Sustainable Power for Electrical Resources –SuPER - Project


Published on

  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Sustainable Power for Electrical Resources –SuPER - Project

  1. 1. Development of Sustainable Power for Electrical Resources – SuPER System EE 563 Graduate Seminar September 30, 2005 James G. Harris, Professor EE Department and CPE Program
  2. 2. Outline <ul><li>Background </li></ul><ul><li>Technical Description of SuPER System </li></ul><ul><li>Feasibility Analysis </li></ul><ul><li>Five Year Plan for Development </li></ul><ul><li>Faculty Participating in SuPER Project </li></ul><ul><li>Student Involvement </li></ul><ul><li>Facilities, Equipment, and Resources </li></ul><ul><li>Status and Plans </li></ul>
  3. 3. Background - Electrification <ul><li>Electrification – National Academy of Engineering’s top engineering achievement for the 20 th Century </li></ul><ul><li>Estimated 1/3 of population (now, 6B) do not have access </li></ul><ul><ul><li>Significant proportion of remainder does not have reliable access to battery or grid </li></ul></ul><ul><ul><li>18,000 occupied structures on Navajo Nation lack electrical power (2001 legislation) </li></ul></ul>
  4. 4. Background - Significance <ul><li>Impact of electrification significant </li></ul><ul><ul><li>Transformation of Western world </li></ul></ul><ul><ul><ul><li>Thomas Hughes: Networks of Power </li></ul></ul></ul><ul><ul><li>People who caused change </li></ul></ul><ul><ul><li>Social Impact – standard of living </li></ul></ul><ul><li>Recognized by National Renewable Energy Laboratory in late 1990s </li></ul><ul><ul><li>Village Power Program </li></ul></ul><ul><ul><li>Development of microfinancing </li></ul></ul>
  5. 5. Background – Solar Insolation <ul><li>Goal to provide electrical resources to people in underdeveloped countries </li></ul><ul><li>Leapfrog technology – no need for 100 years of development </li></ul><ul><ul><li>Example of cell phone in Asia </li></ul></ul><ul><li>Review of global insolation map </li></ul><ul><ul><li>Poorest people ($1-2 a day income) </li></ul></ul><ul><ul><li>Within plus or minus 30 degree of latitude </li></ul></ul><ul><ul><ul><li>Highest values of solar insolation (minimum W hr/sq m/day) </li></ul></ul></ul>
  6. 7. Background – DC Power <ul><li>Solar photovoltaic systems inherently DC </li></ul><ul><li>History of DC (Edison) versus AC (Westinghouse and Tesla) at end of 19 th century </li></ul><ul><ul><li>DC versus AC for generation, distribution, and utilization </li></ul></ul><ul><ul><li>Initially, applied to lighting </li></ul></ul><ul><li>Lighting today </li></ul><ul><ul><li>60W incandescent bulb and 20W compact fluorescent bulb lumens </li></ul></ul><ul><ul><li>Equivalent to 3W LED technology, and improving </li></ul></ul>
  7. 8. Background – DC power loads <ul><li>Efficiency of electrical motors: few horsepower </li></ul><ul><ul><li>Permanent magnet DC motors </li></ul></ul><ul><li>Electrical appliances </li></ul><ul><ul><li>Computer: 50W laptop (DC) </li></ul></ul><ul><ul><li>TVs, radios use DC power </li></ul></ul><ul><ul><li>RV 12V DC market: kitchen appliances </li></ul></ul><ul><ul><li>Portable power tools – battery powered (DC) </li></ul></ul><ul><li>Computers: wireless connection </li></ul><ul><ul><li>Internet, phone (voice over IP), TV, radio, </li></ul></ul><ul><ul><li>Education: MIT Media Lab $100 laptop project </li></ul></ul>
  8. 9. Background – Moore’s Law <ul><li>Stand-alone solar photovoltaic system technology is mature, e.g., Sandia Handbook </li></ul><ul><li>Application of Moore’s Law to development of SuPER system </li></ul><ul><ul><li>Solar cell development: commercial and research lab </li></ul></ul><ul><ul><ul><li>Estimate 5% per decade with base of 16% in 2005 </li></ul></ul></ul><ul><ul><ul><li>Implies 25% efficiency in 2025 </li></ul></ul></ul><ul><ul><li>DARPA RFP: 1000 units of 50% efficiency </li></ul></ul>
  9. 10. Commercial Module Range Laboratory Cells Histories of Silicon Photovoltaic Module and Cell Efficiencies Ref.: Martin A. Green; &quot;Silicon Photovoltaic Modules: A Brief History of the First 50 Years&quot;; Prog. Photovolt: Res. Appl. 2005; 13:447–455 (Published online 18 April 2005 in Wiley InterScience ( DOI: 10.1002/pip.612)
  10. 11. April Allderdice and John H. Rogers; Renewable Energy for Microenterprise; National Renewable Energy Laboratory; November 2000
  11. 12. Antonio C. Jimenez, Tom Lawand; Renewable Energy for Rural Schools; National Renewable Energy Laboratory; November 2000
  12. 13. Jonathan O.V. Touryan and Kenell J. Touryan; Renewable Energy for Sustainable Rural Village Power; Presented at the American Scientific Affiliation Conference Arkansas August 1, 1999 National Renewable Energy Laboratory
  13. 14. Background – Solar and DC Power <ul><li>Conclusion </li></ul><ul><ul><li>Solar photovoltaic is poised for leapfrog technology </li></ul></ul><ul><ul><ul><li>Many development tools available </li></ul></ul></ul><ul><ul><ul><li>Expectation of future efficiencies </li></ul></ul></ul><ul><ul><ul><li>Sustainable power source </li></ul></ul></ul><ul><ul><ul><li>Digital control of standalone system </li></ul></ul></ul><ul><ul><li>DC is power of future </li></ul></ul><ul><ul><ul><li>Decentralized </li></ul></ul></ul><ul><ul><ul><li>Matched to source and loads </li></ul></ul></ul>
  14. 15. Technical Description of SuPER System <ul><li>Modular design: four subsystems </li></ul><ul><li>Stand-alone solar photovoltaic system design very mature </li></ul>DC Interface Control and Status Solar Panel Energy Storage (Battery)
  15. 16. Technical Description of SuPER System – approach and goals <ul><li>Approach to design from first principles </li></ul><ul><li>Created set of five sets of requirements </li></ul><ul><ul><li>Overall, and a set for each subsystem </li></ul></ul><ul><li>Overall goal: </li></ul><ul><ul><li>Mean time between failures (MTBF): 25 years </li></ul></ul><ul><ul><li>Mean time to repair (MTTR): 1 hour </li></ul></ul><ul><ul><li>Design lifecycle of 20 years </li></ul></ul><ul><ul><li>Cost: less than $500 for 1 sq m PV module including battery replacements </li></ul></ul>
  16. 17. Technical Description of SuPER System - requirements <ul><li>Overall system requirements (abbreviated) </li></ul><ul><ul><li>Total power/energy budget: input, storage, output </li></ul></ul><ul><ul><li>Measurements and definition of state </li></ul></ul><ul><ul><li>Safety: NEC/standards code, grounding </li></ul></ul><ul><ul><li>Mechanical design: enclosure/packaging </li></ul></ul><ul><ul><li>Startup and shutdown, error detection/recovery </li></ul></ul><ul><ul><li>Documentation: General Public License (Open Source) </li></ul></ul>
  17. 18. Technical Description of SuPER System - requirements <ul><li>Solar Panel requirements (abbreviated) </li></ul><ul><ul><li>Size: 1, 2, 4 sq m modular design </li></ul></ul><ul><ul><li>Voltage (DC); 12V, 24V, 48V </li></ul></ul><ul><ul><li>Fixed tilt @ latitude + or – 15 deg </li></ul></ul><ul><ul><li>Modularity: parallel/series, interface DC sources </li></ul></ul><ul><ul><li>Maintenance </li></ul></ul><ul><ul><li>Measurements: voltage/current; spectral and temporal characterization; temperature </li></ul></ul>
  18. 19. Technical Description of SuPER System - requirements <ul><li>Energy storage requirements (abbreviated) </li></ul><ul><ul><li>Type: deep cycle, AGM-gel, Ni-Cd </li></ul></ul><ul><ul><li>Maintenance minimal (clean terminals) </li></ul></ul><ul><ul><li>Replacement schedule: every 5-10 years </li></ul></ul><ul><ul><li>Safety and sustainability </li></ul></ul><ul><ul><li>Measurements: charging and discharging </li></ul></ul><ul><ul><li>Grounding and mechanical </li></ul></ul>
  19. 20. Technical Description of SuPER System - requirements <ul><li>DC interface requirements (abbreviated) </li></ul><ul><ul><li>Single or multiple DC outputs: model of AC 110V input service bus with multiple circuits </li></ul></ul><ul><ul><li>Currents: use of AWG 12 or 14 implies 15A </li></ul></ul><ul><ul><li>Circuit breakers, GFI, overload for motors </li></ul></ul><ul><ul><li>Characterization of DC electrical loads </li></ul></ul><ul><ul><li>Modular design for load growth </li></ul></ul><ul><ul><li>Forum for DC standarization: model of Internet Engineering Task Force (IETF) </li></ul></ul>
  20. 21. Technical Description of SuPER System- requirements <ul><li>Control and status module requirements (abbreviated) </li></ul><ul><ul><li>Digital development technology: example is Altera FPGA/NIOS with uclinux OS, internet I/F </li></ul></ul><ul><ul><li>Switching of array power with conditioning </li></ul></ul><ul><ul><li>User display/interface </li></ul></ul><ul><ul><li>Digital control algorithms: maximum power point tracking (MPPT), softstart for power switching </li></ul></ul><ul><ul><li>Safety and grounding </li></ul></ul><ul><ul><li>Enclosure with environmental conditioning </li></ul></ul>
  21. 22. Feasibility Analysis <ul><li>Worst case global solar radiation: 4 KW h / sq m per day </li></ul><ul><li>Solar cell efficiency of 10% yields 400 W h / sq m </li></ul><ul><li>Solar module of 1 sq m for 400 W h per day </li></ul><ul><li>Energy storage at 12V with discharge of 50% yields 66 A h battery </li></ul><ul><ul><li>Car/truck battery </li></ul></ul><ul><ul><li>Five year replacement </li></ul></ul>
  22. 23. Feasibility Analysis <ul><li>Lighting: 5 LED lamps @ 3W for 4 hours yields 60 W h </li></ul><ul><li>Water pump: ¼ HP (187 W) for one hour </li></ul><ul><ul><li>565 liters at maximum heigth of 7.62 m (garden hose) </li></ul></ul><ul><li>Computer and communication: 50 W for one hour </li></ul><ul><li>Refrigerator (12V DC) @ 50 W h </li></ul><ul><li>Portable battery charging @ 50 W h </li></ul>
  23. 24. Feasibility Analysis Daily Source (W h) Solar energy production 400 Total energy use allocation 397 Lighting 60 Pump/motor 187 Computer/communications 50 Refrigerator 50 Portable battery charging 50 Energy storage: 12V AGM lead acid battery rated at 66 A h (one day supply for 50% discharge)
  24. 25. Feasibility Analysis <ul><li>Commercial Off The Shelf (COTS) </li></ul><ul><ul><li>SunWize Systems model DC30 75/100 </li></ul></ul><ul><ul><li>Manufacturer suggested retail price $1469 </li></ul></ul><ul><ul><li>Solar power generator system </li></ul></ul><ul><ul><ul><li>Self-contained 12V DC with battery storage </li></ul></ul></ul><ul><ul><ul><li>190 W h with input solar radiation of 4 K w h / day </li></ul></ul></ul><ul><ul><ul><li>Marketed for emergency power applications </li></ul></ul></ul><ul><ul><ul><li>AC output models available </li></ul></ul></ul>
  25. 26. Five Year Plan for Development <ul><li>Summary of development process </li></ul><ul><ul><li>First three years for prototype development </li></ul></ul><ul><ul><ul><li>Three generations at one year for each </li></ul></ul></ul><ul><ul><ul><li>Use of Electric Power Institute for administration </li></ul></ul></ul><ul><ul><li>Last two years for field testing </li></ul></ul><ul><ul><li>Five years for completed design and testing </li></ul></ul><ul><ul><ul><li>Includes business plan, documentation and dissemination </li></ul></ul></ul>
  26. 27. Five Year Plan for Development <ul><li>First year activities </li></ul><ul><ul><li>First generation functional design </li></ul></ul><ul><ul><ul><li>Use of 20-101 power senior project lab </li></ul></ul></ul><ul><ul><ul><li>Set up development environment </li></ul></ul></ul><ul><ul><ul><ul><li>FPGA and uclinux OS </li></ul></ul></ul></ul><ul><ul><ul><li>Using EE/CPE senior project and thesis </li></ul></ul></ul><ul><ul><ul><li>Prototype goal: satisfy all functional requirements </li></ul></ul></ul><ul><ul><li>Marketing plans with OCOB students </li></ul></ul><ul><ul><ul><li>Winter 06 client for BUS 454 Developing and Presenting Marketing Plans/Senior Project </li></ul></ul></ul><ul><ul><ul><ul><li>At least three marketing plans proposed: </li></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>USA investors for SuPER development </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Indigenous entrepreneurs business opportunity </li></ul></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>Indigenous consumers for SuPER system </li></ul></ul></ul></ul></ul>
  27. 28. Five Year Plan for Development <ul><li>Second year activities </li></ul><ul><ul><li>Second generation prototype addressing: </li></ul></ul><ul><ul><ul><li>modularity, manufacturing, reliability, maintainability, cost, packaging </li></ul></ul></ul><ul><ul><li>Development of involvement of student clubs </li></ul></ul><ul><ul><li>Extensive system testing and evaluation </li></ul></ul><ul><ul><li>Initiation of business plan </li></ul></ul><ul><ul><li>Establishment of DC standards forum </li></ul></ul>
  28. 29. Five Year Plan for Development <ul><li>Third year of activities </li></ul><ul><ul><li>Third generation SuPER prototype addressing: </li></ul></ul><ul><ul><ul><li>Packaging </li></ul></ul></ul><ul><ul><ul><li>Satisfies all functional and performance requirements </li></ul></ul></ul><ul><ul><ul><li>Cost requirements satisfied </li></ul></ul></ul><ul><ul><ul><li>Extensive testing and evaluation </li></ul></ul></ul><ul><ul><li>Complete open source documentation of SuPER System: GPL compliant </li></ul></ul><ul><ul><li>Growth of DC standard forum development activities </li></ul></ul><ul><ul><li>Business plans disseminated </li></ul></ul><ul><ul><ul><li>Targeted entrepreneurs within countries of interest </li></ul></ul></ul><ul><ul><li>Plan for field testing in fourth year </li></ul></ul><ul><ul><ul><li>Potential of Navajo Nation developed </li></ul></ul></ul>
  29. 30. Five Year Plan for Development <ul><li>Fourth and fifth year of activities: </li></ul><ul><ul><li>Assessment of SuPER system </li></ul></ul><ul><ul><ul><li>Improvement of design and construction </li></ul></ul></ul><ul><ul><ul><li>MTBF of 25 years, MTTR of 1 hour </li></ul></ul></ul><ul><ul><ul><li>20 year lifecycle cost < $500 </li></ul></ul></ul><ul><ul><ul><li>Update of SuPER system open source documentation </li></ul></ul></ul><ul><ul><li>Pilot projects initiated and evaluated </li></ul></ul><ul><ul><li>DC standards forum publishes DC standard </li></ul></ul><ul><ul><li>Revised business plan disseminated </li></ul></ul>
  30. 31. Faculty Participating on SuPER Project <ul><li>Administrated by Electric Power Institute </li></ul><ul><ul><li>Dr. Ahmad Nafisi, Director </li></ul></ul><ul><li>Collaboration with CENG Center for Sustainability in Engineering </li></ul><ul><ul><li>Dr. Deanna Richards, Director </li></ul></ul><ul><li>EE/CPE faculty initially involved: </li></ul><ul><ul><li>Drs. James G. Harris, Ahmad Nafisi, Ali Shaban, Taufik </li></ul></ul><ul><li>OCOB faculty initially involved: </li></ul><ul><ul><li>Dr. Doug Cerf, Associate Dean </li></ul></ul><ul><ul><li>Dr. Norm Borin, Chair of Marketing Area </li></ul></ul>
  31. 32. Student Involvement <ul><li>EE graduate students for thesis work in system engineering </li></ul><ul><ul><li>Overall system requirements, design, integration and testing </li></ul></ul><ul><ul><li>System design for status and control </li></ul></ul><ul><li>EE and CPE students for senior projects in subsystem development </li></ul><ul><ul><li>Design and testing of subsystems </li></ul></ul><ul><li>OCOB students for senior projects in BUS 454 for marketing plans </li></ul><ul><li>Development of a Cal Poly SuPER team </li></ul>
  32. 33. Student Involvement <ul><li>Initially work with resources available </li></ul><ul><ul><li>Adequate for start, just lengthens schedule </li></ul></ul><ul><li>Plan to acquire support for not only additional resources, but also students </li></ul><ul><li>Faculty to provide continuing direction through “generations” of students working on SuPER project </li></ul>
  33. 34. Facilities, Equipment and Resources <ul><li>Solar panel system available in EE Department – see photo </li></ul><ul><li>Development laboratory to be established in power senior project laboratory (20-101) </li></ul><ul><li>Resources of Power Electronics Laboratory available (20-104) </li></ul><ul><li>Basic infrastructure for system development exists at Cal Poly </li></ul>
  34. 35. 450-W 24-V Solar Panels on mobile station, 40-Amp charge controller, Solar Boost MPPT, and 2 Deka Solar Sealed Electrolyte Batteries; lab also has a 3.5 kW Outback All-In-One (MPPT, Charge Controller, and Inverter) to accommodate future expansion of the solar panel system.
  35. 36. Status and Plans - foundations <ul><li>Support solicited over summer from foundations: </li></ul><ul><ul><li>MacArthur </li></ul></ul><ul><ul><li>Rockefeller Brothers </li></ul></ul><ul><ul><li>Energy Foundation </li></ul></ul><ul><ul><li>Ford </li></ul></ul><ul><ul><li>Hewlett </li></ul></ul><ul><ul><li>Packard </li></ul></ul><ul><ul><li>Clairborne (Liz) and Art Ortenbery </li></ul></ul><ul><ul><li>Gates </li></ul></ul><ul><ul><li>Kaufman </li></ul></ul><ul><li>“ it does not fall within either of their current funding priorities and/or guidelines.” </li></ul>
  36. 37. Status and Plans - NSF <ul><li>Submitted proposal to National Science Foundation on September 23, 2005 </li></ul><ul><ul><li>RUI: Development of Sustainable Power for Electrical Resources – SuPER System </li></ul></ul><ul><ul><li>Research in Undergraduate Institutions (RUI) Program Announcement within its Faculty Research Projects area for three years and total of $240K </li></ul></ul><ul><ul><li>Submitted to Control, Networks & Computation Intelligence (CCNI) program within Electrical & Communications and Systems (ECS) Division of the Engineering Directorate </li></ul></ul>
  37. 38. Status and Plans - start <ul><li>Initiate the effort with existing resources </li></ul><ul><ul><li>Senior projects and thesis work </li></ul></ul><ul><ul><ul><li>Engineering – technical </li></ul></ul></ul><ul><ul><ul><li>Business – economic </li></ul></ul></ul><ul><ul><li>Establish DC web-based forum </li></ul></ul><ul><ul><li>Continue to involve other faculty and students </li></ul></ul>
  38. 39. Why? Broader Impact of SuPER Project <ul><li>Provides family owned electrical power source </li></ul><ul><ul><li>Only electrical power source for family </li></ul></ul><ul><ul><li>Increasing power resource with time </li></ul></ul><ul><ul><li>With financial business plan: $2-3 per month for all electrical power needs </li></ul></ul><ul><li>Decentralized, sustainable development of electrical power in poorest countries </li></ul><ul><li>SuPER system potential resource for raising standard of living of poorest to par with rest of world </li></ul>
  39. 40. Broader Impact <ul><li>Priority and focus on developing sustainable electrical resource for poorest people </li></ul><ul><li>Success will provide model for people in developed nations </li></ul><ul><ul><li>Recognize commitment to status quo </li></ul></ul><ul><ul><li>Centralized AC power generation with distribution </li></ul></ul><ul><ul><li>Review current PG&E bill </li></ul></ul><ul><ul><li>Replace with sustainable distributed DC power </li></ul></ul>
  40. 42. Interested in Participating? <ul><li>Check out SuPER website: </li></ul><ul><ul><li>Announcement of opportunities </li></ul></ul><ul><ul><li>White Paper </li></ul></ul><ul><ul><li>Graduate Seminar Presentation </li></ul></ul><ul><li>Visit with faculty involved: </li></ul><ul><ul><li>EE: Jim Harris, Ahmad Nafisi, Ali Shaban, Taufik </li></ul></ul><ul><ul><li>OCOB: Doug Cerf, Norm Borin </li></ul></ul>
  41. 43. References <ul><li>1. George Constable, Bob Somerville; A Century of Innovation: Twenty Engineering Achievements that Transformed our Lives; National Academy of Engineering; 2003; overview available at http:// / </li></ul><ul><li>2. Jonathan O.V. Touryan, Kenell J. Touryan; &quot;Renewable Energy for </li></ul><ul><li>Sustainable Rural Village Power&quot;; Presented at the American Scientific Affiliation </li></ul><ul><li>Conference Arkansas August 1999, available from NREL as NREL/CP-720-26871 </li></ul><ul><li>[hybrid system for nrel village power program report </li></ul><ul><li>3. Begay-Campbell, Sandia National Laboratories; &quot;Sustainable Hybrid System Deployment with the Navajo Tribal Utility Authority&quot;; NCPV and Solar Program Review Meeting 2003 NREL/CD-520-33586 Page 541; available at s /33586073.pdf [estimated date 2003, describes program resulting from &quot;On November 5, 2001, President Bush signed the Navajo Nation Electrification Demonstration Program (Section 602, Public Law 106-511) into Law. This law directs the Secretary of Energy to establish a 5-year program to assist the Navajo Nation in meeting its electricity needs for the estimated 18,000 occupied structures on the Navajo Nation that lack electric power.&quot;] </li></ul><ul><li>4. Thomas P. Hughes; Networks of Power: Electrification in Western Society, 1880-1930; Baltimore: Johns Hopkins University Press, 1983 </li></ul><ul><li>5. Thomas P. Hughes; American Genesis A Century of Invention and Technological Enthusiasm 1870-1970; Penguin Books; 1989 </li></ul><ul><li>6. David Nye; Electrifying America Social Meanings of a New Technology, 1880-1940; MIT Press; 1990 </li></ul>
  42. 44. References <ul><li>7. Antonio C. Jimenez, Tom Lawand; &quot;Renewable Energy for Rural Schools&quot;; National Renewable Energy Laboratory; November 2000 </li></ul><ul><li>[report from village power program at nrel – covers all renewable sources] </li></ul><ul><li>8. April Allderdice, John H. Rogers; Renewable Energy for Microenterprise; NREL: November 2000; available from </li></ul><ul><li>[microfinance introduction for renewable energy in underdevelopment countries] </li></ul><ul><li>9. Ulrich Stutenbaumer, Tesfaye Negash, Amensisa Abdi; &quot;Performance of small scale photovoltaic systems and their potential for rural electrification in Ethiopia&quot;; Renewable Energy 18 (1999) pp 35-48 </li></ul><ul><li>[authored by locals, but dated – example of early recognition of possibilities] </li></ul><ul><li>10. Sunwize Technologies; http:// / ; insolation map available at http:// </li></ul><ul><li>[on-line catalog and interactive planning support; global insolation map] </li></ul><ul><li>11. Evan Mills; &quot;The Specter of Fuel-Based Lighting&quot;; Science; v. 308, 27 May 2005, pp 1263-1264 </li></ul><ul><li>12. E. Fred Schubert, Jong Kyu Kim; &quot;Solid-State Light Sources Getting Smart&quot;; Science; v. 308, 27 May 2005, pp 1274-1278 </li></ul><ul><li>13. Thurton, J.P. and Stafford, B; &quot;Successful Design of PV Power Systems for Solid-State Lighting Applications&quot;; Fourth International Conference on Solid State Lighting; 3-6 August, 2004, Denver. Colorado / Proc. of SPIE; v. 5530; 2004; pp284-295 </li></ul><ul><li>[mainly lessons learned] </li></ul>
  43. 45. References <ul><li>14. MIT Media Lab; </li></ul><ul><li>15. Sandia National Laboratories, Solar Programs and Technologies Department; Southwest Technology Development Institute, New Mexico State University; Daystar, Inc., Las Cruces, NM; &quot;Stand-Alone Photovoltaic Systems: A Handbook of Recommended Design Practices&quot;; Sandia National Laboratories, SAND87-7023 Updated July 2003 </li></ul><ul><li>[revised handbook first published in 1988] </li></ul><ul><li>16. Kyocera Solar, Inc., Solar Electric Products Catalog , August 2005 </li></ul><ul><li>[available on web – prices for small modules only] </li></ul><ul><li>17. IEA PVPS International Energy Agency Implementing Agreement on Photovoltaic Power Systems Task 3 Use of Photovoltaic Power Systems in Stand-Alone and Island </li></ul><ul><li>Applications Report IEA PVPS T3-09: 2002 &quot;Use of appliances in Stand-Alone PV Power supply systems: problems and solutions; September 2002 </li></ul><ul><li>[dos and don'ts for design] </li></ul><ul><li>18. Alison Wilshaw, Lucy Southgate & Rolf Oldach; &quot;Quality Management of Stand Alone PV Systems: Recommended Practices&quot; IEA Task 3, </li></ul><ul><li>[another report of iea agreement] </li></ul><ul><li>19. Martin A. Green; &quot;Silicon Photovoltaic Modules: A Brief History of the First </li></ul><ul><li>50 Years&quot;; Prog. Photovolt: Res. Appl. 2005; 13:447–455 (Published online 18 April 2005 in Wiley InterScience ( DOI: 10.1002/pip.612) </li></ul><ul><li>[history and use of moore's law with darpa rfp; also figure] </li></ul><ul><li>20. Defense Advanced Research Projects Agency (DARPA) BAA05-21 posted Feb. 25, 2005 RFP—Very High Efficiency Solar Cell (VHESC) program announcement with deadline on 3/29/2005, which will be open at least a year from this date; see http:// </li></ul>
  44. 46. References <ul><li>21. H. Spanggaard, F.C. Krebs; &quot;A brief history of the development of organic and </li></ul><ul><li>polymeric photovoltaics&quot;; Solar Energy Materials & Solar Cells 83 (2004) 125–146 </li></ul><ul><li>[overview in context of inorganic (si) pv's) </li></ul><ul><li>22. T. Givler, P. Lilienthal; &quot;Using HOMER® Software, NREL’s Micropower Optimization Model, to Explore the Role of Gen-sets in Small Solar Power Systems Case Study: Sri Lanka&quot;; Technical Report NREL/TP-710-36774; May 2005. </li></ul><ul><li>23. David L. King, Thomas D. Hund, William E. Boyson, Mark E. Ralph, Marlene Brown, Ron Orozco; &quot;Experimental Optimization of the FireFly. 600 Photovoltaic Off-Grid System&quot;; Sandia National Laboratories, SAND2003-3493 October 2003 </li></ul><ul><li>[system and component test with ac inverter; measurement parameters; standards and codes identified, e.g., grounding] </li></ul><ul><li>24. R. Akkaya*, A. A. Kulaksiz; &quot;A microcontroller-based stand-alone photovoltaic power system for residential appliances&quot;; Applied Energy 78 (2004) 419–431; available at </li></ul><ul><li> </li></ul><ul><li>[microbased control, but focused on AC output] </li></ul>
  45. 47. References <ul><li>25. Angel V. Peterchev, Seth R. Sanders; &quot;Digital Loss-Minimizing Multi-Mode Synchronous Buck Converter Control&quot; ; 2004 35th Annual IEEE Power Electronics Specialists Conference Aachen, Germany, 2004 </li></ul><ul><li>[dc to dc for cell phone/computer using digital techniques] </li></ul><ul><li>26. Jason Hatashita, &quot;Evaluation of a Network Co-processing Architecture Implemented in Programmable Hardware.&quot; EE MS Thesis, February 2002; available at </li></ul><ul><li>27. Homepage for Cal Poly Marketing Program: http:// / ; see client application in lower right hand space </li></ul><ul><li>28. EE 460/463/464 Senior Seminar/Senior Project Handbook available at: </li></ul><ul><li> ] </li></ul><ul><li>29. Muhammad H. Rashid; Power Electronics: Circuits, Devices and Applications(3rd Edition); Prentice-Hall; 2004 </li></ul>