Multicast instant channel change in IPTV systems
Outline <ul><li>Introduction </li></ul><ul><li>Instant Channel Change </li></ul><ul><li>Conclusion </li></ul><ul><li>Exper...
INTRODUCTION
Objective <ul><li>Traditional Instant Channel Change (ICC) </li></ul><ul><ul><li>Having a separate unicast for every user ...
Network Architecture
Network Architecture <ul><li>Content Source & D-Server </li></ul><ul><ul><li>Content is buffered at Distribution Server (D...
INSTANT CHANNEL CHANGE
Current Approach (Unicast ICC) 1. Join D-Server Multicast Router TV Client
Current Approach (Unicast ICC) 2. Unicast a stream with a higher bit rate 1. Join D-Server Multicast Router TV Client
Current Approach (Unicast ICC) 3. Start display 2. Unicast a stream with a higher bit rate 1. Join D-Server Multicast Rout...
Current Approach (Unicast ICC) 3. Start display 4. Join multicast 2. Unicast a stream with a higher bit rate 1. Join D-Ser...
Current Approach (Unicast ICC) 5a. Multicast stream 3. Start display 4. Join multicast 2. Unicast a stream with a higher b...
Current Approach (Unicast ICC) 5b. Display full quality video 5a. Multicast stream 3. Start display 4. Join multicast 2. U...
Drawback <ul><li>The number of concurrent ICC requests is small. </li></ul><ul><li>When there are a number of concurrent I...
Multicast ICC (Motivation) <ul><li>Unicasting the same stream for a given channel is wasteful. </li></ul><ul><li>It is suf...
Multicast ICC <ul><li>Secondary lower-bandwidth channel change stream corresponding to each channel  at the D-Server </li>...
Multicast ICC Multicast Replicator TV Client 1. Join
Multicast ICC 2a. I-frame stream Multicast Replicator TV Client 1. Join
Multicast ICC 2a. I-frame stream 2b. Primary multicast stream Multicast Replicator TV Client 1. Join
Multicast ICC 2a. I-frame stream 2b. Primary multicast stream Multicast Replicator TV Client 1. Join 3. Display the frame ...
Multicast ICC 2a. I-frame stream 2b. Primary multicast stream Multicast Replicator TV Client 1. Join 3. Display the frame ...
Multicast ICC 2a. I-frame stream 2b. Primary multicast stream Multicast Replicator TV Client 1. Join 3. Display the frame ...
CONCLUSION
<ul><li>Requires approximately 50% additional capacity for each channel. </li></ul><ul><li>The requirement is relatively i...
EXPERIMENT
Tool & Objective <ul><li>Build and NS-2 simulation of the metro/access network and the VHO servers. </li></ul><ul><li>The ...
NS-2 Settings <ul><li>With NS-2 simulation constraints, we set </li></ul><ul><ul><li>The number of channels at the DSLAM t...
Channel Change Requests <ul><li>The empirical distribution of the channel change requests across all channels initiated fr...
Popular Channel & D-Server I/O <ul><li>The channel change requests for the most popular channel at a D-Server collected. <...
Q & A <ul><li>Thanks </li></ul>
Upcoming SlideShare
Loading in …5
×

Multicast instant channel change in IPTV systems

3,668 views
3,486 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
3,668
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
51
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Multicast instant channel change in IPTV systems

  1. 1. Multicast instant channel change in IPTV systems
  2. 2. Outline <ul><li>Introduction </li></ul><ul><li>Instant Channel Change </li></ul><ul><li>Conclusion </li></ul><ul><li>Experimental Result </li></ul>
  3. 3. INTRODUCTION
  4. 4. Objective <ul><li>Traditional Instant Channel Change (ICC) </li></ul><ul><ul><li>Having a separate unicast for every user change channel. </li></ul></ul><ul><li>We propose a multicast-based approach </li></ul><ul><ul><li>Using a secondary “channel change stream” associated with each channel. </li></ul></ul><ul><ul><li>Carrying only I-frame and associated audio. </li></ul></ul><ul><ul><li>The drawback is the 50% additional capacity required. </li></ul></ul>
  5. 5.
  6. 6. Network Architecture
  7. 7. Network Architecture <ul><li>Content Source & D-Server </li></ul><ul><ul><li>Content is buffered at Distribution Server (D-Server) in the Video Hub Office (VHO) </li></ul></ul><ul><ul><li>A separate D-Server could be used for every channel </li></ul></ul><ul><ul><li>All D-Server share the link to the VHO </li></ul></ul><ul><li>Metro Network </li></ul><ul><ul><li>Connects the VHO to a number of Central Offices (CO) </li></ul></ul><ul><ul><li>Is usually an optical network with significant capacity </li></ul></ul>
  8. 8. INSTANT CHANNEL CHANGE
  9. 9. Current Approach (Unicast ICC) 1. Join D-Server Multicast Router TV Client
  10. 10. Current Approach (Unicast ICC) 2. Unicast a stream with a higher bit rate 1. Join D-Server Multicast Router TV Client
  11. 11. Current Approach (Unicast ICC) 3. Start display 2. Unicast a stream with a higher bit rate 1. Join D-Server Multicast Router TV Client
  12. 12. Current Approach (Unicast ICC) 3. Start display 4. Join multicast 2. Unicast a stream with a higher bit rate 1. Join D-Server Multicast Router TV Client
  13. 13. Current Approach (Unicast ICC) 5a. Multicast stream 3. Start display 4. Join multicast 2. Unicast a stream with a higher bit rate 1. Join D-Server Multicast Router TV Client
  14. 14. Current Approach (Unicast ICC) 5b. Display full quality video 5a. Multicast stream 3. Start display 4. Join multicast 2. Unicast a stream with a higher bit rate 1. Join D-Server Multicast Router TV Client
  15. 15. Drawback <ul><li>The number of concurrent ICC requests is small. </li></ul><ul><li>When there are a number of concurrent ICC requests: </li></ul><ul><ul><li>substantial load on the network. </li></ul></ul><ul><ul><li>service provider have to deploy additional servers. </li></ul></ul>
  16. 16. Multicast ICC (Motivation) <ul><li>Unicasting the same stream for a given channel is wasteful. </li></ul><ul><li>It is sufficient for the user to briefly (for 1-2 seconds) see a lower quality. </li></ul><ul><li>There are bandwidth constraint on the links from the DSLAM to CO. </li></ul><ul><li>To limit the number of concurrent streams delivered to a particular DSLAM. </li></ul>
  17. 17. Multicast ICC <ul><li>Secondary lower-bandwidth channel change stream corresponding to each channel at the D-Server </li></ul><ul><li>This stream will consists of I-frame only </li></ul><ul><li>Each channel will add another IP multicast group called the “ Secondary ICC Multicast Group ” </li></ul>
  18. 18. Multicast ICC Multicast Replicator TV Client 1. Join
  19. 19. Multicast ICC 2a. I-frame stream Multicast Replicator TV Client 1. Join
  20. 20. Multicast ICC 2a. I-frame stream 2b. Primary multicast stream Multicast Replicator TV Client 1. Join
  21. 21. Multicast ICC 2a. I-frame stream 2b. Primary multicast stream Multicast Replicator TV Client 1. Join 3. Display the frame from I-frame stream
  22. 22. Multicast ICC 2a. I-frame stream 2b. Primary multicast stream Multicast Replicator TV Client 1. Join 3. Display the frame from I-frame stream 4. Buffering the primary stream
  23. 23. Multicast ICC 2a. I-frame stream 2b. Primary multicast stream Multicast Replicator TV Client 1. Join 3. Display the frame from I-frame stream 4. Buffering the primary stream 5. Play the full quality video
  24. 24. CONCLUSION
  25. 25. <ul><li>Requires approximately 50% additional capacity for each channel. </li></ul><ul><li>The requirement is relatively independent of, and does NOT grow with, the user population request. </li></ul><ul><li>Does not take into account the command processing delay time? </li></ul>
  26. 26.
  27. 27. EXPERIMENT
  28. 28. Tool & Objective <ul><li>Build and NS-2 simulation of the metro/access network and the VHO servers. </li></ul><ul><li>The link between the CO and the DSLAM and the D-Server I/O were the bottlenecks. </li></ul><ul><li>To evaluate the unicast and multicast schemes in terms of: </li></ul><ul><ul><li>Bandwidth consumption </li></ul></ul><ul><ul><li>Display latency </li></ul></ul><ul><ul><li>Channel switch latency </li></ul></ul><ul><ul><li>D-Server I/O </li></ul></ul>
  29. 29. NS-2 Settings <ul><li>With NS-2 simulation constraints, we set </li></ul><ul><ul><li>The number of channels at the DSLAM to 10. </li></ul></ul><ul><ul><li>The link capacity of DSLAM ->CO to 200 Mbps. </li></ul></ul><ul><ul><li>The simulation was run for 150 seconds. </li></ul></ul>
  30. 30. Channel Change Requests <ul><li>The empirical distribution of the channel change requests across all channels initiated from all users. </li></ul>
  31. 31.
  32. 32.
  33. 33.
  34. 34. Popular Channel & D-Server I/O <ul><li>The channel change requests for the most popular channel at a D-Server collected. </li></ul><ul><li>The key bottleneck we examine here is the D-Server I/O. </li></ul><ul><li>The popularity of channel is defined by the largest number of users changes. </li></ul>
  35. 35.
  36. 36.
  37. 37.
  38. 38. Q & A <ul><li>Thanks </li></ul>

×