functions. Flora d’Europe et d’Afrique du Nord, Supple- 200: 399-415 ment 1. Laboratoire de Botanique83. POTONIÉ R (1934) I. Zur Morphologie Historique et Palynologie, Marseille der fossilen Pollen und Sporen. Arb 94. REILLE M (1998) Pollen et Spores Inst Paläobotanik Petrographie Brenn- d’Europe et d’Afrique du Nord, Supple- steine 4: 5-24 ment 2. Laboratoire de Botanique84. POTONIÉ R, KREMP GOW (1954) Die Historique et Palynologie, Marseille Gattungen der paläozoischen Sporae 95. REITSMA TJ dispersae und ihre Stratigraphie. Geol recent pollen grains under different Jahrb 69: 111-194 treatments. Rev Palaeobot Palynol 9:85. POTONIÉ R, KREMP GOW (1955) Die 175-202 Sporae dispersae des Ruhrkarbons,
  • 241. REITSMA TRYON96. REITSMA TJ (1970) Suggestions towards 108. SKVARLA JJ, DEVORE ML, CHISSOE WF (2004) Lophate sculpturing of Verno- of Angiosperm pollen grains. Rev Pala- nieae (Compositae) pollen. Rev Pala- eobot Palynol 10: 39-60 eobot Palynol 133: 51-6897. RESSAYRE A, DREYER L, TRIKI-TEURTROY 109. SKVARLA JJ, LARSON DA (1965) An S, FORCHIONI A, NADOT S (2005) Post- electron microscopic study of pollen in meiotic cytokinesis and pollen aper- the Compositae with special reference ture pattern ontogeny: comparison of to the Ambrosieae. Grana Palynol 6: development in four species differing in 210-269 aperture pattern. Am J Bot 92: 576-583 110. SPURR AR (1969) A low-viscosity epoxy98. RODRÍGUEZ-GARCÍA MI, FERNÁNDEZ resin embedding medium for electron MC (1988) A review of the terminology microscopy. J Ultrastruct Res 26: 31-43 applied to apertural thickenings of the 111. TAKAHASHI M (1989) Pattern deter- pollen grain: Zwischenkörper or oncus? mination of the exine in Caesalpinia Rev Palaeobot Palynol 54: 159-163 japonica (Leguminosae: Caesalpinio-99. ROWLEY JR, DAHL AO (1977) Pollen ideae). Am J Bot 76: 1615-1626 development in Artemisia vulgaris with 112. THANIKAIMONI G (1980 «1978») special reference to Glycocalyx mate- Complexities of aperture, columella rial. Pollen Spores 19: 169-284 and tectum. Proc IVth Intern Palynol100. ROWLEY JR, FLYNN JJ (1966) Single- Conf I., Lucknow, p. 228-239 stage carbon replicas of microspores. 113. THANIKAIMONI G, CARATINI C, NILSSON Stain Technol 41: 287-290 S, GRAFSTRÖM E (1984) Omniapertu-101. ROWLEY JR, SKVARLA JJ (2000) The rate Euphorbiaceae pollen with striate elasticity of the exine. Grana 37: 1-7 spines. Bull Jard Bot Belg 54: 105-125102. ROWLEY JR, SKVARLA JJ (2006) Pollen 114. THIÉRY J-P (1967) Mise en évidence development in Epilobium (Onagra- ceae): Late microspore stages (a en microscopie électronique. J Micro- review). Rev Palaeobot Palynol 140: scopie 6: 987-1018 91-112 115. THOMSON PW, PFLUG H (1953) Pollen103. SAMPSON FB (2000) Pollen diversity in und Sporen der mittel-europäischen some modern Magnoliids. Int J Plant Tertiärs. Palaeontographica, Abt B 94: Sci, Suppl 6: S193-S210 1-138104. SAMPSON FB (2007) Variation and simi- 116. THORNHILL JW, MATTA RK, WOOD WH larities in pollen features in some basal (1965) Examining three-dimensional angiosperms, with some taxonomic microstructures with the scanning elec- implications. Pl Syst Evol 263: 59-75 tron microscope. Grana Palynol 6: 3-6105. SCHOLS P, FURNESS CA, MERCKX V, 117. TRAVERSE A (1955) Pollen analysis of WILKIN P, SMETS E (2005) Comparative the Brandon Lignite of Vermont. US pollen development in Dioscoreales. Dept Interior Washington, Washington Int J Plant Sci 166: 909-924 118. TRAVERSE A (1988) Paleopalynology.106. SCHWENDEMANN AB, WANG G, MERTZ Unwin Hyman, Boston ML, MCWILLIAMS RT, THATCHER SL, 119. TRAVERSE A (2007) Paleopalynology. OSBORN JM (2007) Aerodynamics of 2nd ed., Springer, Dordrecht saccate pollen and its implications for 120. TRYON AF, LUGARDON B (1991) Spores wind pollination. Am J Bot 94: 1371- of the Pteridophyta: Surface, wall 1381 structure and diversity based on elec-107. SELLING O (1947) Studies in Hawaiian tron microscopy studies. Springer, New pollen statistics. Bernice P Bishop Mus, York Spec Publ 38: 1-430 ANNEX 247
  • 242. Van CAMPO ZETTER121. Van CAMPO M (1958) Palynologie afri- 129. WALKER JW, WALKER AG (1981) caine. 2 Bull IFAN (A) 20: 753-759 Comparative pollen morphology of122. Van CAMPO M (1971) Palynologie et the Madagascan genera of Myristi- evolution - Précisions nouvelles sur les caceae (Maloutchia, Brochneura, structures comparées des pollen de Haematodendron). Grana 20: 1-17 Gymnospermes et d’Angiospermes. C 130. WEBER M (1992) Nature and distribution Rend Acad Sci Paris, sér D 272: 2071- of the exine-held material in mature 2074 pollen grains of L.123. Van CAMPO M, GUINET P (1961) Les (Apiaceae). Grana 31:17-24 pollens composés. L’exemple des 131. WEBER M, FROSCH A (1995) The deve- Mimosacées. Pollen Spores 3: 201-218 lopment of the transmitting tract in124. Van CAMPO M, LUGARDON B (1973) the pistil of Hacquetia epipactis (Apia- Structure grenue infratectal de ceae). Int J Plant Sci 156: 615-621 l’ectexine des pollens de quelques 132. WEBER M, HALBRITTER H, HESSE M (1999) Gymnospermes et Angiospermes. The basic pollen wall types in Araceae. Pollen Spores 15: 171-189 Int J Plant Sci 160: 415-423125. Van der HAM R, GROB G, HETTER- 133. WODEHOUSE RP (1928) The phyloge- SCHEID W, STAR W, Van HEUVEN BJ netic value of pollen grain characters. (2005) Notes on the genus Amorpho- Ann Bot 42: 891-934 phallus (Araceae) – 13. Evolution of 134. WODEHOUSE RP (1935) Pollen grains. pollen ornamentation and ultrastruc- - ture in Amorphophallus and Pseudo- dracontium. Grana 44: 252-265 McGraw-Hill, New York126. VINCKIER S, SMETS E (2002) Morpho- 135. WORTLEY AH, FUNK VA, ROBINSON H, logical and ultrastructural diversity of SKVARLA JJ, BLACKMORE S (2007) A orbicules in relation to evolutionary search for pollen morphological syna- tendencies in Apocynaceae s. l. Ann pomorphies to classify rogue genera in Bot 90: 647-662 Compositae (Asteraceae). Rev Pala-127. VINCKIER S, CADOT P, SMETS E (2005) eobot Palynol 146: 169-181 The manifold characters of orbicules: 136. ZETTER R (1989) Methodik und Bedeu- structural diversity, systematic signi- tung einer routinemäßig kombinierten lichtmikroskopischen und rasterelekt- Grana 44: 300-307 ronenmikroskopischen Untersuchung128. WALKER JW, DOYLE JA (1975) The bases of angiosperm phylogeny: palynology. Senckenberg 109: 41-50 Ann Missouri Bot Garden 62: 664-723
  • 243. ABELIOPHYLLUM ARGYRANTHEMUMINDEX TO PLANT TAXAAAbeliophyllum distichum _______________ 162 Allium __________________________ 170 Allium oleraceum_______________________ 81 32Abies 39 Allium paradoxum ______________________ 18Abies cephalonica ______________ 39, 71, 98 Allium ursinum ____________________ 135, 179Abies nordmanniana ___________________ 98 Alnus glutinosa _____________________90, 100Abies sp. ___________________________22, 200 Alnus incana __________________________ 100Acacia binerva ____________________66, 221 Alnus sp. ______________________________ 100Acacia myrtifolia ____________________66, 70 Alnus viridis _______________________ 100, 123Acanthaceae_________ 30, 48, 71, 75, 76, 77, Amaranthaceae ______________________ 184 84, 105, 108, 113, 115, 116, 117, 122, Amaryllidaceae ___________92, 101, 135, 138 129, 132, 155, 156, 160, 161, 162, 168, Amborella trichopoda _________________ 134 179, 183, 195, 196, 197, 221, 222, 223 Amborellaceae _______________________ 134Acantholimon glumaceum ____________ 162 Ambrosia artemisiifolia ________ 188, 199, 217Acca sellowiana _______________________ 72 Amydrium medium ____________________ 202Acer negundo ________________________ 176 Anaphyllopsis americana ______________ 137Acer pseudoplatanus_______________86, 169 ______________________ 82Acer sp._______________________________ 119 Anemone hortensis _____________________ 89Acinos alpinus ________________ 204, 213, 214 Annona muricata ______________________ 47Aconitum lycoctonum _________________ 148 Annonaceae _______________________20, 47Adansonia gregorii _____________________ 75 Antennaria dioica ________________ 131, 189Adenia fruticosa_______________________ 159 Anteriorchis coriophora ______________66, 67Adhatoda schimperiana_______________ 129 Anthericaceae___________________ 136, 163Aechmea allenii__________________ 121, 159 Anthericum ramosum__________________ 163Aechmea azurea ________________ 125, 155 Anthurium radicans_____________________ 88Aechmea caesia______________________ 145 Anthurium trisulcatum___________________ 80Aechmea caudata ____________________ 79 Anthyllis vulneraria ________________ 104, 178Aechmea dealbata ____________________ 81 Apiaceae__ 31, 35, 68, 76, 84, 85, 87, 90, 102,Aechmea drakeana___________________ 122 131, 175, 176, 209, 212, 215, 216, 218 _______________________ 67 ____________ 102, 209, 218Aesculus carnea ______________________ 148 Apocynaceae ________________ 70, 178, 204 __________________________ 94 Aponogeton masoalaensis_____________ 166Aesculus hippocastanum _________ 146, 170 Aponogetonaceae ___________________ 166Agapetes variegata ___________________ 127 Aquifoliaceae_________________________ 193Agavaceae______________________ 135, 145 Aquifoliaceae, fossil ___________________ 193 ___________________ 103 Araceae ___________________________ 32, 36,Agrimonia eupatoria __________________ 203 47, 64, 69, 74, 80, 88, 93, 103, 134, 137,Agrostemma githago__________________ 150 141, 168, 177, 180, 182, 186, 187, 197,Ailanthus altissima ________________ 174, 205 200, 202, 206, 211, 213, 215, 216, 223Ajuga genevensis _____________________ 158 Araliaceae_______________130, 142, 163, 196Ajuga reptans _________________________ 214 Aratitiyopea lopezii ____________________ 193Alangium sp. __________________________ 210 Arbutus unedo ______________________62, 83Alchemilla _____________________________ 46 Arecaceae ___________________________ 136Alisma plantago-aquatica _____________ 101 Arenaria ciliata ________________________ 125Alismataceae _____________75, 101, 124, 126 Arenaria pungens _____________________ 121Alkanna orientalis ______________________ 73 Arenaria serpyllifolia ___________________ 146Alliaceae _____________ 18, 81, 135, 170, 179 Argyranthemum sp. ___________________ 203 ANNEX 249
  • 244. ARISTOLOCHIA CARDAMINEAristolochia arborea ____________________ 27 Boraginaceae____________ 45, 48, 73, 76, 77,Aristolochia manshuriensis______________ 183 82, 94, 95, 106, 108, 113, 114, 116, 128,Aristolochia salvadorensis ______________ 191 129, 130, 132, 146, 178, 180, 181, 205Aristolochia tricaudata ________________ 191 ______________________ 106Aristolochia ____________________________ 27 Bougainvillea sp. ___________________91, 195Aristolochiaceae __________27, 183, 191, 196 Brassica napus ________________________ 208Aroideae ______________________________ 32 Brassica nigra _________________________ 218Arophyton buchetii ____________________ 206 Brassicaceae______________ 36, 68, 119, 155,Artemisia pontica ___________________86, 89 162, 195, 208, 218Asarum europaeum ___________________ 196 Bromeliaceae _________________________ 24,Asclepiadaceae _______________________ 67 79, 81, 92, 95, 96, 121, 122, 125, 136,Asperugo procumbens ________________ 117 145, 146, 155, 159, 160, 163, 182, 210Asperula tinctoria___________________94, 107 Bromus erectus ________________________ 134Asphodelaceae________________________ 92 Broussonetia papyrifera ________________ 122Asphodeline lutea __________________92, 135 Buglossoides arvensis __________________ 132Aster amellus __________________________ 188 Buglossoides purpurocaerulea __________ 77Asteraceae _ 17, 55, 59, 69, 74, 76, 84, 86, 87, Bunias orientalis ________________________ 68 89, 101, 105, 128, 129, 131, 145, 184, Bupleurum rotundifolium _____________84, 90 185, 186, 188, 189, 199, 201, 203, 217 Buxaceae________________125, 156, 166, 210Asteraceae, fossil______________________ 185 Buxaceae, fossil _______________________ 166Astragalus onobrychis __________________ 76 Buxus sempervirens _______________ 125, 156Atriplex sagittata ______________________ 221Austrobuxus nitidus _____________________ 21 CBBabiana velutina _________________ 149, 190 Cabomba palaeformis ___________ 135, 171 Cabombaceae __________________ 135, 171 Cactaceae ___________ 59, 83, 110, 111, 157,Balsaminaceae ____________ 79, 81, 82, 107, 184, 185, 208 113, 156, 195 Caesalpiniaceae______________________ 114Banisteria argentea_______________ 110, 198 Caldesia parnassifolia _________________ 126Bassia scoparia___________________ 124, 201 Calliandra emarginata _________ 42, 66, 191Begonia heracleifolia _____________ 142, 171 Callistemon coccineus______________84, 114Begoniaceae ____________________ 142, 171 Callitriche polymorpha _________________ 48Bellis perennis _______________________17, 87 Callitriche sp.___________________________ 48Beloperone guttata ______105, 156, 197, 221 Callitriche ______________________________ 48Berberidaceae ____________71, 115, 120, 202 Calycanthaceae______________________ 118Berberis thunbergii ______________________ 71 Calystegia sepium_____________________ 124Berberis vulgaris _______________________ 115 Camellia japonica_____________________ 150 _______________ 214, 217 Campanula alpina _______________ 109, 187Betula humilis__________________________ 143 Campanula persicifolia ________________ 174Betula pendula________________________ 123 Campanula saxatilis ___________________ 123Betulaceae ___________ 78, 90, 100, 123, 143, Campanula sp. _______________________ 121 176, 202, 208, 221 Campanulaceae ________ 77, 106, 109, 123,Betulaceae, fossil _____________ 100, 109, 234 174, 187, 190Bignoniaceae ______________________64, 198 Canistrum camacaense _______________ 182Billbergia macrocalyx__________________ 146 Cannabaceae ___________________ 123, 177Billbergia seidelii ________________ 92, 95, 163 Cannabis sativa _______________________ 123Bombacaceae_____________ 42, 75, 105, 165 Caprifoliaceae _______________ 119, 189, 195 Cardamine pratensis __________________ 155
  • 245. CARDIOSPERMUM CYCLANTHERACardiospermum ________________________ 39 Clematis heracleifolia___________________ 87Cardiospermum corindum ______________ 39 Clinopodium vulgare _________ 101, 118, 204Carduus acanthoides _________________ 186 Cobaea scandens ____________________ 124Carex alba_________________________89, 101 Colchicaceae _____________________71, 122Carex atrata ___________________________ 61 Colchicum autumnale_________________ 122Carex distans___________________________ 61 Colutea arborescens __________________ 180Carex remota _________________________ 126 Combretaceae _______________________ 117Carex sp. ______________________________ 61 Commelinaceae _______________________ 41Carpinus betulus ______________________ 176 Commelinantia ________________________ 41Carpinus sp.___________________________ 109 Consolida regalis ______________________ 213Carya sp. __________________________78, 123 Convallariaceae _________________ 138, 182Caryophyllaceae ___________ 28, 70, 74, 75, Convolvulaceae ____________ 124, 146, 185, 82, 83, 89, 112, 121, 123, 125, 187, 189, 218 146, 149, 150, 190, 221 Convolvulus tricolor_______________ 146, 218Caryophyllaceae, fossil ________________ 121 Coriaria sinica __________________________ 88Cassia pulcherrima ____________________ 114 Coriariaceae___________________________ 88Catalpa bignonioides _________________ 198 Cornaceae, fossil ______________________ 210Catalpa bungei ________________________ 64 Corydalis cava ___________________ 111, 191 ____________________ 136 Corydalis lutea ________________________ 198Centaurea cyanus _______________ 105, 203 Corylopsis glabrescens__________________ 68Centaurea scabiosa___________________ 129 Corylopsis platypetala _________________ 120Cephalanthera longifolia _________ 133, 156 Corylus avellana ______________ 78, 208, 221Cephalopentandra ecirrhosa __________ 196 Corylus colurna________________________ 202Cephalostemon riedelianus ____________ 140 Corylus sp. ____________________________ 234Cephalotaxaceae _____________________ 20 Costus barbatus _______________________ 111Cephalotaxus sp._______________________ 20 Costus speciosus ______________________ 179Cercidiphyllaceae ____________________ 126 Crassulaceae ______________ 85, 87, 175, 178Cercidiphyllum japonicum _____________ 126 Crataegus laevigata __________________ 171Cereus sp. ____________________________ 208 Crepis biennis _________________________ 185Cerinthe minor _____________________94, 128 Crinum augustum _____________________ 138Chamaecyparis lawsoniana ___________ 222 Crocus speciosus ______________________ 115Chamaecyparis ________________________ 33 _______________________ 76Chamaedorea microspadix____________ 136 Croton triqueter _______________________ 167Chenopodiaceae _______ 112, 121, 124, 148, Cruciata laevipes _____________________ 118 201, 208, 221 Cryptogramma crispa __________________ 19Chenopodium album__________________ 208 Cryptomeria japonica _________________ 154Chenopodium glaucum _______________ 121 Cryptomeria sp. _______________________ 154Chenopodium hybridum__________ 112, 148 Cucumis sativa ________________________ 180Chimonanthus praecox________________ 118 Cucurbita pepo _______________ 73, 112, 150Chloranthaceae ______________________ 139 Cucurbitaceae____ 32, 73, 74, 106, 112, 132,Chlorospatha ceronii ___________________ 64 143, 150, 155, 158, 160, 172, 180, 195, 196Chlorospatha dodsonii______________64, 103 Cunninghamia lanceolata _____________ 154Chlorospatha kolbii __________________47, 64 Cunonia capensis __________________85, 153Cichorium intybus _____________________ 184 Cunoniaceae ______________________85, 153Circaea lutetiana _________85, 143, 175, 220 Cuphea purpurea __________________78, 114Cirsium oleraceum _________________74, 131 Cupressaceae ____________33, 133, 154, 222Cistaceae _________________ 24, 75, 165, 172 Cupressaceae, fossil ___________________ 154Cistus creticus _______________________24, 75 Cuscuta lupuliformis ____________________ 48Clarkia pulchella _____________ 147, 177, 220 Cuscutaceae __________________________ 48Claytonia perfoliata ______________ 115, 190 Cyclanthera pedata __________________ 106 ANNEX 251
  • 246. CYDONIA FUMARIACEAECydonia sinensis _______________________ 170 Ephedraceae ______________________70, 168Cynodon dactylon ____________________ 197 Ephedraceae, fossil____________________ 168 ___________ 116, 117 Epilobium angustifolium ___________ 144, 219Cyperaceae __________ 61, 89, 101, 126, 222 Epilobium dodonaei ___________________ 220Cyperus longus _____________________61, 222 ____________________ 219Cyrtosperma beccarianum _______ 134, 182 Epilobium hirsutum_____________________ 153Cytisus nigricans _______________________ 164 Epilobium montanum ___________________ 63 _______________62, 220DDacrycarpos dacrydioides ______________ 99 Epipactis helleborine _______________64, 159 Eranthemum wattii ____________________ 162 Erdtmanipollis sp. ______________________ 166Dactylis glomerata _____________________ 59 Erica arborea __________________ 90, 96, 131Dalechampia roezliana________________ 113 Erica herbacea _______________ 62, 128, 183Daphne cneorum _____________________ 167 Ericaceae______ 16, 62, 63, 72, 83, 86, 90, 94,Daphne laureola ______________________ 167 96, 127, 128, 129, 131, 183, 219, 220Datura suaveolens ____________________ 169 Erodium cicutarium ____________________ 173Delphinium elatum ____________________ 207 Erophila verna_________________________ 195Dianella intermedia____________________ 139 Erysimum odoratum ___________________ 119Dianella tasmanica____________ 40, 139, 164 Erythrochiton brasiliensis________________ 192Dianella________________________________ 40 ___________________ 101Dianthus carthusianorum ______________ 149 Eucommia sp. _________________________ 228Dieffenbachia humilis__________________ 202 Eucommiaceae, fossil _________________ 228Dionaea muscipula____________ 63, 149, 196 Eucommiidites__________________________ 40Dioon edule____________________________ 93 Eupatorium cannabinum ______________ 101Dipsacaceae _________ 78, 85, 113, 150, 187 Euphorbia helioscopia _________________ 181Dipsacus fullonum ______________________ 85 Euphorbia palustris ____________________ 180Dipteracanthus devosianus ____________ 195 Euphorbiaceae ___________ 42, 43, 105, 113,Discocleidion rufescens ________________ 142 142, 148, 165, 166, 167, 180, 181, 198Doryanthes palmeri_______________ 135, 145 __________________________ 59Dorycnium germanicum _______________ 178Dracaenaceae ____________________96, 133Dracocephalum austriacum ___________ 106Dracunculus vulgaris___________________ 197 F Fabaceae ________________ 76, 77, 104, 128,Drimys granatensis__________________62, 134 142, 157, 158, 159, 160, 164, 175, 178Drosera sp. _____________________________ 47 Fabaceae, fossil _______________________ 129Droseraceae _______________ 47, 63, 149, 196 Fagaceae ___________________ 177, 209, 222 Fagaceae, fossil ______ 16, 130, 175, 230, 235EEcballium elaterium ___________________ 158 Fagus sp.__________________16, 130, 175, 235 Fallopia convolvulus ____________________ 29 Fatsia japonica_______________ 130, 142, 196Echinodorus quadricostatus ____________ 124 Fraxinus excelsior _________________ 120, 204Echinopepon wrightii __________________ 132 Fraxinus ornus __________________________ 80Echinops ritro___________________________ 84 Fritillaria meleagris _____________________ 163Echium vulgare________________________ 130 Fumana procumbens__________________ 165Eichhornia crassipes ___________________ 138 ________________ 112, 143Elaeagnaceae _________________ 91, 95, 153 Fumaria vaillantii ______________________ 111Elaeagnus angustifolia __________ 91, 95, 153 Fumariaceae _______ 111, 112, 143, 191, 198Ephedra distachya _________________70, 168Ephedra sp. ___________________________ 168
  • 247. GAGEA JUNCUSGGagea lutea ___________________________ 93 Heliconiaceae ______________ 79, 91, 96, 134 Hemigraphis primulaefolia _____________ 168 Hemigraphis_____________________________ 9Gagea villosa ______________________71, 147 Hepatica transsylvanica _______________ 111Galanthus nivalis ___________________92, 135 Herniaria glabra ________________________ 82Galeopsis tetrahit___________________81, 147 Hibiscus trionum _______________________ 186Galinsoga ciliata ______________________ 186 Hieracium hoppeanum _______ 128, 184, 188Galium glaucum ______________________ 107 Himantoglossum adriaticum ____________ 70Galium lucidum _______________ 80, 107, 190 Hippocastanaceae _______94, 146, 148, 170Galium mollugo __________________ 106, 215 Hippocrepis emerus ___________________ 181Galium rotundifolium ___________________ 24 Hohenbergia stellata __________________ 182Garcia nutans_________________________ 166 Humulus lupulus _______________________ 177Gazania sp. ________________________69, 184 Hyacinthaceae __________________ 136, 163Gentiana acaulis ______________________ 174 Hydrocharitaceae_____________________ 187Gentiana lutea________________________ 169 Hydrophyllaceae______________________ 116Gentianaceae _______ 59, 169, 173, 174, 210 Hypoestes phyllostachya _______________ 84Gentianella austriaca__________________ 173Geraniaceae _______ 102, 166, 173, 174, 194Geranium canariense _________________ 166Geranium pratense____________________ 194 I Ibicella lutea __________________ 68, 157, 198Geranium robertianum ___________ 102, 194 Ilex aquifolium_________________________ 193Geranium sibiricum ____________________ 194 Ilex sp. ________________________________ 193Geum reptans_________________________ 172 Impatiens columbaria _________________ 113Ginkgo biloba _______________________80, 92 Impatiens glandulifera __________ 79, 82, 156Ginkgo_________________________________ 23 ___________ 81, 107, 195Ginkgoaceae _______________________80, 92 Ipomoea batatas ________________ 124, 187Gladiolus illyricus _________________ 201, 222 Ipomoea caerulea ____________________ 185 ______________________ 207 Iridaceae ________ 59, 68, 115, 136, 140, 149,Globba schomburgkii__________________ 211 190, 193, 198, 201, 213, 222, 228Godetia purpurea __________________79, 219 Iris alata__________________________ 193, 228Gonatopus angustus _________ 141, 180, 200 Iris bucharica_______________________68, 198Grossulariaceae_______________________ 112 Iris histrioides___________________________ 140Gunnera chilensis_______________________ 86 Iris pumila __________________________59, 213Gunneraceae__________________________ 86 Iris reichenbachii ______________________ 136 Isopogon dawsonii ____________________ 104HHacquetia epipactis___________________ 216 JHakea kippistiana __________________78, 196 _____________ 215, 217Haloragaceae ___________________ 109, 144 Jatropha podagrica___________________ 167Hamamelidaceae_____________ 68, 120, 162 Jovibarba hirta _____________________85, 178Hamamelidaceae, fossil _______________ 125 Juglandaceae ________________ 32, 121, 202Harpochilus neesianus _________________ 160 Juglandaceae, fossil___________ 78, 109, 123Hedera helix __________________________ 163 Juglans regia_____________________ 121, 202Hedychium gardnerianum __________69, 178 Juglans sp. _____________________________ 32Hedyosmum goudotianum_____________ 139 Juglans ________________________________ 32Helianthemum nummularium __________ 172 Juncaceae ____________ 63, 89, 91, 133, 177Heliconia sp. ________________ 79, 91, 96, 134 Juncus effusus __________________________ 63 ANNEX 253
  • 248. JUNIPERUS MERCURIALISJuniperus communis ___________________ 133 _______________________30, 193Juniperus ______________________________ 33 Linum _________________________________ 30Jurinea mollis ___________________________ 76 Liquidambar sp. _______________________ 125Justicia furcata ________________________ 117 Liriodendron tulipifera__________________ 137Justicia menesii___________________ 108, 132 Listera ovata ___________________________ 72Justicia xylosteoides ___________________ 129 _____________82, 178 Lomatogonium carinthiacum __________ 210KKalmia latifolia ________________________ 219 Lonicera fragrantissima ___________ 119, 189 Loranthaceae___________________ 40, 42, 43 Luffa cylindrica _____________________74, 155Kickxia spuria_____________________ 145, 164 Lumnitzera racemosa__________________ 117Knautia drymeia_______________ 78, 150, 187 Lupinus polyphyllus ____________________ 157 ____________________ 128 Luzula campestris_______________ 63, 91, 177 Luzula luzuloides _______________________ 133LLachenalia aloides ____________ 89, 136, 163 Luzula sylvestris _________________________ 89 _______________________ 70 Lycium barbarum ________________ 131, 170Lamiaceae _________________ 24, 29, 77, 78, Lycopus europaeus____________________ 107 81, 101, 102, 106, 107, 110, 118, 119, Lysichiton americanus __________________ 93 147, 148, 149, 158, 159, 160, 161, 164, Lysimachia nemorum __________________ 180 182, 191, 201, 204, 206, 213, 214, 217 Lysimachia vulgaris ____________________ 142Lamiastrum montanum _____________24, 148 Lythraceae ___________ 48, 78, 114, 116, 117Lamium maculatum ___________________ 119 Lythrum hyssopifolia ___________________ 116Lamium purpureum____________________ 164 Lythrum salicaria ______________________ 117Larix decidua _________________________ 177Larix sp. ________________________________ 39Larix _________________________________ 39Lathyrus niger _________________________ 179 M Magnoliaceae ________________________ 137Lathyrus tuberosus ______________________ 77 Mahonia aquifolium ___________________ 202Lathyrus vernus ___________________ 128, 157 Malpighiaceae___________________ 110, 198Lauraceae ____________________________ 103 Malus sylvestris ________________________ 172Lavandula angustifolia_________________ 182 Malva moschata ______________________ 125Lavatera thuringiaca _______________74, 186 Malva neglecta _______________________ 189Ledum palustre___________________ 183, 220 Malvaceae _______________74, 125, 186, 189Legousia speculum-veneris________ 109, 123 Martyniaceae_________________ 68, 157, 198Lentibulariaceae ______________ 87, 106, 160 Maxillaria densa _______________________ 179Leontodon saxatilis ____________________ 184 Medicago minima_____________________ 142Leucadendron brunoides ______________ 104 Melaleuca armillaris ____________________ 40Leucadendron discolor _____________90, 176 Melampyrum arvense ______________90, 118Leuchtenbergia principis________________ 59 Melampyrum nemorosum_________ 214, 217Ligustrum sp. ___________________________ 80 Melampyrum pratense ________________ 201Liliaceae ___________________________ 41, 71, Melampyrum subalpinum ______________ 145 89, 92, 93, 135, 147,150, 158, 163, 165 Melanthiaceae _______________ 79, 152, 155Liliacidites ______________________________ 33 _____________________ 159Lilium candidum____________________92, 165 Melittis melissophyllum _________________ 161Lilium martagon __________________ 135, 165 Mendoncia albida _______________ 113, 183Limnanthaceae _______________ 95, 140, 142 Mentha aquatica ____________ 102, 201, 206Limnanthes douglasii __________ 95, 140, 142 Menyanthaceae _____________ 114, 171, 176Limodorum abortivum _________________ 163 Menyanthes trifoliata __________________ 171Linaceae __________________________30, 193 Mercurialis perennis_______________ 148, 165
  • 249. METASEQUOIA PELARGONIUMMetasequoia glyptostroboides _________ 154 Oenothera biennis________________ 104, 219Microrrhinum minus ________95, 201, 204, 205 Oleaceae ________ 73, 80, 120, 204, 215, 217Microstrobus niphophilus ________________ 99 Oleaceae, fossil ________________________ 80Mimosa pudica ____________________62, 197 Onagraceae____________ 62, 63, 79, 85, 104,Mimosaceae____42, 62, 66, 70, 191, 197, 221 143, 144, 147, 153, 175, 177, 219, 220Mimulus guttatus ______________________ 115 Onosma visianii_____________________95, 114Moehringia muscosa ___________________ 89 Ophiorrhiza sp. ________________________ 102Moltkia petraea __________________ 132, 146 Ophrys sphegodes _____________________ 67 _______________ 62, 72, 183 Opuntia basilaris_______________ 83, 110, 184Monotropa hypopitys___________________ 94 Opuntia paraguayensis ________________ 157Monstera deliciosa ____________________ 141 Opuntia polyacantha _________________ 185Moraceae ____________________________ 122 Opuntia sp. ___________________________ 111Morina longifolia ___________________20, 143 Orchidaceae ___________________ 36, 64, 66,Morinaceae________________________20, 143 67, 70, 72, 133, 134, 156, 159, 163, 179Myosotis arvensis ______________________ 180 ___________________68, 85Myosotis palustris ________________ 45, 73, 94 Orobanchaceae ___________ 35, 88, 206, 211Myosotis ramosissima __________________ 116 Orobanche hederae _______ 35, 88, 206, 211Myosotis _______________________________ 44 Orthilia secunda________________________ 86Myriophyllum spicatum ___________ 109, 144 Oryctanthus alveolatus _________________ 43Myrrhis odorata __________________ 131, 176 Oryctanthus sp. ________________________ 42Myrtaceae__________________ 40, 72, 84, 114 Oxalidaceae___________________________ 75 Oxalis acetosella _______________________ 75N Oxyanthus subpunctatus________________ 63Nandina domestica ___________________ 120Napoleonaea imperialis _______________ 181Napoleonaeaceae ___________________ 181 P Pachira aquatica _____________ 42, 105, 165Nelumbo nucifera _____________________ 119 Pachypodium saundersii ________________ 70Nelumbonaceae ______________________ 119 Pachypodium succulentum ____________ 204Neoalsomitra sarcophylla ______________ 172 Pachysandra terminalis ___________ 166, 210Neottia nidus-avis _____________________ 134 Pachystachys lutea_______________ 117, 161Nicotiana tabacum ______________ 108, 176 Papaveraceae________________________ 207Nigella arvensis ___________________ 217, 223 Paradisea liliastrum _______________ 136, 158Nigritella rhellicani ______________________ 66 Pardoglossum sp. ______________________ 116Nonea pulla____________________________ 82 Parnassia palustris _____________________ 130Nuphar luteum ________ 92, 96, 137, 147, 188 Parnassiaceae ________________________ 130Nyctaginaceae ____________________91, 195 cf. incarnata__________________ 44Nymphaea alba ___________________44, 192 ____________________44, 150Nymphaea sp. _________________________ 45 __________________44, 151Nymphaeaceae ___________________ 44, 45, _______________________________ 44 92, 96, 137, 147, 188, 192 _____________44, 150, 151, 159Nymphoides peltata______________ 114, 176 Patrinia gibbosa _______________________ 188Nyssa sp. _______________________________ 21 Paullinia tomentosa_____________________ 84Nyssaceae, fossil _______________________ 21 Pedicularis palustris ____________________ 140 Pedicularis rostrato–capitata ___________ 140OOculopollis _____________________________ 33 Pedicularis verticillata__________________ 114 Pedilanthus smallii _____________________ 105 Pelargonium carnosum ________________ 174Odontites luteus ______________ 120, 205, 223 Pelargonium ferulaceum_______________ 173Odontites vulgaris ________________ 127, 207 Pelargonium tetragonum ______________ 173 ANNEX 255
  • 250. PEPEROMIA PTERIDACEAEPeperomia rubella_____________________ 197 Plumbago auriculata _______________73, 193Persicaria bistorta______________________ 105 Poa angustifolia _______________________ 151Persicaria mitis_________________________ 158 Poa annua____________________________ 133Persicaria sp. __________________________ 156 Poa pratensis__________________________ 151Petasites albus ________________________ 189 Poaceae ____ 32, 59, 72, 80, 88, 95, 101, 133,Petrorhagia prolifera___________________ 190 134, 143, 144, 149, 151, 197, 208, 215, 221Peucedanum cervaria______________76, 175 Podocarpaceae ____________________23, 99 _______________________ 184 Podocarpus sp. ________________________ 99Phacelia tanacetifolia _________________ 116 Podostemaceae _______________ 60, 69, 153Phaleria capitata_________________ 112, 165 Poikilacanthus macranthus_____________ 197Pharbitis purpurea _____________________ 189 Polemoniaceae ___________74, 124, 161, 173Phleum pratense _______________________ 80 Polemonium caeruleum _______________ 173Phlox paniculata ___________________74, 161 Polygala chamaebuxus________________ 108Phoebe sheareri _______________________ 103 Polygala major ___________________ 132, 155Phormiaceae _________________ 40, 139, 164 Polygalaceae ________________ 108, 132, 155Phyllanthus sp._________________________ 198 Polygonaceae _______ 29, 105, 130, 158, 181Phyllanthus x elongatus ______________42, 43 Polygonaceae, fossil______________ 156, 232Physostegia virginiana ______________81, 159 Polygonum aviculare ____________________ 8Phytolaccaceae ______________________ 111 Polypleurum munnarense _______________ 69Picea abies ____________________________ 98 Polypleurum stylosum ___________________ 60Picea pungens _________________________ 98 Polypodiaceae, fossil ___________________ 19Picrodendraceae, fossil _________________ 21 Polypodium sp. _________________________ 19Pinaceae ________________ 23, 39, 59, 71, 91, Polystachya sp._________________________ 67 96, 97, 98, 177 Poncirus trifoliata _________________ 128, 157Pinaceae, fossil______________ 22, 39, 97, 200 Pontederiaceae_______________________ 138Pinellia ternata ________________ 74, 103, 186 Populus alba _______________________88, 103Pinguicula alpina ______________________ 160 _____________ 110, 188Pinguicula ehlersiae ________________87, 106 Portulacaceae ___ 83, 110, 115, 118, 188, 190Pinus heldreichii ________________________ 97 Posidonia sp. __________________________ 103Pinus mugo _________________________71, 98 Posidoniaceae ________________________ 103Pinus nigra _____________________________ 97 Potentilla arenaria _____________________ 149Pinus sp. _______________________ 22, 97, 200 Potentilla erecta ______________________ 131Pinus strobus ________________________59, 96 Potentilla inclinata__________________85, 169Pinus _________________________________ 23 Prenanthes purpurea ___________________ 69Piper nigrum ___________________________ 93 Primula denticulata__________________40, 84Piperaceae ________________________93, 197 Primula farinosa _____________________40, 72Pistia stratiotes____________________ 168, 206 Primula veris ____________________ 30, 31, 107Pistia __________________________________ 9 Primula ________________________________ 30Pisum sativum _________________________ 160 Primulaceae ____ 31, 40, 72, 84, 107, 142, 180Pittosporaceae________________________ 157 Proteaceae ________ 16, 78, 90, 104, 176, 196Plantaginaceae______ 48, 125, 151, 191, 204 ____________________ 161Plantago lanceolata __________________ 151 Prunus avium __________________________ 169Plantago major________________________ 125 Prunus laurocerasus____________________ 172Plantago maritima_____________________ 204 Pseudodracontium siamense __________ 168Plantago media _______________________ 191 Pseudolysimachion barrelieri ______ 102, 218Platanthera bifolia______________________ 66 Pseudolysimachion longifolium _________ 164 ______ 77, 106, 190 Pseudotsuga ___________________________ 39Plectranthus ornatus ___________________ 160 Ptelea trifoliata ________________________ 174Plumbaginaceae______________ 73, 162, 193 Pteridaceae ___________________________ 19
  • 251. PTERIDACEAE, FOSSIL SIDERITISPteridaceae, fossil ______________________ 19 Salix alba _____________________________ 146Pterocarya sp._________________________ 109 Salix daphnoides ______________________ 158Pulmonaria mollissima _________________ 129 Salix fragilis ____________________________ 210 _____________ 181, 205 Salvia argentea ____________________78, 161Pulsatilla pratensis _____________________ 190 Salvia austriaca ________________________ 29Pyrolaceae ___________________________ 183 Salvia coccinea ________________________ 81 Salvia glutinosa________________________ 161QQuercus robur ________________ 177, 209, 222 Salvia nemorosa_______________________ 217 Salvia sclarea __________________________ 77 Sambucaceae ________________________ 218Quercus sp. ________________________33, 230 Sambucus nigra _______________________ 218Quesnelia augusto-coburgii _____________ 96 Sanchezia nobilis ___________________30, 122Quesnelia lateralis ________________ 122, 210 Sandersonia aurantiaca ________________ 71 Sanguisorba cretica ___________________ 152RRanunculaceae _______ 87, 89, 110, 111, 120, Sanguisorba minor________________ 152, 171 ______________86, 108 Sanicula europaea __________________31, 87 124, 148, 190, 206, 207, 213, 217, 223 Sanicula _______________________________ 31 _____________________ 223 Sansevieria dooneri_________________96, 133Ranunculus lanuginosus________________ 110 Santalaceae ___________________________ 41Ranunculus trichophyllos _______________ 207 Sapindaceae __________ 39, 84, 86, 169, 176Rapateaceae_________________________ 140 Sapindaceae, fossil ____________________ 119Razisea citrina _________________________ 155 ____________________ 28Rehderodendron sp.___________________ 153 Sapotaceae, fossil ______________________ 77Reseda luteola ________________________ 164 Sauromatum venosum_________ 69, 211, 223Resedaceae __________________________ 164 Saxifraga rotundifolia __________________ 170Rhaphidophora africana _________ 177, 211 Saxifraga tridactylites __________________ 171Rhododendron hirsutum ___63, 129, 183, 220 Saxifraga vandellii _____________________ 147Rhododendron__________________________ 9 Saxifragaceae _______________ 147, 170, 171Ribes aureum _________________________ 112 Scabiosa caucasica ____________________ 20Rosa pendulina _______________________ 151 Scabiosa ochroleuca __________________ 113Rosaceae______________ 35, 85, 86, 108, 131, Schoenoplectus lacustris ____________61, 126 149, 151, 152, 169, 170, 171, 172, 203 Scirpus sylvaticus ___________________61, 126Rubiaceae______________________ 24, 63, 80, Scorzonera cana ______________________ 185 94, 102, 106, 107, 118, 128, 190, 215 Scrophularia nodosa _______________35, 199Rubus caesius _________________________ 170 Scrophularia vernalis___________________ 145Ruellia brevifolia _______________________ 156 Scrophulariaceae _______________ 35, 90, 95,Ruellia graecizans _____________________ 162 102, 114, 115, 118, 120, 127, 140,Ruellia macrantha______________________ 75 145, 147, 164, 169, 174, 199, 201,Rumex acetosa __________________ 130, 181 204, 205, 207, 214, 217, 218, 223Rumex sp._____________________________ 232 Secale cereale ________________________ 143Ruspolia seticalyx_________________ 222, 223 Securigera varia_______________________ 175Ruta graveolens _______________________ 172 Sedum acre___________________________ 175Rutaceae ___________ 128, 157, 172, 174, 192 Sedum rupestre ________________________ 87 Sesleria albicans_____________________88, 95SSagittaria sagittifolia ________________75, 126 Sesleria sadleriana_____________________ 101 Sesleria uliginosa _______________________ 72 Sherardia arvensis _____________________ 118Salicaceae __________ 88, 103, 146, 158, 210 Sideritis montana _______________________ 29 ANNEX 257
  • 252. SIDERITIS ULMACEAESideritis syriaca ________________________ 110 Thalictrum minus_______________________ 124Silene alba _____________________________ 74 Theaceae_____________________________ 150Silene nutans ___________________________ 83 ______________60, 153Silene succulenta_______________________ 28 Thesium alpinum _______________________ 41Simaroubaceae __________________ 174, 205 Thladiantha hookeri ___________________ 160Sinapis alba ___________________________ 218 Thlaspi montanum _____________________ 162Smilacina stellata______________________ 182 Thunbergia alata ___________________71, 115Smyrnium perfoliatum_____________ 212, 215 Thymelaea passerina _____________ 166, 167Solanaceae_ 29, 108, 131, 169, 170, 173, 176 Thymelaeaceae__________112, 165, 166, 167 _________________29, 173 Tilia americana ________________________ 113Sollya heterophylla ____________________ 157 Tilia euchlora ___________________________ 91Sparganiaceae _____________ 44, 45, 93, 133 Tilia platyphyllos _______________________ 223Sparganium erectum ________ 44, 45, 93, 133 Tiliaceae ______________________ 91, 113, 223Sparganium ____________________________ 44 Tinantia ________________________________ 41Spathiphyllum blandum________________ 206 ____________________ 138Sphagnaceae, fossil ____________________ 19 _________________________ 138Sphagnum sp.__________________________ 19 Torilis arvensis___________________________ 76Spiraea sp. _____________________________ 35 Tragopogon dubius_______________ 145, 185Stachys palustris _______________________ 119 Tragopogon orientalis __________________ 59Stellaria graminea ________________ 112, 221 Trapa sp. _______________________________ 43Stellaria holostea ____________________75, 83 Trapaceae_____________________________ 43Stellaria media _________________________ 28 Trapaceae, fossil _______________________ 43Stenandriopsis guineensis _______________ 77 Trichosanthes anguina __________ 32, 33, 143Stenandrium dulce ____________________ 196 Trichostigma peruvianum ______________ 111 __________________ 67 Tricolporopollenites wackersdorfensis ___ 129Stratiotes aloides ______________________ 187 Trifolium montanum____________________ 181Streptocalyx poeppigii_________________ 182 Trifolium rubens ________________________ 158Strobilanthes roseus____________________ 162 Trigonia nivea _________________________ 179Styracaceae, fossil ____________________ 153 Trigoniaceae __________________________ 179Symphytum caucasicum__________ 108, 132 _______________ 208, 221 ___________________ 76 Triticum aestivum _____________ 144, 151, 215Symphytum orientale __________________ 113 Trollius europaeus______________________ 120Symplocaceae, fossil _____________ 104, 232 Tropaeolaceae __________________ 104, 159Symplocarpus foetidus__________________ 93 Tropaeolum majus ________________ 104, 159Symplocos sp. ____________________ 104, 231 Trudopollis______________________________ 33Syringa vulgaris _________________________ 73 Tsuga canadensis ___________________91, 97 Tsuga sp.___________________________97, 200TTalinum paniculatum __________ 83, 110, 118 Tulipa sylvestris ________________________ 150 Tulipa kaufmanniana ___________________ 41 Typha latifolia __________________ 16, 65, 153Tanacetum corymbosum ______________ 189 Typha minima __________________________ 72Taraxacum sp. ________________________ 185 Typha 9Taxaceae______________________________ 33 Typhaceae _________________ 16, 65, 72, 153Tetramerium nervosum ________________ 116Teucrium chamaedrys _________________ 191Teucrium pyrenaicum__________________ 149Thadiantha hookeri ____________________ 195 U Ulearum sagittatum____________________ 187 ______________________ 206 Ulmaceae ____________________ 31, 109, 148
  • 253. ULMACEAE, FOSSIL ZOMICARPAUlmaceae, fossil _______________________ 175 Viscum album _________________________ 192Ulmus laevis ____________________________ 31 Viscum laxum _________________________ 192Ulmus minor ______________________ 109, 148 Vriesea neoglutinosa _______________79, 136Ulmus 31 Vriesea pabstii _________________________ 24Urtica dioica _______________________88, 121Urticaceae_________________________88, 121 ____________________ 138 W Welwitschia mirabilis ____________________ 70VValerianaceae ________________________ 188 Welwitschiaceae _______________________ 70 Werauhia tarmaensis __________________ 160 ________________ 122, 179Veratrum album____________________79, 155 Winteraceae _______________________62, 134Veratrum nigrum ______________________ 152 __________________90, 130Verbenaceae______________________90, 130Veronica cinerea_________________ 147, 169 X Xyridaceae ___________________________ 193Veronica prostrata ____________________ 174Veronica serpyllifolia___________________ 120Viburnaceae___________________________ 94Viburnum opulus ______________________ 195 Z Zamiaceae ____________________________ 93Viburnum tinus _________________________ 94 Zamioculcas zamiifolia____________ 141, 200Vinca minor ___________________________ 178 Zantedeschia aethiopica _____ 213, 215, 216Vincetoxicum hirundinaria ______________ 67 Zea mays ________________________ 144, 149Viola alba___________________________68, 87 Zelkova sp. ____________________________ 175Viola arvensis_______________________83, 108 Zeylanidium olivaceum _________________ 60Viola tricolor __________________ 82, 127, 202 Zeylanidium subulatum ______________60, 69Violaceae ______68, 82, 83, 87, 108, 127, 202 Zingiberaceae _______ 69, 111, 178, 179, 211Viscaceae ____________________________ 192 Zomicarpa riedeliana__________________ 187 ANNEX 259
  • 254. PICTURE CREDITS Except the below mentioned micro- Morphology – Harmomegathy" are fromgraphs, all pictures in "Pollen Terminology. HALBRITTER and HESSE (2004), Figs. 2C, D.An illustrated Handbook" are courtesy of The two pictures of Iris histrioides inPalDat ( and the chapter "Illustrated Terminology – ring-Society for the Promotion of Palynological like aperture" are from HESSE and ZETTERResearch in Austria (, (2005), Figs. 6B, D.respectively. The picture of Ruspolia seticalyx in The picture of in chapter "Illustrated Terminology – Ubischchapter "Illustrated Terminology – aperture, body" is from HALBRITTER and HESSE (2005),aperturate" is from Weber M (1992), Fig. 1B. Fig. 1A. The two pictures of Cistus creticus Drawings by Heidemarie HALBRITTERin chapter "General Chapter - Pollen and Ralf BUCHNER. ANNEX 261
  • 255. NOTES
  • 256. NOTES
  • 257. NOTES
  • 258. a- _________________ ___________________________ LM _________________ _____________________eu- ___________________ ___________ LM ___________________ _______________ _________________ ______________ SEM _________________ ______________________ _______________ _____________ SEM _____________________ - TEM ________________ ____________________ TEM _________________ _______________________prae- _____________________ _________________________ ______ mo _____________________ _____________________ _________________ mo ___________________ anaDMP _______________ 4 __________ anaLM _______________________PA __________________________PA+TCH+SP _____________________ ______ fnc ____________________________SEM_________SP ________________________TCH___________________ fncTEM ______U __________________________
  • 259. __________________200-202 ____________ ___________________ ________________ __________________ 200-202 ________ ___________________ ______________________ __________ __________________ _____________________ ___________________ _______ _____________ __________________ ________________________ __________ __________________________________________ _______________ ______________________ ________________________ _________________ ____________________ ______________________ _________________ ____________________ _______________________ __________________ _________________________ ______________________ ____________________ _____________________ _______________________ _______________ 200-202 _____________________________ ________________ ________________ _____________________ ________________ ________________________ ______________ ________________ _____________________ _______ ___________________ _____________________ _____________________ _________________ ____________________ _____________________ __________________ __________________________ ___________ ____________________ _________________________ ______________________ ________________________ ____________________ ________________ ____________________ _________________________ __________________________________________ ___________________ ______________ ___________________ ______________________ ____________________ ___________________ ______________________ __________________ ____________________ _________________ ______________________ ______________ _________________ _______________________ __________________ ____________ ____________________ ________________ ______________________ _____________ _________________ 200-202 __________ ______________ _______________ 200-202 ________________________ _______________________ ___ _________________ ______________ ____________ ________________ _______________ ____________________ ________________________ ______________________ ______________________ _____________________ _____________ ______________ _________________ _______________________ ________________ ____________ _____________________ _______________________ ________________ ______________________________________ ______________________ __________________ _____________________ ___________________ _______________________ _______________________ _________________________ _______________ ________________ _________________ ________________ ______________________ _________________ _____________ _____________________________________ ______________________ _________________ 200-204 _________________ ________________________ ________________ ______________________ ______________________ _______________________ _________________ _____________________ __________________ _______________________ ____________________ _____________________ _________________