Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Standard text messaging rates apply

Dev2.0

372
views

Published on

Published in: Education, Technology

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
372
On Slideshare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
1
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript

• 1. 1 Given the following:  Find  . Where both angles are in the fourth quadrant.
• 2. 2 First we need to find  and We know that we are given So we need to solve for the hypotenuse side.
• 3. 3 Now that we have the hypotenuse  side, we now know that:
• 4. 4 Now we need to find  and We know that we are given So we just need to solve for the hypotenuse.
• 5. 5 After knowing what the hypotenuse side is ,  we can now safely say that:
• 6. 6 But before we substitute the values there is a  minor thing that we need to consider. It says  that both alpha and beta are in the fourth  quadrant , which means that both values of  sine will be negative.
• 7. 7 Now we have all we need. We can just substitute it  in the formula.
• 8. 8 Do some arithmetic then you will get the  same answer.