0
100G Packet Ring Architectures Gady Rosenfeld VP Marketing [email_address]   October 2007
The need for 100G <ul><li>Cox – &quot;100GE needed for broadband customer aggregation urgently in the core by 2009 and acr...
 
 
Generic Triple-Play Network Architecture National  Video Content Distribution Network (IP Multicast) Local IPTV Video Dist...
Triple-Play Network – Metro Transport ER : Edge Router (Layer-3) PA : Packet Aggregator (Layer-2) Customer Premises Packet...
Bandwidth Requirements <ul><li>IPTV </li></ul><ul><ul><li>2007 – 300 channels, 10% HD: 1.1-1.4 Gbits/s  (MPEG-4/MPEG-2) </...
IEEE 802.3 HSSG Status <ul><li>IEEE 802.3 HSSG </li></ul><ul><ul><li>Agreed on PAR for 40GE and 100GE, July’07 </li></ul><...
Alternative for Network Scalability <ul><li>Add separate rings </li></ul><ul><ul><li>Complex network operation – multiple ...
High-Capacity Packet Rings 100G MAC Layer nx10G PHY <ul><li>High-capacity (HC) packet rings are achieved through advanced ...
HC Packet Rings – Traffic Distribution <ul><li>No mis-ordering within a flow </li></ul><ul><ul><li>Each flow is consistent...
HC Packet Rings Survivability TDM  Flow Data Flow RPR Steer protection - Logical port - Physical RPR MAC  RPR Steer protec...
HC Packet Rings Enhanced Survivability - Logical port - Physical RPR MAC  TDM  Flow Data service RPR Link#2 is Down
Example – Growth of Existing Services (1/3) Customer A Customer A Customer A Customer B Customer B Customer B Customer C C...
Example – Growth of Existing Services (2/3) Customer A Customer A Customer A Customer C Customer C Customer C Customer C <...
Example – Growth of Existing Services (3/3) Customer A Customer A Customer A Customer B Customer B Customer B Customer C C...
Multi-Phy HC Packet Rings  <ul><li>Description  </li></ul><ul><ul><li>Allow combination of RPRoSTM64 and RPRo10GE in the s...
Asymmetric Operation (AHC-RPR) and Management <ul><li>Best for incremental network growth </li></ul><ul><li>Install RPR bl...
The CM4000 Packet Transport Switch Layer  Transport Plane Monitoring, Survivability and multiplexing SONET/SDH Ethernet SO...
Summary <ul><li>HC Packet Transport </li></ul><ul><ul><li>Network scalability up to 100 Gbits/s for high bandwidth applica...
Questions? Thank You
Upcoming SlideShare
Loading in...5
×

Corrigent Confidential Copyright © 2007 Corrigent Systems

199

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
199
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "Corrigent Confidential Copyright © 2007 Corrigent Systems "

  1. 1. 100G Packet Ring Architectures Gady Rosenfeld VP Marketing [email_address] October 2007
  2. 2. The need for 100G <ul><li>Cox – &quot;100GE needed for broadband customer aggregation urgently in the core by 2009 and across the board by 2011&quot;, John Weil, Apr'07 </li></ul><ul><li>Comcast – “There is a market need for 100GE”, Vik Saxena, Jan’07 </li></ul><ul><li>Equinix – Requirements for “100 Gbps or greater”, Louis Lee, Jan’07 </li></ul><ul><li>Level 3 – Using 8x10 GbE LAG today </li></ul><ul><li>Yahoo! – Using 4x10 GbE LAG today </li></ul>
  3. 5. Generic Triple-Play Network Architecture National Video Content Distribution Network (IP Multicast) Local IPTV Video Distribution Network NHO BRAS Regional Content Insertion National Content Insertion NHO Metro Node ISP1 ISP2 ISP3 Metro Node Digital Video Server VoIP VoIP Digital Video Server IP Core Network (Tier 1 aggregation network) Metro Transport Network (Tier 2 aggregation network) Local Distribution Local IPTV Video Distribution Network MGW Video Acquisition System
  4. 6. Triple-Play Network – Metro Transport ER : Edge Router (Layer-3) PA : Packet Aggregator (Layer-2) Customer Premises Packet transport switch Local Content Insertion Metro Node Digital Video Server ER DSLAM PA Nx10G Metro Node Digital Video Server ER 10G metro rings PA PA KEY Nx10GE Nx10GE Fiber Copper
  5. 7. Bandwidth Requirements <ul><li>IPTV </li></ul><ul><ul><li>2007 – 300 channels, 10% HD: 1.1-1.4 Gbits/s (MPEG-4/MPEG-2) </li></ul></ul><ul><ul><li>2010 – 300 channels, 50% HD: 2.0-3.2 Gbits/s </li></ul></ul><ul><li>VoD (2500 subscribers per node) </li></ul><ul><ul><li>2007 – 5% VoD penetration: 0.5-0.6 Gbits/s </li></ul></ul><ul><ul><li>2010 – 30% VoD penetration: 5.0-8.0 Gbits/s (MPEG-4/MPEG-2) </li></ul></ul><ul><li>Total bandwidth requirements – 6 nodes per ring </li></ul><ul><ul><li>2007 – 3.5-4.5 Gbits/s </li></ul></ul><ul><ul><li>2010 – 32-51 Gbits/s </li></ul></ul>
  6. 8. IEEE 802.3 HSSG Status <ul><li>IEEE 802.3 HSSG </li></ul><ul><ul><li>Agreed on PAR for 40GE and 100GE, July’07 </li></ul></ul><ul><ul><li>Identify bandwidth-hungry applications: data centers, internet exchanges, high-performance computing and video on demand </li></ul></ul><ul><li>Parallel optics for 100GE (4x25G, 10x10G) discussed for dedicated fiber and limited distances applications. Serial options for MAN/WAN applications still under evaluation </li></ul><ul><ul><li>Polarization multiplexing, Phase coding </li></ul></ul><ul><li>Standard is still at least 4 years away </li></ul>
  7. 9. Alternative for Network Scalability <ul><li>Add separate rings </li></ul><ul><ul><li>Complex network operation – multiple networks, Traffic Engineering </li></ul></ul><ul><ul><li>No redundancy between rings </li></ul></ul><ul><ul><li>Limited statistical multiplexing </li></ul></ul><ul><li>Upgrade to 40 Gbits/s </li></ul><ul><ul><li>Disruptive and costly process </li></ul></ul><ul><ul><li>High equipment cost – optics, network processors, traffic management </li></ul></ul><ul><ul><li>Limited capacity </li></ul></ul>
  8. 10. High-Capacity Packet Rings 100G MAC Layer nx10G PHY <ul><li>High-capacity (HC) packet rings are achieved through advanced bonding techniques </li></ul><ul><li>Multiple 10G RPR instances are combined to create a single logical ring </li></ul><ul><li>40G links can also be added to the bundle </li></ul><ul><li>Flow-aware hashing for load balancing and distributing packets over parallel physical links </li></ul><ul><li>Guarantees traffic integrity, by uniquely identifying and classifying each individual flow over the same physical link, avoiding re-ordering </li></ul>
  9. 11. HC Packet Rings – Traffic Distribution <ul><li>No mis-ordering within a flow </li></ul><ul><ul><li>Each flow is consistently delivered on the same channel </li></ul></ul><ul><ul><li>Packet ordering is maintained even if each channel is carried in different route with different length </li></ul></ul><ul><ul><li>Flexible combinations of fields used for hashing to provide load balancing in different applications </li></ul></ul>1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 1 1 1 1 1 2 Transmitted packets over 4 channels 6 flows 2 3 2 2 3 Link Failure After the failure packets are distributed over 3 channels 2 4 4 2 3 3
  10. 12. HC Packet Rings Survivability TDM Flow Data Flow RPR Steer protection - Logical port - Physical RPR MAC RPR Steer protection
  11. 13. HC Packet Rings Enhanced Survivability - Logical port - Physical RPR MAC TDM Flow Data service RPR Link#2 is Down
  12. 14. Example – Growth of Existing Services (1/3) Customer A Customer A Customer A Customer B Customer B Customer B Customer C Customer C Customer C Customer C <ul><li>L2-VPN service to interconnect between enterprise's branches </li></ul><ul><li>VPLS over ring network </li></ul><ul><li>Can be infrastructure service to multiple end-user services </li></ul>Network Capacity Customer A – 3G Customer B – 3G Customer C – 4G Total net capacity : 10G Network Capacity Customer A – 3G Customer B – 4G Customer C – 4G Total net capacity : 11G Customer B
  13. 15. Example – Growth of Existing Services (2/3) Customer A Customer A Customer A Customer C Customer C Customer C Customer C <ul><li>Option 1 – Multi-ring configuration </li></ul><ul><li>Add additional ring instance – ringlet #2 </li></ul><ul><li>Disconnect all CustomerB locations from ringlet #1 </li></ul><ul><li>Re-provisioning Customer B service on ringlet #2 </li></ul>Customer B Customer B Customer B Customer B
  14. 16. Example – Growth of Existing Services (3/3) Customer A Customer A Customer A Customer B Customer B Customer B Customer C Customer C Customer C Customer C <ul><li>Option 2 – HC-RPR </li></ul><ul><li>Increase RPR ring capacity to 20G </li></ul><ul><li>Connect Customer B 4th location to the existing L2-VPN service </li></ul>Customer B
  15. 17. Multi-Phy HC Packet Rings <ul><li>Description </li></ul><ul><ul><li>Allow combination of RPRoSTM64 and RPRo10GE in the same HC-RPR group. </li></ul></ul><ul><li>Motivation </li></ul><ul><ul><li>Reduce cost while maintaining ring synchronization. </li></ul></ul><ul><ul><li>Clock distribution across the ring via SONET/SDH interface </li></ul></ul><ul><ul><li>Data and TDM traffic will run on top of both Ethernet and SONET/SDH interfaces – full flexibility </li></ul></ul><ul><li>Implementation aspects </li></ul><ul><ul><li>Eliminate miss-order by per flow hashing </li></ul></ul><ul><ul><li>Fine flow granularity to assure equal load sharing between RPR instances </li></ul></ul><ul><ul><ul><li>Flow granularity: MAC ( S+D) + IP (S+D) + Port </li></ul></ul></ul><ul><ul><li>No issue of equal load sharing between different Phy layers </li></ul></ul><ul><ul><ul><li>OC192 payload rate (net rate): 9.51Gbps </li></ul></ul></ul><ul><ul><ul><li>10GE tri-model average payload rate: 9.5Gpbs </li></ul></ul></ul><ul><ul><li>Equal net rates </li></ul></ul>
  16. 18. Asymmetric Operation (AHC-RPR) and Management <ul><li>Best for incremental network growth </li></ul><ul><li>Install RPR blades and optics only as node capacity demand increases </li></ul><ul><li>At least one ring must be common to all stations </li></ul><ul><li>Each station is represented by HC (group) MAC and physical MAC </li></ul><ul><ul><li>HC MAC is used for data forwarding and IP level </li></ul></ul><ul><ul><li>Physical MAC used for topology </li></ul></ul><ul><li>Reference topology has group entity and per ring entities </li></ul>2x10G HC-RPR S1 S2 S3 S4 S5
  17. 19. The CM4000 Packet Transport Switch Layer Transport Plane Monitoring, Survivability and multiplexing SONET/SDH Ethernet SONET/SDH Line SONET/SDH Path 1 GE RPR 10 GE Nx10GE Classification Marking Queuing Tagging Policing Multipoint Interworking Point to point Point to Multipoint Ethernet IP/MPLS PPP FC TDM HDLC <ul><li>Packet-based Path/Link Technologies </li></ul><ul><li>Packet-based Multiplexing, Survivability and Monitoring at the Path/Link layers </li></ul>OTN (G.709) MPLS LSP NxRPR
  18. 20. Summary <ul><li>HC Packet Transport </li></ul><ul><ul><li>Network scalability up to 100 Gbits/s for high bandwidth applications is required today </li></ul></ul><ul><ul><li>100GE is at least 4 years away </li></ul></ul><ul><ul><li>Cost effective network migration path is required </li></ul></ul><ul><ul><li>In-service network scalability in 10G or 40G increments </li></ul></ul><ul><ul><li>Resiliency to fiber and equipment failures </li></ul></ul><ul><ul><li>Implemented with available low-cost optical components </li></ul></ul>
  19. 21. Questions? Thank You
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×