Your SlideShare is downloading. ×
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
CCNA Exam 640-802 Version 9.3
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

CCNA Exam 640-802 Version 9.3

1,403

Published on

Published in: Education, Technology
0 Comments
5 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,403
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
301
Comments
0
Likes
5
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. CCNA Exam 640-802 Version 9.3 raviyasas@live.co m
  • 2. Basic network components Transmission media Connectors NIC (Network Interface Card) Protocols Addresses Hub / Switch Modem Router
  • 3. Transmission media 10Base2 10Base5 10BaseT 10BaseTX 100BaseFX fiber optics 10BaseT 10Base2 Base – signaling type 10 – Bandwidth of 10Mbps T – Twisted pair cable F - Fiber Base – signaling type 10 – Bandwidth of 10Mbps 2 – Support 200 meters
  • 4. 10Base2 10Base5 10BaseT 10BaseTX 100BaseFX Name Thinnet Thicknet Cat 3,4,5 Cat 5e,6,7 Fiber optics Users per segment 30 208 1 1 Max length 185 500 100 100 Capacity 10Mbps 10Mbps Star / Bus Star / Bus Topology OHMS 50 100
  • 5. Cable type Transmission speed Cat1 Cat 2 Up to 4 Mbps Cat 3 Up to 10 Mbps 16 MHz Cat 4 Up to 16 Mbps 20MHz Cat 5 10 Mbps to 100 Mbps 100MHz Cat 5e 100 Mbps to 1000 Mbps 100MHz Cat 6 Up to 10 Gbps 250MHz Cat 6a Up to 10 Gbps 500MHz Cat 7 Up to 10 Gbps 600MHz Cat 7a Up to 100 Gbps 1000MHz
  • 6. Connecting cables Straight through cable Crossover cable Rollover cable
  • 7. Straight through cable This cable is used to connect two different types of devices. This is used to connect MAC device and Non MAC device. Switch Router Router Hub Host Switch Host Hub
  • 8. Crossover cable This cable is used to connect same devices. This is used to connect MAC to MAC or NonMAC to Non-Mac. Switch Switch Router Router Hub Hub Hub Switch
  • 9. Rollover cable This cable is used to connect Router console port to PC serial(COM) port. This cable is called Null modem cables.
  • 10. Network Interface Card (NIC) This provide network communication to a LAN. It contain buffer. It contain unique 48bit MAC( Media Access Controller ) address.
  • 11. Protocol Protocol is a set of rules and regulations. Two device to establish communication both should be same protocol.
  • 12. Addresses Addresses are used to identify the device. There are two type of addresses. MAC – Pre define IP – User define
  • 13. OSI Layer Open System Interconnect Layer. This is describe how data is communicated from one to another system. Allow multiply vendor development and standardize.
  • 14. OSI Layer types Application layer Presentation layer Session layer Transport layer Network layer Data link layer Physical layer
  • 15. 7. Application Layer Program to program communication. Provides network services to use application.
  • 16. 6. Presentation Layer Data translation and code formatting including compression and encryption. Ensure application layer can be use data. MPEG, MIDI, TIFF, JPEG, TXT, Quick time movie
  • 17. 5. Session Layer Establish and maintain session across the network. Organize communication through simplex, half and full duplex mode.
  • 18. 4. Transport Layer Segments data and adds port numbers. Data is ensured at this layer by maintaining flow control. Error correction and detection. Defined reliable and unreliable end to end data communication. Connection orient communication. Acknowledge and are received for every segment. Call setup, data transfer and call termination. Connection parameters are synchronized. Windowing technique used to control outstanding data segment and to increase throughput.
  • 19. 3. Network Layer Data packet done here. Responsible for sending DATA. Assigns IP addresses. Maintain routing table. Find the best path. Router
  • 20. 2. Data Link Layer Framing of the packets is done here. Handles error notification, network topology and flow control. Provides access to LAN medium in an orderly manner. Adds MAC address to frames. Switch, Bridge and NIC
  • 21. 1. Physical Layer Sending and receive bits. Places data on the Network media. Communication directly with the media. Hub, Repeater, Cable and Connector
  • 22. Term Definition FTP File Transfer Protocol TFTP Trivial File Transfer Protocol WWW World Wide Web HTTP Hyper Text Transfer Protocol SMTP Simple Mail Transfer Protocol Voip Voice Over Internet Protocol SNMP Simple Network Management Protocol POP3 Post Office Protocol NFS Network File System RPC Remote Procedure Call NETBIOS Network Basic Input/output System TCP Transmission Control Protocol
  • 23. Term Definition UDP User Datagram Protocol SPX Sequence Packet Protocol IP Internet Protocol IPX Internet Packet Exchange ARP Address Resolution Protocol RARP Reverse Address Resolution Protocol ICMP Internet Control Message Protocol RIP Routing Information Protocol OSPF Open Shortest Path First NCP Network Control Program SMB Server Message Block
  • 24. Layer Protocols /Services Application FTP, TFTP, Telnet, WWW, HTTP, POP3, SMTP, Voip, SNMP, NCP, SMB, Apple Talk Presentation NCP, AFP, TDI Session NFS, SQL, RPC, NETBIOS, ZIP. SCP Transport TCP, UDP, SPX, NWlink, NetBEUI Network IP, IPX, ARP, RARP, ICMP, RIP, OSPF, NWlink, NetBEUI Data Link Physical
  • 25. Protocol Service Port Number TCP WWW/HTTP 80 FTP 20 , 21 Telnet 23 SMTP 25 HTTPS 443 DHCP 67 , 68 SNMP 161 TFTP 69 69 DNS 53 53 UDP ICMP IP
  • 26. TCP/IP Layers OSI Layer TCP/IP Layer Application, Presentation, Session layers Application layer Transport layer Transport layer Network layer Internet layer Data link , Physical layers Network Access layer ( Data link)
  • 27. Data Encapsulation Sequence Data  Segment  Packets  Frames  Bits
  • 28. Cisco Hierarchical Model
  • 29. Communication methods Unicast Broadcast Multicast
  • 30. Unicast One to one communication. E.g.: Telephone
  • 31. Broadcast One to any communication. E.g.: Radio, TV
  • 32. Multicast One to many communication. E.g.: Video conference
  • 33. Hardware Ex: MAC address Addresses Addresses Software Ex: IP address
  • 34. MAC Addresses 48bit hexadecimal predefined address by manufactures. E.g.: A1 - b5 – 56 - f3 - c8 – 33 - 60 • • • • OUI Organizationally Unique Identifier Defined by “INA”. There are blocks for all manufactures. E.g.: CISCO, DELL, IBM… Manufacture
  • 35. IP Addresses Rangers Versions Types Privet IPV4 Dynamic Public IPV6 Static
  • 36. IP Rangers Privet -Reserved for LAN / INTRANET. -governed by a body called INTERNIC. Public -Defined with routing over the internet. -Reserved for WAN. -Given by ISPs.
  • 37. IP Types Dynamic -Addresses which are automatically assigned by a DHCP service. -These are randomly assigned. Static -Addresses which are manually assigned in the properties of TCP/IP by administrator. -These addresses will not changed unless we change them.
  • 38. IP Versions IPV4 E.g.: 192.168.10.100 8bit 4 = 32bit Octal(8bit) IPV6 16bit 4= E.g.:fe00.0000.0000.1258.0000.0000.0000.abfd Hexa Decimal(16bit) 128bit
  • 39. IPV4 Classes Class A Class B Class C Class D Class E
  • 40. Class A Network range 1.0.0.0 - 126.0.0.0 Subnet mask 255.0.0.0 Networks 126 Host per network 16777214 Privet range 10.0.0.1 - 10.255.255.254 E.g.: 10 . 1 . 1 . 1 255 . 0 . 0 . 0 Network ID Host 127.0.0.1 to 127.255.255.255 is reserved for loopback testing purposes.
  • 41. Class B Network range 128.0.0.0 - 191.255.0.0 Subnet mask 255.255.0.0 Networks 16384 Host per network 65534 Privet range 172.16.0.1 - 172.31.255.254 E.g.: 172. 16 . 0 . 1 255 . 255 . 0 . 0 Network ID Host 169.254.0.1 - 169.254.255.254 is reserved for APIPA( Automatic Privet IP Address )
  • 42. Class C Network range 192.0.0.0 - 223.255.255.0 Subnet mask 255.255.255.0 Networks 2097152 Host per network 254 Privet range 192.168.0.1 - 192.168.255.254 E.g.: 192. 168 . 1 . 1 255 . 255 . 255 . 0 Network ID Host
  • 43. Class D 224.0.0.0 - 239.253.255.255 is reserved for multicasting services and applications. Class E  240.0.0.0 - 255.255.255.255 is reserved for future use and research purposes( E.g.: NASA ).
  • 44. 1 - 126 128 - 191 192 - 223 Class A Class B Class C
  • 45. Break a large network to sub networks is called Subnetting. Once you have break a network, you need a router to connect these sub networks.
  • 46. Advantages of Subnetting Reduce network traffic. Optimize network performance. Simplified management. Facilitated spanning of large geographical distance.
  • 47. 192.168.0.0 / 24 255.255.255.0 8bit 8bit 8bit 172.16.0.0 / 16 255.255.0.0 8bit 8bit 11.0.0.0 / 8 255.255.255.0 8bit Subnet prefix
  • 48. Subnetting class C
  • 49. 192.168.0.0 / 26 1 llllllll llllllll llllllll 26 = 24 + 2 ll000000 l 255 . 255 . 255 . 192 l l l 128 64 32 16 l l l l 8 4 2 1 Therefor 128+64 = 192 N 2 = 2n = 22 = 4 n = on bits (l) Host per network = 2n - 2 = 26 - 2 = 62 3 n = off bits (0)
  • 50. 4Magic number = 256 – 192 = 64 Constant number 5 1 Network ID 1st IP 192.168.0.0 0+1 192.168.0.64 64 + 1 = 65 127 - 1 = 126 128 - 1 = 127 192.168.0.128 128 + 1 = 129 191 - 1 = 190 192 - 1 = 191 192.168.0.192 192 + 1 = 193 255 - 1 = 254 255 Last IP = 1 63 - 1 2 = 62 Broadcast IP 64 - 1 = 63
  • 51. Subnetting class B
  • 52. 172.16.0.0 / 19 1 llllllll llllllll lll00000 19 = 16 + 3 00000000 l 255 . 255 . 224 . 0 l l l 128 64 32 16 l l l l 8 4 2 1 Therefor 128+64+32 = 224 N 2 = 2n = 23 = 8 n = on bits (l) Host per network = 2n - 2 = 213 - 2 = 8190 3 n = off bits (0)
  • 53. 4Magic number = 256 – 224 = 32 Constant number 5 Network ID 1st IP Last IP Broadcast ID 172.16.0.0 0.1 31.254 31.255 172.16.32.0 32.1 63.254 63.255 172.16.64.0 64.1 95.254 95.255 172.16.96.0 96.1 127.254 127.255 172.16.128.0 128.1 159.254 159.255 172.16.160.0 160.1 191.254 191.255 172.16.192.0 192.1 223.254 223.255 172.16.224.0 224.1 255.254 255.255
  • 54. Subnetting class A
  • 55. 10.0.0.0 / 11 1 llllllll lll00000 11 = 8 + 3 00000000 00000000 l 255 . 224 . 0 . 0 l l l 128 64 32 16 l l l l 8 4 2 1 Therefor 128+64+32 = 224 N 2 = 2n = 23 = 8 n = on bits (l) Host per network = 2n - 2 = 221 - 2 = 2097152 3 n = off bits (0)
  • 56. 4Magic number = 256 – 224 = 32 Constant number 5 Network ID 1st IP Last IP Broadcast ID 10.0.0.0 0.0.1 31.255.254 31.255.255 10.32.0.0 32.0.1 63.255.254 63.255.255 10.64.0.0 64.0.1 95.255.254 95.255.255 10.96.0.0 96.0.1 127.255.254 127.255.255 10.128.0.0 128.0.1 159.255.254 159.255.255 10.160.0.0 160.0.1 191.255.254 191.255.255 10.192.0.0 192.0.1 223.255.254 223.255.255 10.224.0.0 224.0.1 255.255.254 255.255.255
  • 57. Router
  • 58. Internetwork Operating Systems ( IOS ) This is a kernel of the Cisco and most switches. It’s a command line interface(CLI).
  • 59. Internal components of a Router
  • 60. Router memory elements Boot ROM Flash RAM NVRAM (Non Volatile RAM)
  • 61. Boot ROM It stores the router’s bootstrap startup program. It stores OS software. It stores mini IOS image ( RX Boot ) with extremely limited capabilities. It sores POST( Power on diagnostic test programs) routines and core level OS for maintenance.
  • 62. RAM Stores running configuration program. Provides caching. RAM is a volatile memory and looses its information when router is turns off. The configuration present in RAM is called Running configuration.
  • 63. Flash Store IOS. This is a erasable and reprogrammable memory. An EPROM holds the most of the IOS image. It maintains everything when router is turned off.
  • 64. NVRAM Stores startup configuration files. A rewritable memory area holds router’s configuration file. NVRAM retains the information whenever router is rebooted. Once configuration is saved, it will be saved in NVRAM and this configuration is called Startup configuration.
  • 65. Router Ports
  • 66. LAN Ports WAN Ports BRI port ISDN connections AUX Dial up connections Serial port Lease line and Frame-Relay connectivity Console port Direct access with the router
  • 67. Router boot sequence The router performs a power-on self-test (POST) to discover and verify the hardware. The router loads and run bootstrap code from ROM. The router finds the IOS or other software and loads it. The router finds the configuration file and loads it into running configuration.
  • 68. Router configuration
  • 69. Rollover cable RJ-45 connector RJ_45 to DB-9 Adaptor
  • 70. Router modes Setup mode User mode Privileged / Enable mode Global configuration mode ROM monitor mode
  • 71. Router> User mode Router# Privileged / Enable mode Router(config)# Global configuration mode
  • 72. User mode Used to: o o o PING commands. Router information RAM, ROM, NVRAM information
  • 73. Enable / Privileged mode Used to: o o o View router information. Setting up clock and date. Debugging, saving any data configured in router and terminal configuration.
  • 74. Global configuration mode Used to: o o o o o Name setting for the router. Interface configuration setting. Password setting. Routing protocol setting. Access list setting.
  • 75. Routing Router is used to talking packet from one device to another device and sending it through the network to another device on a different network with the help of router.
  • 76. Minimum requirements for routing Destination network address and its subnet. Neighbor routers from which it can learn about remote networks. Possible routers to all remote networks. The best route to each remote network. How to maintain and verify routing information.
  • 77. Types of routing Static Default Dynamic
  • 78. Static routing In static routing, the administrator have to manually add routers in each router’s routing table. Administration distance is 1 with next hop IP address and 0 with exit interface. Manual configuration for each destination. To configure know destination network and its subnet mask.
  • 79. Static route command R1(config)#ip route 150.50.0.0 255.255.0.0 200.100.10.2 1 Destination network Destination subnet mask Next hop ip address Administrative distance
  • 80. Remove the Static routing R1(config)#no ip route 150.50.0.0 255.255.0.0 200.100.10.2 1 R1(config)#no ip route 20.1.1.128 255.255.0.128 200.100.10.2 1
  • 81. Advantages of Static routing No overhead on the router CPU. No bandwidth usage between routers. Security ( Administrator only allows routing )
  • 82. Disadvantages The Admin must really understand the internetwork and how each router is connected. If one network is added to the network , the admin must add a route to it on all routers. It is not feasible in large networks because it would be a fulltime job.
  • 83. Default Routing Default routing is used to send packet s with a remote destination network not in the routing table to the next hop router. You can only use default routing on stub networks which means that they have only one exit port out of the network. Administrative distance is 0.
  • 84. Dynamic Routing This is the process of using protocols to find and update routing tables on routers. This is easier than other two. The function of dynamic routing protocol is advertise directly connected network and exchange the information between the routers.
  • 85. Routing protocols IGP ( Interior Gateway Protocol ) Used to exchange routing information with routers in the same autonomous systems(AS). An AS is a collection of networks under a common administrative domain.( E.g.: RIP, IGRP, EIGRP, OSPF, ISIS ) EGPs ( Exterior Gateway Protocol ) Used to communicate between ASs. EGP is a border Gateway Protocol( BGP ).
  • 86. Autonomous System An Autonomous system is a collection of networks under a common administrative domain. IGPs operate within an autonomous system where as EGP connects different autonomous systems. Every autonomous system has a Distinct number. IANA (Internet Assigned Numbers Authority) is responsible for allocating this number. We can use any number unless the organization plans for an EGP.
  • 87. Dynamic routing protocol Classfull Classless Routing protocol don’t advertise the subnet mask Routing protocol advertise subnet mask RIPV1 IGRP RIPV2 EIGRP OSPF ISIS
  • 88. Flavors of dynamic routing protocols Type Protocol Distance Vector Protocol RIP , IGRP Link State Protocol OSPF , ISIS Hybrid Protocol EIGRP
  • 89. Link State Protocol Periodic advertise RIP = Every 30 sec IGRP = Every 90 sec Advertise only at network trigger. That is new information at routing table Advertise full routing table Advertise updates only Advertise only directly connected routers Flood the advertisement Convergence Has high convergence time Convergence is low Limit Has a limit RIP = Max 15 hops IGRP = Max 255 hops No limit Network Small network Large network Routing loop Routing loop is problem No routing loops Neighbor relation Don not establish neighbor relation Formal way to establish neighbor relation Advertise Hybrid Combination of both DVP and LSP Distance Vector Protocol
  • 90. Summarization (Router Aggregation) Reduce the number of routing entry in the routing table called Summarization. Advantages – Reduction in the size of the routing table means. Less overhead in terms of network traffic, CPU and memory. Greater flexibility in addressing the networks.
  • 91. Variable Length Subnet Mask (VLSM) VLSM is used within an organization instead of CIDR ( Classless Inter Domain Routing ) which is used within the internet.
  • 92. Classless Inter Domain Routing ( CIDR ) CIRD is the new addressing scheme for the internet which allows for more efficient allocation of IP addresses than the old Class A, B and C addressing scheme.
  • 93. Why we need CIRD ? With a new network being connected to the internet every 30 minutes the internet was faced with 2 critical problems. o Running out of IP addresses o Running out of capacity in the global routing tables.
  • 94. Running out of IP addresses
  • 95. RIPV1 RIPV2 Classfull Classless Broadcast It uses Multicast address 224.0.0.9 to send updates No support for VLSM Support VLSM No authentication Allows MD5 authentication No support for discontinuous networks Support for discontinuous networks
  • 96. Routing Information Protocol Version 1 RIPV1
  • 97. Administrative distance is 120. Classfull routing protocol. Update time is 30 seconds. Distance vector protocol. It uses Hop count to calculate matric value. It uses lowest hop to select the best path. It uses broadcast address 255.255.255.255 sent updates. Support maximum 15 hops. 16th hop is unreachable and un-sharable. Advertise classfull network.
  • 98. Network A Router 1 is going to reach to the network A Path 1 : Router 1  Router 0  Router 4 = 2Hops Path 2 : Router 1  Router 4 = 1Hop Path 3 : Router 1  Router 2  Router 3  Router 4 = 3 Hops So RIPV1 is used Path 2 as the best path.
  • 99. RIPV1 Configuration L0 L0 10.1.1.1 / 8 R1 172.16.10.9. / 30 S0 200.100.10.1 / 24 L1  To enable routing protocol rip R1(config)#router rip R1(config-route)#network S1 200.100.10.1 / 24 10.0.0.0  Advertise Class A default network R1(config-route)#network 172.168.0.0  Advertise Class A default network R1(config-route)#network 200.100.0.0  Advertise Class A default network  To save R1(config-route)#^Z R1#copy run start  To enable routing protocol rip R2(config)#router rip R2(config-route)#network 10.0.0.0  Advertise Class A default network R2(config-route)#network 172.168.0.0  Advertise Class A default network R2(config-route)#network 200.100.0.0  Advertise Class A default network R2(config-route)#^Z R2#copy run start R1#show ip route 150.50.1.1 / 16 R2 20.1.1.140 / 26 L1
  • 100. R 20.0.0.0 / 8 [120/1] connected via 200.100.10.2 Administrative distance RIP route Metric [ one hop count] Classfull R# Show ip router rip R# Debug ip rip  To display only RIP routers  Display sending and received updates RIP V1 updates sending “255.255.255.255” 10.0.0.0 172.168.0.0 200.100.10.0
  • 101. Routing Information Protocol Version 2 RIPV2
  • 102. RIPV2 Configuration L0 L0 10.1.1.1 / 8 R1 172.16.10.9. / 30 S0 200.100.10.1 / 24 L1  To enable routing protocol rip R1(config)#router rip R1(config-route)#network S1 200.100.10.1 / 24 10.0.0.0  Advertise Class A default network R1(config-route)#network 172.168.0.0  Advertise Class A default network R1(config-route)#network 200.100.0.0  Advertise Class A default network R1(config-route)#version2 R1(config-route)#no auto summary  To enable routing protocol rip R2(config)#router rip R2(config-route)#network 10.0.0.0  Advertise Class A default network R2(config-route)#network 172.168.0.0  Advertise Class A default network R2(config-route)#network 200.100.0.0  Advertise Class A default network R2(config-route)#version2 R2(config-route)#no auto summary R1#show ip route 150.50.1.1 / 16 R2 20.1.1.140 / 26 L1
  • 103. R 20.1.1.128 / 26 [120/1] connected via 200.100.10.2 Classless route R# Show ip router rip R# Debug ip rip  To display only RIP routers  Display sending and received updates RIP V2 updates sending 224.0.0.9 update 10.0.0.0 172.168.0.0 200.100.10.0
  • 104. Remove RIP R(config)#no router rip
  • 105. Open Shortest Path First (OSPF) Link state routing protocol Administrator distance is 110 Support VLSM Support manual summarization It uses cost to calculate metric value It uses SPF algorithm to select best path It uses multicast address 224.0.0.5 and 224.0.0.6 to send and receive updates Sending incremental updates
  • 106. It uses Hello protocol to establish neighbor relation It uses router ID to establish neighbor relation It uses area to communicate It maintain three type of tables Routing table Neighbor table Database table contains o o o Router ID Priority [ Default value is 1 ] Hello interval [ 10 sec ] Dead interval [ 40 sec ] Authenticating bit Stub area flag Process ID
  • 107. Single area OSPF Area 1 e0 S0 S1 e0 The entire interface in the network belongs to same area called single area.
  • 108. Multi area OSPF Area 1 Area 0 Area 2 e0 S0 S1 e0 e0 Virtual link Area 3 In multiarea, all the areas must connect to the Area o (Black Bone Area) directly of virtually ( Area 3 is virtually connected to the area 0 )
  • 109. OSPF cost calculating Interface bandwidth is Bandwidth 64kpbs Cost = 108 / Bandwidth = 108/64*1000 = 1562
  • 110. Router ID calculating Once OSPF is configured router automatically calculate the router ID. e0 S0 200.10.1.1 /25 100.10.1.1 / 25 This router has 2 physical interfaces e0 and s0. router ID for this router is highest IP address of physical interfaces 200.10.1.1
  • 111. e0 200.10.1.1 /25 S0 100.10.1.1 / 25 L0 1.1.1.1/30 L1 2.2.2.2/30 In this router has 2 physical interfaces and 2 logical interfaces. Route ID for this router is highest IP address for logical interface 2.2.2.2
  • 112. OSPF Network Command Network [sub network address] [wildcard mask] area [number] Broadcast address Subnetmask Wildcard Mask 255.255.255.255 255.255.255.252 (-) 0. 0. 0. 3
  • 113. OSPF Configuration L0 L0 10.1.1.1 / 8 R1 172.16.10.9. / 30 200.100.10.1 / 24 S0  10 is the process ID R1(config)#router ospf 10 10.0.0.0 0.255.255.255 area 1 R1(config-route)#network 172.168.0.0 0.0.0.3 area 1 R1(config-route)#network 200.100.0.0 0.0.0.255 area 1  10 is the process ID R2(config)#router ospf 10 R2(config-route)#network 10.0.0.0 0.255.255.255 area 1 R2(config-route)#network 172.168.0.0 0.0.0.3 area 1 R2(config-route)#network 200.100.0.0 0.0.0.255 area 1 R# Show ip ospf interface R1#show ip route 150.50.1.1 / 16 R2 200.100.10.1 / 24 L1 R1(config-route)#network S1  To trouble shooting 20.1.1.140 / 26 L1
  • 114. O OSPF route 20.0.0.128 / 26 Classless [110 / 65] Metric [cost] Administrative distance R# Show ip router ospf  Display only ospf routers R# Show ip ospf neighbor  Display neighbor table & it contain R# Show ip ospf database  Display database table R# Debug ip ospf adj  Display ospf adjacency
  • 115. Remove OSPF R(config)#no router ospf 10
  • 116. Enhanced Interior Gateway Routing Protocol ( OSPF ) Hybrid protocol Administrative distance 90 Classless protocol Cisco proprietary protocol It uses bandwidth, delay, reliability, Loading & MTU to calculate Metric Value. It uses for unequal cost load balancing. It uses Multicast address 224.0.0.10 to send updates It uses autonomous system numbers
  • 117. It maintain three types of tables o Routing table [ Successor path ] o Neighbor table o Topology table [ Successor & Feasible successor path]
  • 118. EIGRP Configuration L0 L0 10.1.1.1 / 8 R1 172.16.10.9. / 30 200.100.10.1 / 24 S0 L1  30 Autonomous number must same R1(config)#router eigrp 30 R1(config-route)#network 10.0.0.0 R1(config-route)#network 172.168.0.0 R1(config-route)#network 200.100.0.0 R1(config-route)#network no auto-summary  30 Autonomous number must same R2(config)#router eigrp 30 R2(config-route)#network 10.0.0.0 R2(config-route)#network 172.168.0.0 R2(config-route)#network 200.100.0.0 R1(config-route)#network no auto-summary R1#show ip route eigrp S1 200.100.10.1 / 24 150.50.1.1 / 16 R2 20.1.1.140 / 26 L1
  • 119. D 20.1.1.128 / 26 [ 90 / 26903010 ] EIGRP route R# Show shooting Trouble ip eigrp neighbor  Display eigrp neighbor table R# Show ip eigrp topology  Display eigrp topology table R# Show debug eigrp neighbor
  • 120. Adjacency process RIP EIGRP RIP / EIGRP timer Update timer 30s 90s Invalid timer Time taken to identify invalid network 90s 270s Flush timer Time taken to remove invalid network form routing table 240s 630s Hold down timer Same as flush timer 240s 280s
  • 121. Routing loop Distance vector routing protocol subject of routing loop. There are 3 ways to avoid the routing loops. o Split Horizon o Route poisoning o Hold down
  • 122. Split horizon Split horizon says don’t send update to same interface. That is where the updates is originated. L0 L0 10.1.1.1 / 8 R1 172.16.10.9. / 30 L1 S1 200.100.10.1 / 24 S0 blocked 200.100.10.1 / 24 Update 200.00.10.0 10.0.0.0 172.16.0.0 150.50.1.1 / 16 R2 20.1.1.140 / 26 L1
  • 123. Routing poisoning If the network is failed change the metric value to unreachable value. Before network fails Routing table R 172.16.0.0 / 16 [120/1] L0 L0 10.1.1.1 / 8 R1 172.16.10.9. / 30 Fail L1 200.100.10.1 / 24 S0 S1 150.50.1.1 / 16 R2 200.100.10.1 / 24 20.1.1.140 / 26 L1 After network fails Routing table R 172.16.0.0 / 16 [120/26]
  • 124. Hold-Down If the network is failed, remove the entry from routing table. Before network fails Routing table R 172.16.0.0 / 16 [120/1] L0 L0 10.1.1.1 / 8 R1 172.16.10.9. / 30 Fail L1 200.100.10.1 / 24 S0 S1 150.50.1.1 / 16 R2 200.100.10.1 / 24 20.1.1.140 / 26 L1 After network fails Routing table No entry for network 172.16.0.0
  • 125. Passive Interface Command This command is used to control the routing updates. Before network fails Routing table R 172.16.0.0 / 16 [120/1] L0 L0 10.1.1.1 / 8 R1 172.16.10.9. / 30 Fail L1 200.100.10.1 / 24 S0 S1 150.50.1.1 / 16 R2 200.100.10.1 / 24 20.1.1.140 / 26 L1 After network fails Routing table No entry for network 172.16.0.0 R1(config)#router rip R1(config-router)#passive-interface serial 0
  • 126. Bandwidth Command Specify the bandwidth to the Interface serial 0. by default serial interface bandwidth is T1 speed (1.54Mbps). Define the speed 128kbps to the interface serial 0 L0 10.1.1.1 / 8 R1 172.16.10.9. / 30 128kbps 200.100.10.1 / 24 S0 L1 L0 S1 200.100.10.1 / 24 R1(config)#interface serial 0 R1(config-if)#bandwidth 128000 128kbps 150.50.1.1 / 16 R2 20.1.1.140 / 26 L1
  • 127. Backup and Restore the IOS and Configuration file Before you upgrade or restore a IOS and configuration file, you should copy the existing file to a TFTP host as a backup in case the new file does not work. You can use any TFTP host to perform this function. By default the Flash memory is a router is use to store the IOS and NVRAM is used to store the Configuration file.
  • 128. Router E0 10.1.1.1/24 Ethernet TFTP Server 10.1.1.2/24 Default gateway 10.1.1.1 • Router Ethernet IP address and TFTP server IP address has to be same subnet and both should have sane subnet mask . • Default gateway address to the TFTP server is always router E0 IP address 10.1.1.1
  • 129. Considerations o Check the physical connectivity between router and TFTP server[Ping, show ip interface brief]. o Document the IOS image file name. o Verify the hard disk capacity of TFTP server. o Verify the flash memory capacity [show flash].
  • 130. IOS Backup R1#copy flash tftp Remote host name(or)IP address? 10.1.1.2 [TFTP server IP address] Source file name. C2500.121.10.bin Destination file name and then Enter. !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!1! [Output cut] Upload to server done Flash copy took 00:10:30[hh:mm:ss]
  • 131. Restore and Upgrade IOS Router #copy tftp flash ****NOTICE**** Flash loader helper v1.0 This process will accept the copy option and then terminate The current system image to use the ROM based image for the copy Router functionality will not be available during that time If you are logged in via telnet this connection will terminate Users with console access can see the results of the copy operation ---***--Proceed? [Confirm] Press Enter
  • 132. Remote host name (or) IP Address? 10.1.1.2 [TFTP server IP address] source file name? C2500.1251.jas10.bin Destination file name. Enter Erasing device Eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee Loading c2500-1251.jas10.bin from 10.1.1.2(via Ethernet) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !!!!!!!![output cut] [OK-735532/800526 bytes]
  • 133. Backup configuration file R1#copy start tftp Address or name of remote host[]? 10.1.1.2 Destination filename[running-config]?R2 !! 501 bytes copied in 9.236sec (35bytes/sec)
  • 134. Restore configuration file R1#copy tftp start Address or name of remote host[]? 10.1.1.2 Source filename[]? R2 Destination filename [running-config]? Enter Accessing tftp://10.1.1.1/R2 Loading R2 from 10.1.1.1 (via Ethernet0): !! [OK-501/4096 byte] 501 byte copied in 3.200 sec (62 bytes/sec)
  • 135. Cisco Discovery Protocol ( CDP ) This is used to collect the directly and remotely connected Cisco devices information. This is proprietary protocol designed by Cisco. R1 128kbps S0 200.100.10.1 / 24 S1 200.100.10.1/ 24 R2
  • 136. CDP timer R# Show cdp R# show cdp details  To see CDP details Global CDP information o Sending CDP packets every 60 seconds o Sending a holdtime value of 180 seconds
  • 137. Changing CDP Timer Value R(config)# cdp timer 90 R(config)# cdp holdtime 240 Disable CDP under interface R(config)#interface serial 0 R(config)#no cdp enable
  • 138. Troubleshooting commands Show run  Display the running-config file Show start  Display the startup-config file Show version  Display the IOS type and versions well as the configuration Show cdp neighbor  Shows the directly connected neighbors and the details about them Show cdp neighbor detail Shows the IP address and IOS versions and type and includes all of the information from the show cdp neighbor command Ping  Tests IP connectivity to a remote device Trace or traceroute  Tests the connection to a remote device and shows the path it took through the internet work to find the remote device
  • 139. CDP
  • 140. Access control list, gather basic statics on packet flow and security policies can be implemented. Sensitive devices can also be protected from unauthorized access. It is a basic Firewall. It blocks unwanted incoming and outgoing traffic.
  • 141. Access Control List Standard Access List Extended Access List • It contain only the source IP address in an IP packet to filter the network. • This is permits or denies an entire suite of protocol. • It contains source and destination IP address, protocol field in the network layer header and port number at the Transport layer header. • Range is 1 to 99. • Range is 100 to 199.
  • 142. Once you create an access list, you apply it to an interface with either an Inbound or an Outbound list. Inbound Outbound First packet are processed through the access list and then routed to the destination. First packets are routed to the outbound interface and then processed through the access list. Inbound Access List E1 PC1 Outbound Access List E0 E1 PC2 PC1 E0 PC2
  • 143. ACL Considerations You can only assign one access list per interface, per control, or per direction. This means that if you are creating IP access lists, you can only have one inbound access list and one. Design your access list so that the more specific tests are at the top of the access list. Anytime a new list is added the bottom of the list. You can’t remove one line from an access list. By default end of the access list is deny all. Create access lists and then apply them to an interface.
  • 144. ACL Process ACL always compared with each add every line of the access list in sequential order that is it will always start with line 1, then go to the line 2, then 3 and so on. ACL compared lines one by one of the access list only until a match is made. Once the packet is matched , a line of the access list adds then does not compare next lines. By default “deny” at the end of each access list. If a packet does not match any lines in the access list, it will drop the packets.
  • 145. Standard Access List Standard ACL Lab 172.16.10.1/30 L0 R1 R2 200.100.10.1/24 S0 L1 S1 200.100.10.2/24 192.168.10.1/24 e0 192.168.10.3/24 Gateway 192.168.10.1 e0 10.1.1.1/30 Ethernet pc1 192.168.10.2/24 Gateway 192.168.10.1 pc2
  • 146. Block only packets from PC1 to Router R1. o Source is PC1 [192.168.10.2] o Destination is R1 o Define and apply close to destination router R1 configuration Define R1(config)#access-list 10 deny 192.168.10.2 R1(config)#access-list 10 permit any Apply R1(config)#interface serial 0 R1(config-if)#ip access-group 10 Access-list number = 10
  • 147. R1(config)#access-list 10 deny 192.168.102 R1(config)#access-list 10 permit any R1(config)#interface serial 0 R1(config-if)#ip access group 10 R1#show access-list  Display all the access list configured on router R1#show access-list 10  Display only access-list 10 R1#show ip interface  Display access list applied to an interface and Inbound / Outbound Pc1:/> Ping 200.100.10.1 Pc1:/> Ping 10.1.1.1 Pc1:/> Ping 172.16.10.1    0% 0% 0% Pc1:/> Ping 200.100.10.1 Pc1:/> Ping 10.1.1.1 Pc1:/> Ping 172.16.10.1    100% 100% 100%
  • 148. Remove the access-list You can’t remove a single line from access list. If you try to remove , it will remove entire access list R1(config)#no access-list 10
  • 149. Block only packets from 192.168.10.0/24 network to router R1 o Source is 192.168.10.0/24 o Destination is Router R1 o Define and apply close to destination router R1 configuration Define Source network R1(config)#access-list 30 deny 192.168.10.0 R1(config)#access-list 30 permit any Apply R1(config)#interface serial 0 R1(config-if)#ip access-group 30 Wild card 0.0.0.255
  • 150. R1(config)#access-list 30 deny 192.168.102 R1(config)#access-list 30 permit any R1(config)#interface serial 0 R1(config-if)#ip access group 30 R1#show access-list R1#show access-list 10 R1#show ip interface Pc1:/> Ping 200.100.10.1 Pc1:/> Ping 10.1.1.1 Pc1:/> Ping 172.16.10.1    0% 0% 0% Pc1:/> Ping 200.100.10.1 Pc1:/> Ping 10.1.1.1 Pc1:/> Ping 172.16.10.1    0% 0% 0% 0.0.0.255
  • 151. Extended Access List Extended ACL Lab 172.16.10.1/30 L0 R1 R2 200.100.10.1/24 S0 L1 S1 200.100.10.2/24 192.168.10.1/24 e0 192.168.10.3/24 Gateway 192.168.10.1 e0 10.1.1.1/30 Ethernet pc1 192.168.10.2/24 Gateway 192.168.10.1 Configure VTY password ***** Your password pc2
  • 152. Block only Telnet traffic from PC1 to router R1 loopback 0 interface. o o o o o Source is PC1 [192.168.10.2] Destination is R1 loopback 0 172.16.10.1 Protocol is TCP Service is Telnet and port is 23 Define and apply ACL to router R2 Command format R(config)#Access-list [number][deny/permit][protocol][source][destination]eq[service name or port] R2(config)#Access-list 101 deny tcp host 192.168.10.2 host 172.16.10.1 eq 23
  • 153. R2(config)#access-list 101 deny tcp host 192.168.10.2 host 172.16.10.1 eq 23 R2(config)#access-list 101 permit ip any any R2(config)#interface Ethernet 0 R2(config)#ip access-group 101 Access list 101 is applied to interface Ethernet 0 Inbound Only telnet traffic is blocked from PC1 other traffics are permitted.
  • 154. Remove the access-list R2(config)#no access-list 101
  • 155. Block only networks 192.168.10.0/24 to access WEB(WWW) traffic o o o o Source is network 192.168.10.0/24 Destination is any Protocol is TCP Service and port number is WWW [80] R1(config)#access-list 105 deny 192.168.10.0 R1(config)#access-list 105 permit ip any any R1(config)#interface serial 0 R1(config-if)#ip access-group 105 in PC1:>/telnet 072.16.10.1 …………….. Connection refused by host 0.0.0.255 any eq WWW PC1:>/telnet 072.16.10.1 ……………. Connection refused by host
  • 156. WAN connectivity types Dedicated line – Lease line and DSL (Digital Subscriber Link) Circuit switching – Dial up and ISDN (Integrated System Digital Network ) Packet switching – Frame relay and X.25 Cell switching - ATM
  • 157. WAN Protocols and Encapsulation types High Density Link Controller ( HDLC ) Point to point protocols ( PPP ) Frame Relay
  • 158. High Density Controller ( HDLC ) This is a Cisco proprietary protocol. It is default encapsulation used by Cisco routers over synchronous serial links. HDLC is a point to point protocol used on leased lines. No authentication can be used with HDLC.
  • 159. Point to Point Protocol (PPP) This is a data link protocol that can be used over either asynchronous serial (dial up) or synchronous serial (ISDN) media and that uses the LCP( Link Control Protocol ) to build and maintain data link connections. PPP uses, o Authentication o Compression o Multilink o Error detection Password Authentication Protocol (PAP) Challenge Authentication Protocol (CHAP)
  • 160. Password Authentication Protocol (PAP) This is less secure than CHAP. Passwords are sent in a clear text and it is only performed upon the initial link establishment. When the PPP link is first established, the remote node sends back to the sending router the user name and password until authentication is acknowledged.
  • 161. Internet based leased line 172.16.10.1 S0 172.16.10.2 S0 Router A (ISDN) Router B (Zoom) E01.S0 1.4 1.1 5.4 5.1 1.3 1.2 5.3 5.2
  • 162. For router A #config t (config)#int E 0 (config-if)#ip address 192.168.1.50 255.255.255.0 (config-if)#no shutdown (config-if)#exit (config)#int S 0 (config-if)#ip address 172.16.1.1 (config-if)#clock rate 56000 255.255.0.0 ( for DCE ) (config-if)#bandwidth 64 (config-if)#no shut (config-if)#exit (config-if)#ip routing (config-if)#ip route 192.168.5.0 255.255.255.0 172.16.1.2 (config-if)#int S0 (config-if)#encapsulation ppp (config-if)#ppp authentication PAP (config-if)#ppp PAP sent-username password cisco
  • 163. For router B #config t (config)#int E 0 (config-if)#ip address 172.168.5.50 255.255.255.0 (config-if)#no shutdown (config-if)#exit (config)#int S 0 (config-if)#ip address 172.16.1.1 (config-if)#clock rate 56000 255.255.0.0 ( for DCE ) (config-if)#bandwidth 64 (config-if)#no shut (config-if)#exit (config-if)#ip routing (config-if)#ip route 192.168.1.0 255.255.255.0 172.16.1.1 (config-if)#int S0 (config-if)#encapsulation ppp (config-if)#ppp authentication PAP (config-if)#ppp PAP sent-username password cisco
  • 164. Challenge Authentication Protocol ( CHAP ) CHAP is use at the initial startup of a link and at periodic checkup on the link to make sure the router is still communicating with the same host. After PPP finished its initial phase, local router sends a challenge request to the remote device. The remote device sends a value calculated using a oneway hash function called MD5. The local router checks this hash value to make sure it matches. If the value don’t match, then the link immediately terminates. Passwords are sends in Encrypted format.
  • 165. Internet based leased line 172.16.1.1 S0 172.16.10.2 S0 Router A (ISDN) Router B (Zoom) E01.S0 1.4 1.1 5.4 5.1 1.3 1.2 5.3 5.2
  • 166. For router A #config t (config)#int E 0 (config-if)#ip address 192.168.1.50 255.255.255.0 (config-if)#no shutdown (config-if)#exit (config)#int S 0 (config-if)#ip address 172.16.1.1 (config-if)#clock rate 56000 255.255.0.0 ( for DCE ) (config-if)#bandwidth 64 (config-if)#no shut (config-if)#exit (config-if)#ip routing (config-if)#ip route 192.168.5.0 255.255.255.0 172.16.1.2 (config-if)#int S0 (config-if)#encapsulation ppp (config-if)#ppp authentication CHAP (config-if)#ppp CHAP hostname zoom (config-if)#ppp CHAP password cisco
  • 167. For router B #config t (config)#int E 0 (config-if)#ip address 172.168.5.50 255.255.255.0 (config-if)#no shutdown (config-if)#exit (config)#int S 0 (config-if)#ip address 172.16.1.1 (config-if)#clock rate 56000 255.255.0.0 ( for DCE ) (config-if)#bandwidth 64 (config-if)#no shut (config-if)#exit (config-if)#ip routing (config-if)#ip route 192.168.1.0 255.255.255.0 172.16.1.1 (config-if)#int S0 (config-if)#encapsulation ppp (config-if)#ppp authentication CHAP (config-if)#ppp CHAP hostname winsys (config-if)#ppp CHAP password cisco
  • 168. Integrated Service Digital Network ( ISDN ) This is used in circuit switching WAN technology and it is a synchronous serial line. ISDN contain 2 channels. o Channel D – Establish the link o Channel B – Carry the data
  • 169. Benefits of ISDN Can carry voice, video and data simultaneously. Has faster call setup than modem. Has faster data rates than modem connection. Used as a backup line. Used for voice conference. Used for Small office and Home office (SOHO).
  • 170. Types of ISDN lines Basic Rate Interface ( BRI ) Primary Rate Interface ( PRI )
  • 171. Basic Rate Interface ( BRI ) BRI has two B-channel and one D-channel. B-channel + D-channel 2 * 64kbps + 1 * 16kbps 128kbps + 16kbps 144kbps  Total channel capacity 48kbps  Framing and Synchronization 192kbps  Total Link Capacity Maximum data transfer speed of ISDN BRI is 128kbps
  • 172. Dial on Demand Routing (DDR) This is used to allow 2 or more Cisco routers to dial an ISDN dial-up connection on an as needed basis. This is only used for low-volume, periodic network connections using either a Public Switch Telephone Network ( PSTN ) or ISDN. This was designed to reduce WAN cost if you have to pay on a per minute or per packet basis. DDR works when a packet received on an Interface meets the requirements of an access list defined by administrator which defines interesting traffic.
  • 173. How DDR works? I. Route to the destination network is determined. II. Interesting packets dictate a DDR cell. III. Dialer information is looked up. IV. Traffic is transmitted. V. Call is terminated when no more traffic is being transmitted over a link and the idle-timeout periods ends.
  • 174. DDR configuration R1(config-if)#dialer-group 5 R1(config-if)#exit R1(config-if)#dialer-list 5 protocol ip permit R1(config-if)#dialer-group 2 R1(config-if)#exit R1(config)#dialer-list 2 protocol ip list 10 R1(config)#access-list 10 permit host 192.168.20.2 R1(config)#access-list 10 permit host 200.100.10.2
  • 175. Troubleshooting commands Router#show dialer  shows the number of times the dialer string has been reached, the Idle-timeout values of each B channel, the length of call, and the name of the router to which the interface is connected. Router#show isdn active  shows the number called and whether a call is in progress Router#show isdn status  shows if you are SPIDs are valid and if you are connected and communicated with the provider’s switch. Router#show dialer  shows layer 3 to layer 2 mapping. Router#debug dialer  shows you the call setup teardown procedures Router#debug isdn q921  shows layer-2 processes (local router to local switch) Router#debug isdn q931  shows layer-3 processes (local router to remote switch)
  • 176. Multilink PPP This is a specification that enables the bandwidth aggregation of multiple B channels into one logical pipe. Its mission is comparable to that of Cisco’s BOD. More specifically, the Multilink PPP feature provides load-balancing functionality over multiple wide area network (WAN) links, while providing multivendor interoperability, packets fragmentation and proper sequencing and load calculation on both inbound and outbound traffic.
  • 177. The command to enable PPP multilink Router A (config-if)#ppp multilink Router A (config-if)#dialer load threshold 50 either
  • 178. Configuration for a dialer profile 10.12.1.2 BRI 0 Rb E0 SPID 1 - 00222200 BRI Ra 0 BRI E0 1 Profile 1 – 10.12.1.1 Profile 2 – 20.12.1.1 192.168.10.1/24 BRI 0 20.12.1.2 Rc E0 SPID 1 - 00333300 192.168.10.2/24
  • 179. Router A(config)#isdn switch-type basic-net3 Router A(config)#interface BRI0 Router A(config-if)#encapsulation ppp Router A(config-if)#dialer pool-member1 Router A(config-if)#ppp authentication chap Router A(config-if)#multilink Router A(config)#interface BRI1 Router A(config-if)#encapsulation ppp Router A(config-if)#dialer pool-member1 Router A(config-if)#ppp authentication chap Router A(config-if)#multilink Router A(config)#interface Dialer1 Router A(config-if)#ip address 10.12.1.1 255.255.255.0 Router A(config-if)#encapsulation ppp Router A(config-if)#dialer remote-name Router B
  • 180. Router A(config-if)# ppp authentication chap Router A(config-if)#ppp multilink Router A(config)#map-class dialer remote Router A(config-map-class)#dialer isdn speed 56 Router A(config)# interface Dialer2 Router A(config-if)#ip address 20.13.1.1 255.255.255.0 Router A(config-if)#encapsulation ppp Router A(config-if)#dialer remote-name Router C Router A(config-if)#dialer string 3333 class remote Router A(config-if)#dialer load threshold 50 either Router A(config-if)#dialer pool 1 Router A(config-if)# dialer-group 1 Router A(config-if)# ppp authentication chap Router A(config-if)# ppp multilink Router A(config)#map-class dialer remote Router A(config-map-class)#dialer isdn speed 56 Router A(config)#ip route 10.12.1.2 255.255.255.255 Dialer1 Router A(config)#ip route 20.12.1.2 255.255.255.255 Dialer2 Router A(config)#ip route 10.13.1.0 255.255.255.0 10.12.1.2 Router A(config)#dialer-list 1 protocol ip permit
  • 181. Frame Relay This is a connection-oriented, layer 2 networking technology. It operates at speeds from 56kbps to 45Mbps. This is very flexible and offers a wide array of deployment options. This operates statistically multiplexing multiple data streams over a single physical link. Each data stream is known as a Virtual Circuit ( VC ).
  • 182. VC Flavors Permanent (PVC) Switched (SVC) Implies, permanent, nailed up circuits A data connection is made only when there is traffic to send across the link Don’t tear down or reestablish dynamically Establish dynamically and can reroute around the network
  • 183. Each VC tagged with and identifier to keep it unique. This identifier known as a Data Link Connection Identifier ( DLCI ) is determined on a per-leg basis during the transmission. In other word it is locally significant. It must be unique and agreed upon by 2 adjacent frame relay devices. As long as the 2 agree, the value can be any valid number, and the number doesn’t have to be the same end to end (from router to router across a Telco Network).
  • 184. Valid DLCI numbers are 16-1007. For DLCI purposes, 0-15 is reserved, as are 1008-1023. The DLCI also defines the logical connection between the Frame Relay (FR) switch and the customer premises equipment (CPE).
  • 185. Data Link Connection Identifiers ( DLCI ) Frame Relay virtual circuits (PVC) are identified by the DLCIs. A FR service providers such as telephone company, typically assigns DLCI values which are used by FR to distinguish between different virtual circuits on the network. Because many virtual circuits can be terminated on one multipoint FR interface, many DLCIs are often affiliated with it. DLCI locally significant to the router. This is used to identify the connectivity between local router and local switch.
  • 186. Frame Relay Encapsulation To enable FR on the interface, simply issue the command encapsulation frame relay. There are 2 types of Frame Relay Encapsulation. Cisco – both are cisco routers IETF – one end is non cisco router
  • 187. Local Management Interface ( LMI ) This is a signaling standard between a CPE device (router) and a frame switch. The LMI is responsible for managing and maintaining status between these devices. LMI messages provide information about, Keepalives – Verify data is flowing Multicasting – Provides a local DLCI PVC Multicast addressing – Provides DLCI status Status of virtual circuits – Provides DLCI status Router A(config-if)#frame-relay Imi-type? Cisco ansi q933a
  • 188. Committed Information Rate ( CIR ) This means, the average rate you want to transmit. Generally this is not the same as the CIR provides by the Telco. this is amount you want to send on periods of no congestion. CIR defines Bits per seconds.
  • 189. Frame Relay Configuration Router A configuration R1(config)#interface serial 0 R1(config)#ip address 10.1.1.1 255.255.255.0 R1(config)#no shutdown R1(config-if)#encapsulation frame-relay(Cisco/ietf) R1(config-if)#frame relay interface-dlci 100 R1(config-if)#frame-relay Imi-type(cisco/Ansi/Q933a) R1(config-if)#no-frame-relay inverse-arp R1(config-if)#frame-relay map ip 10.1.1.2 100
  • 190. Router B configuration R1(config)#interface serial 0 R1(config)#ip address 10.1.1.2 255.255.255.0 R1(config)#no shutdown R1(config-if)#encapsulation frame-relay R1(config-if)#frame relay interface-dlci 200 R1(config-if)#frame-relay Imi-type(cisco/Ansi/Q933a) R1(config-if)#no-frame-relay inverse-arp R1(config-if)#frame-relay map ip 10.1.1.2 200

×