Your SlideShare is downloading. ×
0
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Distribuição normal
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Distribuição normal

1,104

Published on

Published in: Education
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,104
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
65
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. CURSO DE ESTATÍSTICA I Ricardo Bruno N. dos Santos FACECON-PPGE (UFPA)
  • 2. Distribuição Normal
  • 3. DISTRIBUIÇÕES CONTÍNUAS Dentre as várias distribuições de probabilidade contínuas, abordaremos aqui apenas a distribuição normal, pois ela apresenta grande aplicação em pesquisas científicas e tecnológicas. Grande parte das variáveis contínuas de interesse prático segue essa distribuição, aliada ao Teorema do Limite Central (TLC), que é a base das estimativas e dos testes de hipóteses realizados sobre a média de uma população qualquer, e garante que a distribuição amostral das médias segue uma distribuição normal, independentemente da distribuição da variável em estudo, como será visto mais adiante.
  • 4. DISTRIBUIÇÕES CONTÍNUAS Mas antes de entrarmos na distribuição normal é bom entender o conceito de distribuição uniforme. A distribuição uniforme é a distribuição de probabilidades contínua mais simples de conceituar: a probabilidade de se gerar qualquer ponto em um intervalo contido no espaço amostral é proporcional ao tamanho do intervalo. Outra maneira de se dizer "distribuição uniforme" seria "um número finito de resultados com chances iguais de acontecer". Um simples exemplo de distribuição uniforme é lançar um dado não viciado. Os possíveis valores são 1,2,3,4,5,6, e a cada turno que o dado é jogado a probabilidade de cada valor é 1/6. Se dois dados são lançados e seus valores adicionados, a distribuição resultante não é mais uniforme pois as somas não são uma variável equiprovável.
  • 5. DISTRIBUIÇÕES CONTÍNUAS A distribuição discreta uniforme em si não possui parâmetros. No entanto, é conveniente representar seus possíveis resultados com um intervalo fechado [a,b], sendo 'a' e 'b' considerados os principais parâmetros da distribuição. Com isso a função acumulada dessa distribuição é representada como 𝐹 𝑘; 𝑎, 𝑏 = 𝑘 −𝑎+1 𝑏−𝑎+1 Ou 𝑓 𝑥; 𝑎, 𝑏 = 1 𝑏 − 𝑎 0 , 𝑎 ≤ 𝑥 ≤ 𝑏
  • 6. DISTRIBUIÇÕES CONTÍNUAS Exemplo: Num teste intelectual com alunos de um colégio Y, o tempo para realização de uma bateria de questões de raciocínio lógico é medido e anotado para ser comparado com um modelo teórico. Este teste é utilizado para identificar o desenvolvimento da capacidade de raciocínio lógico e auxiliar a aplicação de medidas corretivas. O modelo teórico considera T, tempo de teste em minutos, como uma variável aleatória contínua com função de densidade de probabilidade dada por:            contráriocaso tse tset tf 0 1510 20 3 ;108)4( 40 1 )(
  • 7. DISTRIBUIÇÕES CONTÍNUAS O gráfico da fdp é apresentado a seguir (construiremos ele no software R). Deve ser notado que, pela definição de f(x), ela se anula para t < 8 ou t >15. Vamos verificar agora se a função f(t) satisfaz a definição de densidade. Para calcular P(9 < T  12), vamos obter a área sob f(t) no intervalo (9; 12]:
  • 8. DISTRIBUIÇÕES CONTÍNUAS Assim P(9< T  12) = 7/16 valor esse obtido pela soma do trapézio definido no intervalo (9, 10) com o retângulo determinado pelo intervalo [10,12] (veja a figura). 6 8 10 12 14 16 18 0.000.050.100.15 t f(t)
  • 9. DISTRIBUIÇÕES CONTÍNUAS Através do uso de integral, essa mesma probabilidade seria calculada da seguinte forma: 12 10 12 9 9 10 10 122 10 12 9 10 109 (9 12) ( ) ( ) ( ) 1 3 1 3 ( 4) 4 40 20 40 2 20 11 6 7 0,4375 80 20 16 P T f t dt f t dt f t dt t t dt dt t t                              
  • 10. DISTRIBUIÇÃO NORMAL A distribuição normal é uma das mais essenciais e importantes distribuições da estatística, conhecida também como Distribuição de Gauss ou Gaussiana. Foi primeiramente introduzida pelo matemático Abraham de Moivre. Além de descrever uma série de fenômenos físicos e financeiros, possui grande uso na estatística inferencial. É inteiramente descrita por seus parâmetros de média e desvio padrão, ou seja, conhecendo-se estes consegue-se determinar qualquer probabilidade em uma distribuição Normal.
  • 11. DISTRIBUIÇÃO NORMAL Um interessante uso da Distribuição Normal é que ela serve de aproximação para o cálculo de outras distribuições quando o número de observações fica grande. Essa importante propriedade provém do Teorema do Limite Central que diz que "toda soma de variáveis aleatórias independentes de média finita e variância limitada é aproximadamente Normal, desde que o número de termos da soma seja suficientemente grande" (Ou seja, que a amostra seja maior que 30 observações).
  • 12. TEOREMA DO LIMITE CENTRAL
  • 13. DISTRIBUIÇÃO NORMAL A função densidade de probabilidade da distribuição normal é dada por: 𝒇 𝒙 = 𝟏 𝟐𝝅𝝈 𝟐 𝒆𝒙𝒑 − 𝟏 𝟐 𝒙 − 𝝁 𝝈 𝟐 , 𝑥 ∈ (−∞; ∞) Onde:  e  são a média e o desvio padrão, respectivamente, da distribuição de probabilidade. 𝜋 corresponde a 3,1415 e exp a uma função exponencial.
  • 14. DISTRIBUIÇÃO NORMAL A variação natural de muitos processos industriais é realmente aleatória. Embora as distribuições de muitos processos possam assumir uma variedade de formas, muitas variáveis observadas possuem uma distribuição de frequências que é, aproximadamente, uma distribuição de probabilidade Normal. Probabilidade é a chance real de ocorrer um determinado evento, isto é, a chance de ocorrer uma medida em um determinado intervalo. Por exemplo, a frequência relativa deste intervalo, observada à partir de uma amostra de medidas, é a aproximação da probabilidade. E a distribuição de frequências é a aproximação da distribuição de probabilidades. A distribuição é normal quando tem a forma de "sino":
  • 15. DISTRIBUIÇÃO NORMAL
  • 16. DISTRIBUIÇÃO NORMAL Algumas características da distribuição normal: 1 – Há uma família inteira de distribuições normais de probabilidade. Elas são diferenciadas por suas médias () e desvios- padrões (); 2 – O ponto mais alto na curva normal está na média, que também é a mediana e a moda da distribuição; 3 – A média da distribuição pode ser qualquer valor numérico: negativo, zero ou positivo. No próximo gráfico temos três curvas normais com o mesmo desvio padrão mas três diferentes médias (- 10; 0; e 20); 4 – A distribuição normal de probabilidade é simétrica, em que a forma da curva à esquerda da média é uma imagem espelhada da forma da curva à direita da média. Os extremos da curva estendem- se ao infinito em ambas as direções e teoricamente nunca tocam o eixo horizontal.
  • 17. DISTRIBUIÇÃO NORMAL 5 – o desvio padrão determina a largura da curva. Valores maiores do desvio padrão resultam em curvas mais largas e mais planas, mostrando maior variabilidade nos dados. Duas distribuições com a mesma média mais desvio diferentes são mostradas a seguir
  • 18. DISTRIBUIÇÃO NORMAL 6 – A área total sob a curva para a distribuição normal de probabilidade é 1, o que é verdadeiro para todas as distribuições contínuas de probabilidade;
  • 19. DISTRIBUIÇÃO NORMAL 7 – As probabilidades para a variável aleatória normal são dadas por áreas sob a curva. A porcentagem de valores em alguns intervalos comumente usados são: a) 68,26% dos valores de uma variável aleatória normal estão dentro de um desvio padrão positivou ou negativo de sua média; b) 95,44% dos valores de uma variável aleatória normal estão dentro de dois desvios padrões positivos ou negativos de sua média; c) 99,72% dos valores de uma variável aleatória normal estão dentro de três desvios padrões positivos ou negativos de sua média
  • 20. DISTRIBUIÇÃO NORMAL
  • 21. DISTRIBUIÇÃO NORMAL Portanto, a área sob a curva entre os pontos a e b, em que a < b, representa a probabilidade da variável X assumir um valor entre a e b (área escura), como observamos a seguir. 𝑷(𝒂 ≤ 𝒙 ≤ 𝒃) 𝑷(𝒙 < 𝒂) 𝑷(𝒙 > 𝒃)
  • 22. DISTRIBUIÇÃO NORMAL Desse modo, você pode associar que, no caso das distribuições contínuas, a área do gráfico corresponde a probabilidades. Então, veja a notação utilizada para a distribuição normal: 𝑿~𝑵(𝝁, 𝝈 𝟐) Para calcularmos as probabilidades via distribuição normal, é necessário o conhecimento de cálculo integral. Assim, procuramos tabelar os valores de probabilidade que seriam obtidos por meio da integração da função densidade de probabilidade normal em um determinado intervalo. A dificuldade para se processar esse tabelamento se prendeu na infinidade de valores que  (média) e  (desvio padrão) poderiam assumir. Nessas condições, teríamos que dispor de uma tabela para cada uma das infinitas combinações de  e , ou seja, em cada situação que se quisesse calcular uma probabilidade.
  • 23. DISTRIBUIÇÃO NORMAL Para facilitar esse problema, pode-se obter uma nova forma para a distribuição normal, que não seja influenciada por  e . O problema foi solucionado mediante emprego de uma nova variável definida por: 𝒛 = 𝒙 − 𝝁 𝝈 Essa variável transforma todas as distribuições normais em uma distribuição normal reduzida ou padronizada, de média zero e desvio padrão um. Então, temos: 𝑍 ~ 𝑁(0,1). Assim, utilizamos apenas uma tabela para o cálculo de probabilidades para qualquer que seja a curva correspondente a uma distribuição normal. Portanto, para um valor de x =  em uma distribuição normal qualquer, corresponde o valor:
  • 24. DISTRIBUIÇÃO NORMAL 𝑧 = 𝑥−𝜇 𝜎 = 𝜇−𝜇 𝜎 = 0 na distribuição normal reduzida. Para 𝑥 = 𝜇 + 𝜎, tem-se: 𝑧 = 𝑥−𝜇 𝜎 = 𝜇+𝜎−𝜇 𝜎 = 1
  • 25. DISTRIBUIÇÃO NORMAL Exemplo: Considere a arrecadação como um tributo de uma pequena cidade. Verificamos que essa arrecadação seguia uma distribuição normal com duração média de R$ 60.000,00 e desvio padrão de R$ 10.000,00. Procuramos, então, responder os seguintes questionamentos: a) Qual a probabilidade de uma arrecadação ser maior do que R$ 75.000,00? Como a variável arrecadação apresenta distribuição aproximadamente normal com média 60000 e variância de 100002 [𝑋~ 𝑁(60000; 100002)] e procura-se calcular a 𝑃(𝑋 > 75000) = ? Primeiramente, precisamos transformar a variável 𝑋 em 𝑍 e, depois, substituindo na expressão, teremos:
  • 26. DISTRIBUIÇÃO NORMAL 𝑧 = 𝑥−𝜇 𝜎 = 75000−60000 10000 = 1,5 Olhando esse valor na Tabela Z, z = 1,50 (1,5 na primeira coluna e o zero na primeira linha), encontraremos no meio da tabela o valor de 0,4332 que corresponde à probabilidade de z estar entre zero e 1,5, como podemos pode observar a seguir. Fig. A Fig. B Fig. C
  • 27. DISTRIBUIÇÃO NORMAL A área escura da figura corresponde a P(X>75000), que é a mesma coisa que: P(z > 1,50). Então: 𝑃 𝑧 > 1,5 𝐹𝑖𝑔. 𝐴 = = 𝑃 0 < 𝑧 < ∞ 𝐹𝑖𝑔. 𝐵 − 𝑃 0 < 𝑧 < 1,50 𝐹𝑖𝑔. 𝐶 = 0,5 − 0,4332 = 0,0668 Retirou-se a probabilidade encontrada de 0,5, pois esse valor corresponde à probabilidade de zero até o infinito.
  • 28. DISTRIBUIÇÃO NORMAL b) Qual a probabilidade da arrecadação estar entre R$ 50.000,00 e R$ 70.000,00? 𝑃 50000 < 𝑋 < 70000 =? Primeiramente, precisamos transformar a variável 𝑋 em 𝑍 e, depois, substituindo na expressão de 𝑍, teremos valores de 𝑍1 e 𝑍2, relacionados aos valores de 𝑋1 = 50000 e 𝑋2 = 70000: 𝑧1 = 𝑥1−𝜇 𝜎 = 50000−60000 10000 = −1 𝑧2 = 𝑥2−𝜇 𝜎 = 70000−60000 10000 = 1
  • 29. DISTRIBUIÇÃO NORMAL Pode-se verificar que: 𝑃 50000 < 𝑋 < 70000 = 𝑃 −1 < 𝑧 < 1 = 0,3413 + 0,3413 = 0,6826
  • 30. DISTRIBUIÇÃO NORMAL c) Qual a probabilidade da arrecadação estar entre R$ 63.000,00 e R$ 70.000,00? 𝑃(63000 < 𝑋 < 70000) = ? 𝑧1 = 63000−60000 10000 = 0,30 𝑧2 = 70000−60000 10000 = 1
  • 31. DISTRIBUIÇÃO NORMAL 𝑃 63000 < 𝑋 < 70000 = 𝑃 0,30 < 𝑧 < 1,00 = 0,3413 − 0,1179 = 0,2234 Observe que existem outras distribuições tanto discretas quanto contínuas que não foram abordadas neste livro. Portanto, recomendamos que você procure outras fontes de conhecimento, a começar por fazer uma pesquisa na internet sobre essas distribuições.

×