• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content

Loading…

Flash Player 9 (or above) is needed to view presentations.
We have detected that you do not have it on your computer. To install it, go here.

Like this presentation? Why not share!

11 - qualitative research data analysis ( Dr. Abdullah Al-Beraidi - Dr. Ibrahim Althonayan - Dr.Ramzi)

on

  • 2,977 views

محاضرة للدكتور إبراهيم الثنيان - الدكتور عبدالله البريدي و دكتور رمزي

محاضرة للدكتور إبراهيم الثنيان - الدكتور عبدالله البريدي و دكتور رمزي
( Dr. Abdullah Al-Beraidi - Dr. Ibrahim Althonayan - Dr.Ramzi)

Statistics

Views

Total Views
2,977
Views on SlideShare
2,968
Embed Views
9

Actions

Likes
1
Downloads
129
Comments
0

1 Embed 9

http://www.slideshare.net 9

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    11 - qualitative research data analysis ( Dr. Abdullah Al-Beraidi - Dr. Ibrahim Althonayan - Dr.Ramzi) 11 - qualitative research data analysis ( Dr. Abdullah Al-Beraidi - Dr. Ibrahim Althonayan - Dr.Ramzi) Presentation Transcript

    •  
      • Research suggests that
      • There are a range of different techniques available for qualitative data collection and analysis, but qualitative management researchers often focus on using just a small selection of them.
      • Researchers need to be more aware of the variety of qualitative techniques of data collection and analysis that are available
      • This may lead to more diverse ways of addressing contemporary theoretical and practical issues.
      • The process of systematically arranging and presenting information
      • to find meaning in the information collected (making sense of human action)
      • to conceptualise data into theory
      • Three stages:
        • coding
        • discovering themes
        • developing propositions
      • Analytic induction
        • developing a general hypothesis
        • collecting data, analysing
        • modifying and revising the hypothesis as data are collected and analysed
        • developing a satisfactory explanation
      • Interpreting and theorising data
        • forging connections between codes
        • significance of findings for the lives of people studied
        • importance of findings for the research question and the research literature
      • Typologies (conceptualising situations with similar/different characteristics)
      • Case study analysis (case summaries )
      • Thematic analysis ( themes and illustrations; headings )
      • If you are doing research for a project or dissertation you may not have the resources to pay for professional transcription and unless you are an accurate touch typist, it may take you a lot longer than the suggested five to six hours per hour of speech. If you have access to a transcription machine with a foot operated stop-start mechanism this will make the task of transcription somewhat easier. However, the important thing to bear in mind is that you must allow sufficient time for transcription and be realistic about how many interviews you are going to be able to transcribe in the time available.
      • Usage of pre-defined dictionaries
      • استخدام قواميس معرفة سابقا
      • only applicable for prescriptive codings
      • وهذه سارية فقط في الرصد المنظوري
      • Types of text analysis أنواع تحليلات النصوص Language use استخدامات اللغة - linguistic الجانب اللغوي - compare to databank of words (from a dictionary)
      • - المقارنة مع بنك من الكلمات ( من قاموس ) Content of Analysis محتوى التحليل - qualitative نوعي - event analysis (looking for sequences) تحليل الحدث ( البحث عن تبعات ) - quantitative كمي
      • Manual or automated coding of transcripts documents
      • التسجيل اليدوي أو الأتوماتيكي للوثائق المكتوبة
      • Example: Measure popularity of politician by counting how often their name appears on the first page of national newspapers
      • مثال : قياس شعبية أحد السياسيين بحساب عدد مرات ظهور اسمه على الصفحات الأولى من الجريدة الرسمية
      • Define the population of sources and a sampling frame
      • تعريف مجتمع مصادر المعلومات وإطار أخذ العينات population: national newspapers
      • مجتمع مصادر المعلومات : الجرائد الرسمية sample: random sample of 50 issues published in 2007
      • العينة : عينة عشوائية من خمسين نسخة من الجريدة صادرة في العام 2007
      • Define coding procedure
      • تعريف اجراءات الرصد والتسجيل prescriptive (define certain words or phrases): Hillary Clinton
      • المنظور ( تعريف كلمات أو تعابير معينة ): هيلاري كلينتون open coding (distill message of the text): How positive is the text about Hillary Clinton
      • التسجيل المفتوح ( استخلاص الرسائل من النص ): ما مدى كون النص إيجابيا في حق هيلاري كيلنتون
      • Usage of pre-defined dictionaries
      • استخدام قواميس معرفة سابقا only applicable for prescriptive coding
      • وهذه سارية فقط في الرصد المنظوري
      • Segments الأقسام
      • Abstract statement
      • عبارة مجردة
      • Orientation segments: when (time) and where (place) who (participants) of the story
      • الأقسام الموجهة : الزمان ( متى ) والمكان ( أين ) والمشتركين ( من ) في القصة
      • Complicating action: sequence of events (antecedents and cause)
      • تركيب الأحداث : سلسلة من الأحداث ( المقدمات والأسباب )
      • Evaluation: provide the meanings of the actions from the
      • respondent’s perspective.
      • التقييم : ويقدم معاني الحدث من وجهة نظر المستجيبين للدراسة
      • Resolution: what happened and what is the conclusion
      • القرارات والتفصيلات : ما الذي جرى وما هي النتائج
      • Coda: importance of story for phenomena investigated
      • الخاتمة : أهمية القصة بالنسبة للظواهر قيد الدراسة
    • Action research compared مقارنة البحث النشط Action Research البحث النشط Other research methods طرق أخرى للبحث Addresses real-life problems and is bounded by the context تخاطب مشاكل الحياة الفعلية وهو مقيد بالسياق Addresses real-life as well as scientific problems, and attempt to identify general principles and their contingencies تخاطب المشاكل الحياتية والمسائل العلمية، و تهدف الى وضع مبادئ عامة و احتمالاتها Collaborative venture of researchers, participants and practitioners مشروع مشترك بين الباحثين والمشاركين والممارسين Clear division of roles between researchers, participants and practitioners تقسيم واضح للأدوار بين الباحثين والمشاركين والممارسين Continuous reflecting process of research and action عملية عكس مستمرة للبحث والنشاط Usually, clear division between the research process and implementation processes عادة ما تكون فصلا واضحا بين العملية البحثية والعملية التطبيقية Credibility – the validity of action research is measured on whether the actions solve the problems and realize the desired change المصداقية – تقاس مصداقية البحث النشط بمدى قدرة العمل على حل المشاكل وتحقيق التغييرات المرجوة Credibility – the validity of research is established by statistical core figures and successful replications المصداقية – تقاس مصداقيتها عن طريق الأرقام الاحصائية الهامة و التكرارت الناجحة للبحث
      • Pattern Matching - between prediction and facts
      • Explanation Building - initial theoretical statement - compare findings with statement - revise statement - compare other details against revision
      • Time Series Analysis - investigate differences along time not across subjects
      • Codes enable us to retrieve and reorganise the data according to conceptual themes
      • codes can be derived from:
        • the interviewees’ stories
        • research question
        • theoretical framework
      • Codes are tentative
      • Codes are the first step in generating theory
      • de-contextualising what is said
        • losing the context
      • fragmenting the data
        • losing the narrative flow
      • coding may be unsuited for particular forms of data (e.g. narrative interviews, focus groups)
      • ‘ code and retrieve’
      • computer takes over the manual labour involved – the researcher must still interpret the data!
      • packages: The Ethnograph, NVivo, Atlas.ti, NUD*IST
      • alternatively use word processing package (e.g. MS Word)
      • Advantages:
        • Fast and efficient
        • Helpful in developing explanations (e.g. use of socio demographic variables to create different cases; use of ‘trees’)
      • Concerns :
        • Fragmentation, de-contextualisation of data
        • Not suitable for certain forms of data (narrative interviews, focus group data)
      • These data were collected from students who, as part of a class on Writing and Writer’s Block , were set the following preparatory work: “Describe in detail how you write. Pay particular attention to the details. There must be no conferring with other people. Bring your written piece to the next class.”
      • The data were obtained from a convenience sample of ten students. Permission to use these data in a suitably anonymised form for teaching purposes was obtained. Thus, the total data set available for this exercise for the analysis of qualitative data comprises ten individual data files, each containing a short narrative.
      •  
      • تم جمع هذه البيانات من مجموعة من الطلاب ( هم جزء من شعبة صفية تدرس الكتابة وعقبات الكاتب ) الذين سئلوا السؤال التالي " صف بالتفصيل كيف تجلس للكتابة، وانتبه الى تقديم أدق التفاصيل، لا تشاور أحدا في طريقة الإجابة وأحضر اجابتك المكتوبة الى محاضرتنا القادمة ".
      • تم الحصول على البيانات من مجموعة مناسبة مكونة من عشر طلاب وقد تم تحصيل الموافقة على استخدام المعلومات على النحو الملائم لأغراض علمية مع مراعاة سرية المعلومات، وعليه ، فإن البيانات الكلية المستخدمة في هذا التمرين الخاص بتحليل الأبحاث النوعية تتكون من عشر ملفات فردية، كل واحدة منها تحوي وصفا سرديا لعملية الكتابة
      • How does the technique link in with my epistemological position? Data analysis needs to link in with the underlying philosophical stance of the research
      • How structured are my research aims? For example is the research aiming to develop hypotheses, answer research questions, or explore sensitising concepts?
      • What kind of data are being analysed?
      • What are my personal preferences re structured/ unstructured techniques?
      • Will I be using a computer package to enable my analysis?