Your SlideShare is downloading. ×
0
Multipath Routing of Multimedia Data Over Ad Hoc Wireless Networks
Outline <ul><li>Ad hoc wireless networks  </li></ul><ul><li>Routing for ad hoc wireless networks  </li></ul><ul><ul><li>So...
Wireless Ad Hoc Networks <ul><li>Collection of wireless nodes with no infrastructure </li></ul><ul><li>Every node can be s...
Ad Hoc Wireless Network Model If nodes are not limited in their transmissions, we get the following formulas : <ul><li>Ass...
Existing Routing Algorithms <ul><li>Routing for wireless ad hoc networks : </li></ul><ul><ul><li>DSDV </li></ul></ul><ul><...
DSR example <ul><li>DSR allows to discover and maintain routes on ad hoc wireless networks  </li></ul><ul><li>Example : ro...
Congestion Optimized Stream Routing <ul><li>Congestion may be estimated by the average queuing delay for a packet on the n...
Illustration Cross traffic F ij Optimal f ij  ? i j Source Destination
Solution Example <ul><li>Streaming 100 kbps from node 1 to node 5 : </li></ul>77 16kbps 2 5 15 7 18 35 2 22 8 23 23 8 6 9 ...
Solution Example Example: over 3 paths  1 2 10 4 5 1 3 7 6 5  1 2 9 8 15 5   <ul><li>Properties of the solution : </li></u...
Which Set of Paths ? <ul><li>First method </li></ul><ul><ul><li>Solve the initial problem </li></ul></ul><ul><ul><li>Extra...
Comparison to Load Balancing 3-path routing 6-path routing  <ul><li>Heuristic scheme for traffic partitions </li></ul><ul>...
Video Distortion Model: Encoder <ul><li>Encoder distortion: </li></ul><ul><li>MSE measure for distortion </li></ul><ul><li...
Video Distortion Model: Packet Loss <ul><li>Transmission distortion: </li></ul><ul><li>P rand  is random packet loss rate ...
Video Distortion Model: Combined <ul><li>Total distortion: </li></ul><ul><li>Decode video quality is limited by encoder pe...
Network Simulation Setup <ul><li>Two application scenarios </li></ul><ul><ul><li>Data download </li></ul></ul><ul><ul><li>...
Data Download Results: Congestion Traffic model: M/M/1 No. of samples: 600,000
Video Streaming Results: Congestion Sequence : Foreman QCIF Sequence length : 250 f. Codec: H.26L TML 8.5 Frame rate : 30 ...
Video Streaming Results: End to End Delay Traffic model: CBR No. of realizations: 400 average end to end delay 90 th  perc...
Video Streaming Results: RD Performance Sequence : Foreman QCIF Sequence length : 250 f. Codec: H.26L TML 8.5 Frame rate :...
Video Streaming Results: Sequence Foreman QCIF Sequence 1 path 80 kbps, PSNR 32.5 dB 3 paths 187 kbps, PSNR 36.2 dB 6 path...
Video Streaming Results: Sequence Comparison of the operating point for the heuristic and proposed schemes : 6 paths heuri...
Video Streaming Results: GOP length Sequence : Foreman QCIF Sequence length : 250 f. Codec: H.26L TML 8.5 Frame rate : 30 ...
Conclusions <ul><li>Congestion optimized stream routing </li></ul><ul><ul><li>Convex optimization formulation  </li></ul><...
Upcoming SlideShare
Loading in...5
×

Project proposal Multi-stream and multi-path audio transmission

766

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
766
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
11
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Project proposal Multi-stream and multi-path audio transmission"

  1. 1. Multipath Routing of Multimedia Data Over Ad Hoc Wireless Networks
  2. 2. Outline <ul><li>Ad hoc wireless networks </li></ul><ul><li>Routing for ad hoc wireless networks </li></ul><ul><ul><li>Source routing and multi-path routing </li></ul></ul><ul><ul><li>Example with Dynamic Source Routing (DSR) </li></ul></ul><ul><li>Congestion optimized stream routing </li></ul><ul><ul><li>Complete/practical solution </li></ul></ul><ul><ul><li>Comparison with a heuristic scheme </li></ul></ul><ul><li>Video distortion model </li></ul><ul><li>Experimental results </li></ul><ul><ul><li>Network congestion </li></ul></ul><ul><ul><li>Two applications: data download & video streaming </li></ul></ul><ul><li>Conclusion </li></ul>
  3. 3. Wireless Ad Hoc Networks <ul><li>Collection of wireless nodes with no infrastructure </li></ul><ul><li>Every node can be source, destination or relay </li></ul><ul><li>Many applications : search and rescue, disaster areas… </li></ul>
  4. 4. Ad Hoc Wireless Network Model If nodes are not limited in their transmissions, we get the following formulas : <ul><li>Assumptions : </li></ul><ul><li>Static nodes </li></ul><ul><li>Bandwidth : 2.2 MHz </li></ul><ul><li>Interference limited network </li></ul><ul><li>Every node has global information </li></ul>15-node network
  5. 5. Existing Routing Algorithms <ul><li>Routing for wireless ad hoc networks : </li></ul><ul><ul><li>DSDV </li></ul></ul><ul><ul><li>AODV </li></ul></ul><ul><ul><li>DSR </li></ul></ul><ul><ul><li>TORA </li></ul></ul><ul><li>Optimization and routing : </li></ul><ul><ul><li>Flow assignment </li></ul></ul><ul><ul><li>Resource allocation </li></ul></ul>[Kleinrock, 1976], [Bertsekas & Gallager, 1987] [Xiao, Johansson and Boyd, 2002] [Perkins and Bhagwat, 1994] [Park and Corson, 1997] [Perkins and Royer, 1999] [Johnson and Maltz, 1996]
  6. 6. DSR example <ul><li>DSR allows to discover and maintain routes on ad hoc wireless networks </li></ul><ul><li>Example : route from node 1 to node 5 </li></ul><ul><li>If no route is cached the route discovery protocol is initiated : </li></ul><ul><ul><li>route request broadcast </li></ul></ul><ul><ul><li>intermediate nodes append their address and re-broadcast the reply </li></ul></ul><ul><ul><li>reply is sent back by the first node which knows how to reach the destination </li></ul></ul>(1 2 10 4 5)
  7. 7. Congestion Optimized Stream Routing <ul><li>Congestion may be estimated by the average queuing delay for a packet on the network </li></ul><ul><li>Average delay over a link for the M/M/1 model : </li></ul><ul><li>So minimizing the congestion results in the following problem : </li></ul><ul><li>Subject to : </li></ul><ul><li>rate constraints at the source and destination </li></ul><ul><li>flow conservation, flow positivity </li></ul><ul><li>capacity constraints F ij +f ij < Cij </li></ul>Cross traffic F ij Optimal f ij ? i j
  8. 8. Illustration Cross traffic F ij Optimal f ij ? i j Source Destination
  9. 9. Solution Example <ul><li>Streaming 100 kbps from node 1 to node 5 : </li></ul>77 16kbps 2 5 15 7 18 35 2 22 8 23 23 8 6 9 43 64 24 24
  10. 10. Solution Example Example: over 3 paths 1 2 10 4 5 1 3 7 6 5 1 2 9 8 15 5 <ul><li>Properties of the solution : </li></ul><ul><ul><li>Diversity of paths </li></ul></ul><ul><ul><li>Complex </li></ul></ul><ul><ul><li>Linear convergence </li></ul></ul><ul><li>To lower the complexity : </li></ul><ul><ul><li>Predetermine a set of paths </li></ul></ul><ul><ul><li>Optimal flow partition among the paths </li></ul></ul><ul><ul><li>Instantaneous convergence </li></ul></ul>31 kbps 45 24
  11. 11. Which Set of Paths ? <ul><li>First method </li></ul><ul><ul><li>Solve the initial problem </li></ul></ul><ul><ul><li>Extract the routes carrying the most traffic recursively </li></ul></ul><ul><ul><li>Partition over the k best </li></ul></ul><ul><li>Practical method based on DSR : </li></ul><ul><ul><li>Discover multiple routes through route request/reply broadcasts </li></ul></ul><ul><ul><li>Add the link state to the node’s address information </li></ul></ul><ul><ul><li>Partition over these routes </li></ul></ul>
  12. 12. Comparison to Load Balancing 3-path routing 6-path routing <ul><li>Heuristic scheme for traffic partitions </li></ul><ul><ul><li>Load balancing among bottleneck links on each path </li></ul></ul><ul><ul><li>Oblivious to joint links, length of path etc… </li></ul></ul><ul><li>Solution examples </li></ul>
  13. 13. Video Distortion Model: Encoder <ul><li>Encoder distortion: </li></ul><ul><li>MSE measure for distortion </li></ul><ul><li>D 0 ,  and R 0 are estimated via regression </li></ul>[ Stuhlmuller 2000 ]
  14. 14. Video Distortion Model: Packet Loss <ul><li>Transmission distortion: </li></ul><ul><li>P rand is random packet loss rate </li></ul><ul><li>M/M/1 model for delay </li></ul><ul><li> is related to coding structure </li></ul><ul><li>C is the maximum rate supported by the routes </li></ul><ul><li>T target is determined from empirical data </li></ul>Loss due to late arrival Random loss rate
  15. 15. Video Distortion Model: Combined <ul><li>Total distortion: </li></ul><ul><li>Decode video quality is limited by encoder performance at low rate, and network congestion at high rates </li></ul>Encoder MSE Trans. MSE Decoded MSE Decoded PSNR => optimal rate R* R*
  16. 16. Network Simulation Setup <ul><li>Two application scenarios </li></ul><ul><ul><li>Data download </li></ul></ul><ul><ul><li>Live video streaming </li></ul></ul><ul><li>NS-2 configuration </li></ul><ul><ul><li>15 static nodes, routing from node 1 to node 5 </li></ul></ul><ul><ul><li>No random packet loss, no propagation delay </li></ul></ul><ul><ul><li>UDP connection, source routing </li></ul></ul><ul><ul><li>M/M/1 model for data and cross traffic </li></ul></ul><ul><ul><li>Constant Bit Rate (CBR) traffic for video </li></ul></ul><ul><ul><ul><ul><ul><li>http:// www.isi.edu/nsnam/ns / </li></ul></ul></ul></ul></ul>
  17. 17. Data Download Results: Congestion Traffic model: M/M/1 No. of samples: 600,000
  18. 18. Video Streaming Results: Congestion Sequence : Foreman QCIF Sequence length : 250 f. Codec: H.26L TML 8.5 Frame rate : 30 fps Playout deadline : 500 ms Packetization : 1 f./packet Traffic model: CBR No. of realizations: 400 No random loss
  19. 19. Video Streaming Results: End to End Delay Traffic model: CBR No. of realizations: 400 average end to end delay 90 th percentile end to end delay
  20. 20. Video Streaming Results: RD Performance Sequence : Foreman QCIF Sequence length : 250 f. Codec: H.26L TML 8.5 Frame rate : 30 fps Playout deadline : 500 ms Packetization : 1 f./packet Traffic model: CBR Number of realizations: 400 Packet loss rate: 0% 6 dB 1 dB
  21. 21. Video Streaming Results: Sequence Foreman QCIF Sequence 1 path 80 kbps, PSNR 32.5 dB 3 paths 187 kbps, PSNR 36.2 dB 6 paths 278 kbps, PSNR 38 dB Comparison of the operating point for different number of paths :
  22. 22. Video Streaming Results: Sequence Comparison of the operating point for the heuristic and proposed schemes : 6 paths heuristic 187 kbps, PSNR 36.2 dB 6 paths optimal 278 kbps, PSNR 38 dB
  23. 23. Video Streaming Results: GOP length Sequence : Foreman QCIF Sequence length : 250 f. Codec: H.26L TML 8.5 Frame rate : 30 fps Playout deadline : 350 ms Packetization : 1 f./packet Traffic model: CBR Number of realizations: 400 Packet loss rate: 1%
  24. 24. Conclusions <ul><li>Congestion optimized stream routing </li></ul><ul><ul><li>Convex optimization formulation </li></ul></ul><ul><ul><li>Efficient utilization of limited bandwidth resource </li></ul></ul><ul><ul><li>Outperforms heuristic load balancing </li></ul></ul><ul><li>Video distortion model </li></ul><ul><ul><li>Combines the influence of encoder distortion with packet delay </li></ul></ul><ul><ul><li>Predict and compare behaviors of different coding schemes </li></ul></ul><ul><li>Network simulation </li></ul><ul><ul><li>Applied to data download and live video streaming </li></ul></ul><ul><ul><li>Demonstrated the advantage of the proposed routing scheme </li></ul></ul><ul><ul><li>Verified the video distortion model </li></ul></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×