Four Seasoned Nuclear Scientists Endorse Nuclear Energy Push by Four Climate Scientists

17,494 views
17,242 views

Published on

Four senior figures in nuclear physics and energy distributed this letter aimed at buttressing the recent call by four climate scientists to pursue nuclear power as an affordable and relatively safe large-scale energy source with limited climate impact.

The letter from the climate scientists is here:
'To Those Influencing Environmental Policy But Opposed to Nuclear Power': http://nyti.ms/1iEGeR3

The signatories on the new letter are:

Andrew C. Kadak
Former President of the American Nuclear Society and Member of the US Nuclear Waste Technology Review Board
http://www.nwtrb.gov/board/kadak.html

Richard A. Meserve
President of the Carnegie Institution for Science and a former Chairman of the US Nuclear Regulatory Commission
http://carnegiescience.edu/president_richard_meserve

Neil E. Todreas
Korea Electric Power Company Professor (emeritus) and a former Chairman of the Massachusetts Institute of Technology Department of Nuclear Science and Engineering
http://web.mit.edu/nse/people/faculty/todreas.html

Richard Wilson
Mallinckrodt Research Professor of Physics (emeritus) and a former Chairman of the Harvard University Department of Physics
http://users.physics.harvard.edu/~wilson/

Published in: Technology, Business
1 Comment
3 Likes
Statistics
Notes
  • Excellent. Would make JFK proud: http://tinyurl.com/6xgpkfa

    Common sense has long shown nuclear power to be essential and superior in safety. And, we have help today from local solar PV/hot-water, given that local solar (no 'farms') can meet all peak daytime needs worldwide.

    And, we know that advanced nuclear power is essential to meet the critical needs beyond combustion replacement -- needs for true carbon-neutral fuels & feedstocks, materials for ocean-acidification correction, and true carbon sequestration via benign C-H compounds derived from CO2 in air & water.

    The reality is that we swamp the natural carbon cycle by a factor of 30 each year, thus now being 1500 years behind what ocean life forms can sequester and seafloor limestone. This has created a mass-extinction event that's fast approaching and already affecting sea food chains. Compared to ocean acidification, climate warming & sea rise seem to be 'peanuts'.

    To avoid the worst of what now appears inevitable, we needed to be deploying 1GWe of non-emitting power each week by 1980. What JFK started and subsequent administrations fumbled could have done that. Now, we simply must work as fast as possible while our descendants look back at us from the challenging future we're leaving them. Please see 'The Sixth Extinction' by Kolbert, 2014.

    Before the letter from Hansen et al was sent out, I had the fortune to lunch with Ken Caldeira. He wanted info on nuclear power, particularly on Thorium, while I needed some details on acidification. It was pleasing that what he & I discussed didn't lead him away from nuclear power.
    --
    Dr. A. Cannara
    650 400 3071
    http://tinyurl.com/7o6cm3u
    http://tinyurl.com/n2qnos6
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total views
17,494
On SlideShare
0
From Embeds
0
Number of Embeds
9,096
Actions
Shares
0
Downloads
171
Comments
1
Likes
3
Embeds 0
No embeds

No notes for slide

Four Seasoned Nuclear Scientists Endorse Nuclear Energy Push by Four Climate Scientists

  1. 1. Nuclear Power’s Role in Responding to Climate Change Andrew C. Kadak, Richard A. Meserve, Neil E. Todreas, Richard Wilson January 22, 2014 On November 17th, 2013, four internationally recognized climate scientists issued a plea to fellow environmentalists that nuclear energy needs to be a part of the global climate change solution. https://plus.google.com/104173268819779064135/posts/Vs6Csiv1xYr We join them and others who recognize the need to reduce CO2 emissions from fossil fuels. Although electric generation from solar and wind can play a role in meeting future energy needs, their intermittency means they are not scalable to the level needed to meet the world’s energy needs without significant gains in storage technology. However, as we elaborate below, nuclear power can deliver electric power in a sufficiently safe, economical and secure manner to supplement supply from other carbon-free sources. Safety Today there are 100 nuclear power plants operating in the United States supplying close to 20% of the electricity needs. Worldwide 432 reactors provide electricity to 32 nations. Sixteen nations receive over 25% of their electric energy needs from nuclear power safely and reliably without CO2 emissions that threaten the planet. In total, the nuclear industry has accumulated over 14,500 cumulative years of civil reactor operational experience since the first commercial nuclear plants were built over 60 years ago. There have been three serious accidents that challenged the safety record of nuclear power: the Three Mile Island (TMI) accident in 1979, the Chernobyl accident in 1986, and the tsunamiinduced Fukushima accident in 2011. The presidential commission (the Kemeny commission) appointed to investigate the TMI accident reported that the major effect on heath, fortunately short lived, was the stress on people both evacuated and not evacuated. In all these accidents there were no immediate public fatalities and only at Chernobyl were there workforce fatalities (28) arising from radiation exposure. The increased incidence of thyroid cancer arising from the Chernobyl accident had two major causes: the silencing of those advising children not to drink milk and the authorities’ failure to restrict distribution of dairy products immediately after the accident. Additional health effects, if any, from all these accidents to either workers or the affected public are predicted to be a non-detectable increment (3-4%) above the normal background level of cancer mortality in the general population. These small effects should be compared with the significant number of deaths from other energy generating technologies, such as natural gas accidents or health impacts caused by air pollution from coal plants. The operating and safety record of US operating plants has improved steadily since 1979. Today the plants typically perform near 90% of their maximum potential. No serious incidents have occurred in the US since that at Three Mile Island, due largely to applying the lessons learned from that accident. The plants are continually upgraded to meet the ever more stringent safety standards and expectations of the nuclear industry. As a result of the terrorist attack on the US on September 11, 2001, the nuclear industry modified the plants to handle terrorist attacks of all 1
  2. 2. types, including aircraft impact. These modifications have made the nuclear plants capable of providing electricity and cooling water to important systems at the plant, regardless of the availability of traditional sources of power and cooling water. This record of improvement continues today with additional capabilities being installed to deal with extreme natural disasters such as the one experienced at Fukushima. The nuclear industry is one of the most highly regulated industries in the world. In the United States, the Nuclear Regulatory Commission has at least two resident inspectors at each power reactor overseeing operations and maintenance. NRC staff monitors the performance of the plants and provide the results in reports available to all at the NRC website (www.nrc.gov). This oversight should provide the public with further assurance of the safety of US operating plants. Cost A nuclear power plant is a long-term investment which can last from 40 to 60 years (the license granted by the Nuclear Regulatory Commission). It is widely recognized that nuclear plants are more costly to build than natural gas and coal plants. However, because of the relative insensitivity of the fuel cost to the price of electricity, the cost of power from nuclear plants is more predictable over the long term than that of fossil fuels. This is the real advantage of nuclear energy – namely, a predictable and nonvolatile cost of electricity for consumers. The average production cost of electricity from existing nuclear plants (excluding the capital cost, which is paid off at this point for most reactors) is 2.4 cents/kWhr in 2012. On average, this is less than the production cost of electricity from natural gas or coal. Of course, some plants have costs above the average and operate in regions with extraordinarily low gas prices. Recently two nuclear plants have shutdown as a result. The low price of natural gas may force other less competitive plants to shutdown based on local market conditions. But overall, most of the fleet remains competitive even in a period of remarkably low gas prices. The anticipated capital cost of new advanced nuclear plants such as the US-developed AP 1000 pressurized water reactor is about $7 Billion. Four such plants are currently under construction in Georgia and South Carolina, which are due to start up in 2017–2020. Despite this high capital cost, the long-term cost of power is estimated to be 8.4 cents/kWhr, which is competitive with natural gas prices of $9.5/MMBtu. Although this break-even cost may be higher than the current price of natural gas, the stability in the cost of nuclear electricity provides an important hedge against future price increases in natural gas, as well as protection from supply interruptions. And, of course, the cost of electricity from natural gas plants does not include any recognition of the carbon emissions that they produce. The cost of natural gas is very volatile. In 2009 before the shale gas findings it was about $13/MMBtu and gas in Europe today costs about three times the US price of about $4/MMBtu. If the US becomes a major gas exporter, the price of gas in the US will rise toward the world price, with the attendant rise in cost of gas generated power. An important feature of nuclear power is that it will weather the price vulnerability of fossil fuel plants and is considerably cheaper than highly subsidized wind and solar power projects, which must overcome the 2
  3. 3. vagaries of wind and the daily unavailability of sunlight to make a major contribution to electrical supply. Waste Management Nuclear waste management or disposal is often cited as an objection to building more new nuclear plants. The nuclear waste is classified into two main categories from operating reactors – low-level waste and used nuclear fuel, often referred to as high-level waste. At present both are safely and effectively managed. Low-level nuclear waste is disposed of at federally and state licensed disposal facilities in monitored land burial sites. The activity of this waste typically lasts less than 300 years due to radioactive decay (a natural process that leads to non-radioactive materials). The high-level waste in the form of used nuclear fuel is temporarily stored at reactor sites in used fuel storage pools or in dry casks in shielded concrete canisters. Some believe that this used fuel is a resource that could be reprocessed in the future to provide more fuel for reactors, since not all of the energy value is consumed in the initial period of reactor operation. The French policy, as well as that of several other nations, is to reprocess this fuel not only to produce more fuel and but also as a part of a high-level waste management strategy to make its ultimate disposal much less challenging by reducing its content of very long lived radioactive isotopes. An early international consensus based on a US National Academy of Sciences report of 1957 is that geological disposal, regardless of waste form (used fuel or reprocessed waste), is the preferred final state for high-level waste. One properly designed repository will be able to handle all the high-level waste for all US operating reactors for their lifetime. The scientific studies for the US Yucca Mountain Repository Project did not change this preference, but its abandonment led to the formation of the “Blue Ribbon Commission,” which was asked to recommend a path forward for the disposition of used fuel. The Commission’s recommendation was to proceed with centralized interim storage of spent fuel and a “consensus” process to site a new repository(s), an approach included in current bipartisan waste legislation in the Senate. Several other nations are already proceeding with their geological repositories. The current leaders are Sweden and Finland; both have selected a site and are developing detailed designs for used fuel disposal. These efforts, while still uncompleted, are well on track to a successful resolution. At the same time, a geological disposal site for transuranic waste arising from defense programs (a form of high-level waste) near Carlsbad, New Mexico, is successfully operating. Proliferation Risk Nuclear power does involve proliferation risk because of the possibility that enrichment and spent fuel processing capabilities could be used for development of weapons materials. This threat is currently managed through international treaties and the conduct of inspection programs. The risk may be amenable to future reduction by technological developments; research is ongoing to develop advanced reactors which can drastically limit the enrichment capacity needed for civil nuclear power, as well to develop reprocessing technology that will produce materials that are much less desirable for weapons utilization. Current light water cooled power reactors, which are the type needed for substantial expansion of civilian nuclear power, 3
  4. 4. are not easily modified for production of the plutonium most suitable for weapons. While a commercial nuclear power program can be used to mask the initial stages of a covert nuclear weapons program, weapons development by all countries including the United States, France, United Kingdom, Russia, China, India, South Africa, Pakistan, North Korea, and Israel, has been done independently of, and usually prior to, a commercial nuclear power program. Additionally a rogue nation such as North Korea can develop a nuclear weapon without developing nuclear power reactors for electricity production. For these reasons we do not agree that proliferation risk is a compelling basis upon which to oppose the deployment of civil nuclear power plants. The reality that nuclear power is already widespread suggests that continuing efforts are appropriate to strengthen the international regime to control proliferation. Life Cycle Emissions Analysis There have been numerous studies conducted about the life cycle impact of various technologies in terms of CO2 emissions. When compared on an equal basis, nuclear energy (including all aspects of mining, construction, operation and decommissioning of power facilities) ranks as one of the lowest overall emitters of CO2. The figure below from the International Panel on Climate Change provides this comparison and shows that nuclear energy is indeed a “green” source of power. The Future Today advanced nuclear power stations are being deployed worldwide based on proven light water reactor technology. New light water reactor designs are under development which will provide further enhanced safety and security features. Additionally, there are new innovative reactors being developed. Most are small modular reactors employing not only water coolants, 4
  5. 5. but also helium gas, molten salts, and liquid metals with improved safety performance based on inherent design safety features. (One such design – the high temperature pebble bed heliumcooled gas reactor – is now under construction in China and is designed to produce 200 MWe of power.) Conclusion The energy needs of the world are large and growing. The one billion people that do not even have access to electricity cannot be denied the ability to improve their quality of life. Nuclear energy provides a scalable, clean source of safe power which, with other clean energy sources, can meet the world’s needs in a sustainable manner. We applaud and support the efforts of the climate scientist authors of the originally cited letter, Drs. Caldeira, Emanuel, Hansen, and Wigley, for bringing the issue of the need for nuclear power to the world environmental community and policy leaders. Sincerely, Andrew C. Kadak Former President of the American Nuclear Society and Member of the US Nuclear Waste Technology Review Board Richard A. Meserve President of the Carnegie Institution for Science and a former Chairman of the US Nuclear Regulatory Commission Neil E. Todreas Korea Electric Power Company Professor (emeritus) and a former Chairman of the Massachusetts Institute of Technology Department of Nuclear Science and Engineering Richard Wilson Mallinckrodt Research Professor of Physics (emeritus) and a former Chairman of the Harvard University Department of Physics 5

×