Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
630
On Slideshare
551
From Embeds
79
Number of Embeds
12

Actions

Shares
Downloads
1
Comments
0
Likes
0

Embeds 79

http://doradev.blogspot.com 54
http://doradev.blogspot.ru 11
http://doradev.blogspot.it 2
http://doradev.blogspot.fr 2
http://doradev.blogspot.com.br 2
http://doradev.blogspot.com.es 2
http://doradev.blogspot.co.at 1
http://doradev.blogspot.kr 1
http://doradev.blogspot.com.au 1
http://www.doradev.blogspot.ca 1
http://doradev.blogspot.be 1
http://doradev.blogspot.in 1

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Given the following:  Find  . Where both angles are in the fourth quadrant. 1
  • 2. First we need to find  and We know that we are given So we need to solve for the hypotenuse side. 2
  • 3. Now that we have the hypotenuse  side, we now know that: 3
  • 4. Now we need to find  and We know that we are given So we just need to solve for the hypotenuse. 4
  • 5. After knowing what the hypotenuse side is ,  we can now safely say that: 5
  • 6. But before we substitute the values there is a  minor thing that we need to consider. It says  that both alpha and beta are in the fourth  quadrant , which means that both values of  sine will be negative. 6
  • 7. Now we have all we need. We can just substitute it  in the formula. 7
  • 8. Do some arithmetic then you will get the  same answer. 8