SlideShare a Scribd company logo
1 of 26
Download to read offline
1 
BIOTECNOLOGIA: CLONAGEM, TRANSGÊNICOS E BIOPROSPECÇÃO 
Autores: Gessiel Newton Scheidt, Andréa Haruko Arakaki, Micheli Rigon Spier e Augustus Caeser Franke Portella 
Sumário 
I. Apresentação 
II. Introdução 
III. Grandes áreas da biotecnologia 
IV. Nanociência e nanotecnologia 
V. Clonagem 
VI. Transgênicos 
VII. Bioprospecção 
VIII. As questões éticas em biotecnologia 
IX. Conclusões 
X. Referências
2 
I. Apresentação 
É com grande satisfação que estamos oferecendo-lhe esta unidade que trata os diferentes assuntos da biotecnologia, com ênfase na clonagem, transgênicos e bioprospecção. 
Atualmente, a biotecnologia tange as diretrizes essenciais ao pensamento científico e ao mundo globalizado. Por quê? O que isso realmente importa? Um mercado forte, competitivo, muitas vezes permite que se tenham o desenvolvimento dos mais diversos bioprocessos, sejam eles direcionados principalmente à qualidade de vida humana ou animal. Contudo, o foco pode ser repassado aos interesses locais ou até mesmo mundiais, dependendo obviamente, a quem ou ao quê será estendido ou não, o futuro. 
A biotecnologia e/ou a nanotecnologia possui infinitas relações com a indústria e a sociedade, podendo ser utilizada em diversos segmentos e trazer muitos benefícios. No entanto, sabemos que as mudanças não são rápidas e que muitos princípios científicos não são facilmente aceitos pela população. Por esse motivo é importante entender o que realmente pode ser considerado um avanço biotecnológico capaz de beneficiar a sociedade como um todo. 
Espero que esta unidade seja um processo extremamente agradável de aprendizagem, e que você compreenda os conceitos básicos e a importância dos conhecimentos biotecnológicos nos mais variados setores da atividade humana. 
Objetivos 
Ao final dos estudos desta unidade, você será capaz de: 
 Reconhecer os avanços técnico-científicas que resultaram nas diversas áreas das biotecnologias; 
 Identificar os impactos desses avanços da biotecnologia no setor produtivo; 
 Reconhecer como o uso dessas tecnologias pode implicar em dilemas éticos para a sociedade. 
Contudo, a proposta deste módulo é de revisar os fundamentos das diversas áreas da biotecnologia e de mostrar como estes conhecimentos podem ser aplicados em setores produtivos da sociedade. 
II. Introdução 
O uso da biotecnologia teve o seu início com os processos fermentativos, cuja utilização transcende, de muito, o início da era Cristã, confundindo-se com a própria história da humanidade, quando esta se tornou sedentária. Um exemplo simples pode ser observado na obtenção e manutenção dos alimentos ou quando o homem aprendeu a domesticar animais e a desenvolver a agricultura, deixando assim de depender por completo da caça ou da coleta (Tabela 1). 
Tabela 1: Mostra os principais marcos históricos no avanço científico e tecnológico da Biotecnologia. 
Período 
Acontecimento
3 
6.000 a. C. 
Bebidas alcoólicas (cerveja e vinho) são produzidas por sumérios e babilônios 
2.000 a.C. 
Panificação e bebidas fermentadas são utilizadas por egípcios e gregos 
1875 d. C. 
Pasteur mostra que a fermentação é causada por microrganismos 
1880- 1910 
Surgimento da fermentação industrial (ácido láctico, etanol, vinagre) 
1922 
Sementes híbridas de milho começam a ser comercializadas. 
1910- 1940 
Síntese de glicerol, acetona e ácido cítrico 
1940- 1950 
Antibióticos são produzidos em larga escala por processos fermentativos 
1953 
Estabelecida a estrutura do DNA (Wilson e Crick revelam a estrutura do DNA) 
1073 
Início da engenharia genética (Cohen e Boyer transferem um gene de um organismo para outro) 
1982 
Insulina humana é produzida por engenharia genética 
1994 
O primeiro alimento geneticamente modificado, o tomate Flavr Savr, chega aos 
supermercados dos EUA 
2000 
O arroz geneticamente modificado é criado 
2003 
O Projeto Genoma, que identificou o mapa genético humano, é concluído 
Fonte: www.bioinfo.ufpb.br/difusao. 
A Biotecnologia, ou os processos biotecnológicos, podem ser definidos como: “A nova bio-tecnologia”, a utilização de células e moléculas biológicas para a solução de problemas ou produção de produtos ou processos úteis, com potencial industrial em diversas áreas do conhecimento (Kreuzer e Massey, 2002). De acordo com Malajovich (2004), dentre as tecnologias desenvolvidas até o momento, a biotecnologia é, de longe, a que apresenta maior compatibilidade com a sustentabilidade da vida neste planeta. 
O seu impacto atinge vários setores produtivos, oferecendo novas oportunidades de emprego e renda. Dentre os inúmeros exemplos, tais como, plantas resistentes a doenças, plásticos biodegradáveis, detergentes mais eficientes, biocombustíveis, processos industriais e agrícolas menos poluentes, métodos de biorremediação do meio ambiente e centenas de testes diagnósticos e novos medicamentos (Figura 1). 
Figura 1: Adaptada do livro BIOtecnologia (Fonte: Malajovich, 2004). 
Conhecimentos 
BIOTECNOLOGIA 
Agentes Biológicos 
Produtos e Processos 
Resolver Problemas
4 
As biotecnologias em seu sentido mais amplo compreendem a manipulação de microrganismos, plantas e animais, objetivando a obtenção de processos e produtos de interesse. É importante destacar que a biotecnologia tem um enfoque multidisciplinar, já que envolvem diferentes áreas do conhecimento que incluem a ciência básica, Biologia Molecular, Microbiologia, Biologia celular, Genética, Genômica, Embriologia etc. e, a ciência aplicada Técnicas imunológicas, Químicas e Bioquímicas e outras tecnologias que incluem a matemática básica e aplicada Informática, Ciências da computação, Robótica e Controle de processos (Figura 2). 
Figura 2: Representação esquemática da interação da biotecnologia com outros ramos do conhecimento. Livro Biotecnologia Industrial, V. I. (Fonte: Borzani et al., 2001). 
As novas técnicas de engenharia genética estão promovendo uma reavaliação de quase todos os processos industriais que empregam técnicas ou produtos biológicos. Segue abaixo os principais produtos e serviços de origens biotecnológicas (Tabela 2). 
Tabela 2: Produtos de origem biotecnológica 
Setores 
Bens e serviços 
Agricultura 
Adubo composto, pesticidas, silagem, mudas de plantas ou de árvores, plantas transgênicas, etc. 
Alimentação 
Pães, queijos, picles, cerveja, vinho, proteína unicelular, aditivos, etc. 
Eletrônica 
Biosensores. 
Energia 
Etanol, biogás. 
Química 
Butanol, acetona, glicerol, ácidos, enzimas, metais, etc. 
Meio Ambiente 
Recuperação de petróleo, tratamento do lixo, purificação da água 
Pecuária 
Seleção e melhoramento genético de embriões 
Saúde 
Antibióticos, hormônios e outros produtos farmacêuticos, vacinas, reagentes e testes para diagnóstico, etc. 
Fonte: Malajovich, 2004. 
Constatam-se na tabela acima, a amplitude e a profundidade de mudanças que
5 
deverão advir com o uso dos processos biotecnológicos. Todos os setores descritos acima são focos primordiais ao que vivenciamos, já que apresentam um retorno lucrativo. 
Normalmente não percebemos a sutil implantação biotecnológica ou ao menos damos a devida importância, quando às novidades que permeiam as atribuladas relações humanas, mas torna-se perceptível à medida que a necessidade de consumo demanda providências ao mercado. 
"Não há dúvida que o futuro da humanidade depende, em grande parte, da liberdade que os investigadores tenham de explorar as suas próprias idéias. Embora não se possa considerar descabido os investigadores desejarem tornarem-se famosos, a verdade é que o homem que se dedicar à pesquisa com o objetivo de conseguir riqueza ou notoriedade, escolheu mal a sua profissão!" 
Alexander Fleming 
De acordo com Zechendorf (1999), a biotecnologia pretende ser uma atividade sustentável e econômicamente viavél, onde já é entendido que esse não deve ser apenas um simples dizer de palavras, e que apesar de todo o avanço biotecnológico nós não podemos nos esquecer da sustentabilidade (Guimarães et al., 2008). 
A fim de ser sustentável a biotecnologia deve ser economicamente viável e socialmente responsável para além de ser ambientalmente amigável, apresentar um custo benefício, antes que possa ser aceito pela indústria. 
III. Grandes áreas da biotecnologia 
A contribuição das biotecnologias ao desenvolvimento de produtos e processos deve ser analisada em função do impacto causado em cada uma das grandes áreas, com destaque, a “Biotecnologia Branca”: diz respeito às aplicações industriais e ambientais; “Biotecnologia Vermelha”: inclui as aplicações relativas à saúde; “Biotecnologia Verde”: dedica-se às aplicações agrícolas e alimentares; “Biotecnologia Azul”: dedica-se a aplicações com origem em organismos aquáticos. Contudo, espera-se que o desenvolvimento de novas tecnológicas possibilite a conservação ou criação de empregos.
6 
Biotecnologia 
Branca 
A Biotecnologia Branca diz respeito às 
aplicações industriais e ambientais: Inclui os 
processos industriais que utilizam enzimas e 
organismos para processar e produzir 
químicos, materiais e energia. Segue abaixo as 
principais áreas de atuação: 
Biorremediação de vazamentos de petróleo e 
resíduos tóxicos; 
Monitoramento de poluentes (biosensores); 
Tratamento de resíduos industriais e águas 
residuárias; 
Biomineração (recuperação de metais pesados e 
radioisótopos); 
Recuperação de áreas degradadas (micorrizas e 
bactérias fixadoras de nitrogênios). 
Biotecnologia 
Vermelha 
A Biotecnologia Vermelha inclui as aplicações 
relativas à saúde: Esta área inclui a utilização de 
processos relacionados com a medicina e a 
farmacologia e que se baseiam na manipulação 
genética de organismos. Segue abaixo as principais áreas 
de atuação: 
Compostos farmacologicamente ativos; 
Antibióticos, antimicrobianos e antivirais; 
Vitaminas e hormônios; 
Vacinas e probióticos; 
Biopolímeros de aplicação médica (e.g., pele artificial); 
Biotransformações em química fina. 
Biotecnologia 
Verde 
A Biotecnologia Verde dedica-se às aplicações 
agrícolas e alimentares: As aplicações 
biotecnológicas desta área incluem métodos de 
melhoramento de variedades vegetais e animais, 
visando a agro-indústria. Segue abaixo as principais 
áreas de atuação: 
Aumento de fertilidade do solo; 
Fixação biológica de nitrogênio; 
Controle biológico de insetos e patógenos; 
Promotores de crescimento de plantas; 
Promotores de crescimento animal; 
Anti-parasiticidas, antibióticos, antimicrobianos, 
antivirais; 
Vitaminas e hormônios: 
Vacinas e probióticos. 
As aplicações biotecnológicas desta área incluem 
métodos de produção e preservação de alimentos, 
visando a indústria de alimentos. Segue abaixo as 
principais áreas de atuação: 
Produção e preservação de alimentos; 
Produção de bebidas;
7 
Aromas e essências; 
Aditivos para alimentos (emulsificantes e espessantes); 
Alimentos funcionais (nutracêuticos). 
Biotecnologia Azul 
A Biotecnologia Azul dedica-se a aplicações com origem em organismos aquáticos: Esta área envolve a aplicação de métodos moleculares com base em organismos marinhos e de água doce, ou nos seus tecidos, células ou componentes celulares. Segue abaixo as principais áreas de atuação: 
Ambiental; 
Indústria de alimentos; 
Indústria Química; 
Indústria farmacêutica; 
Energia. 
Fonte: Adaptada: http://www.anbio.org.br/pdf/2/mct_recursos_biologicos.pdf, 2010 e http://plantasgm.wordpress.com/category/biotecnologia-e-historia-da-biotec/ 2010. 
A biotecnologia é interdisciplinar e por isso muitas aplicações são classificadas com mais de uma cor. Por exemplo, a produção de energia a partir de plantas ou de resíduos pode ser considerada biotecnologia branca ou verde. Portanto, a biotecnologia torna-se um instrumento poderoso, podendo substituir vasto número de processos industriais atualmente empregados e criando com isso novas e melhores soluções para uma grande gama de problemas. 
IV. Nanociência e nanotecnologia 
A nanociência e/ou a nanotecnologia é um termo popular para a construção e utilização de estruturas funcionais que possui pelo menos uma dimensão na escala nanométrica, ou é a área da tecnologia que trabalha no universo nanométrico. O princípio básico da nanotecnologia é a construção de estruturas e novos materiais e desenvolver novos produtos baseados na crescente capacidade da tecnologia moderna de ver e manipular átomos e moléculas. É uma área promissora, mas que dá apenas seus primeiros passos, mostrando, contudo, resultados surpreendentes (na produção de semicondutores, nanocompósitos, biomateriais, chips, entre outros). 
O prefixo “nano” tem origem grega que significa “anão” e se refere a uma unidade de medida que equivale a um bilionésimo de metro, utilizando-se a notação nm ou 10-9 m. Para termos uma idéia da dimensão nanométrica, vamos comparar as dimensões de diferentes materiais como, por exemplo, o diâmetro de um fio de cabelo que pode medir entre 50.000 a 100.000 nm. 
A nanotecnologia não é uma tecnologia específica, mas todo um conjunto de técnicas, baseadas na física, na química, na biologia, na ciência e Engenharia de
8 
materiais, e na computação, que visam estender a capacidade humana de manipular a matéria em nível atômico e molecular (Toma, 2004). Entretanto, a nanociência e nanotecnologia não restringe-se apenas aos materiais e dispositivos semicondutores, envolve materiais plásticos (polímeros), cerâmicas, matérias isolantes e materiais metálicos de alta resistência e confiabilidade, materiais biológicos entre outros.Nesse sentido, a nanotecnologia tem a capacidade de criar estruturas pequenas e/ou com tecnologia superior, usando as técnicas e ferramentas que estão a ser desenvolvidas nos dias de hoje para colocar cada átomo e cada molécula no lugar desejado. Se conseguirmos este sistema de engenharia molecular, o resultado será uma nova revolução industrial. Além disso, teria também importantes conseqüências econômicas, sociais, ambientais e militares. 
Entretanto a nanotecnologia desenvolveu-se graças aos contributos de várias áreas do conhecimento, atualmente existem três abordagens distintas: uma abordagem de cima para baixo, que consiste na construção de dispositivos por desgaste de materiais macroscópicos, a construção de dispositivos que se formam espontaneamente a partir de componentes moleculares e de materiais átomo a átomo. 
1) A primeira abordagem é a abordagem utilizada em microeletrônica para produzir chips e computadores e mais recentemente para produzir testes clínicos em miniatura. 
2) A segunda abordagem recorre às técnicas tradicionais de química e das ciências dos materiais. 
3) A terceira abordagem é aquela que levará mais tempo a produzir resultados significativos porque requer um controle fino da matéria só possíveis com o aperfeiçoamento da tecnologia. 
Independentemente, a tendência é controlar mais e mais a matéria manufaturada, o produto final (hoje em dia são gravados sulcos de larguras inferiores ao micrômetro nos chips de computador 100 vezes mais finos que uma folha de papel). 
Os sensores de choque mecânico dos air-bags usados nos automóveis são gravados diretamente nos chips (Figura 3). 
Produto da nanotecnologia 
Figura 1: Micro-acelerômetro (ampliação de cerca de 800). Os dois "pentes" podem deslocar-se, um em
9 
relação ao outro, sob efeito de uma violenta aceleração. (Fonte: lqes.iqm.unicamp.br/institucional/bibliotecas/bibliotecas_lqes_nanotecnologia_conf_levy.html www.quadrante.com.br/.../031005/01_05.jpg, 2009.) 
"Imagine-se o que seria "encolher" todo o conteúdo da Biblioteca Nacional num dispositivo do tamanho de um cubo de açúcar. Ou então desenvolver materiais dez vezes mais resistentes que o aço e com apenas uma fração do peso." 
U.S. National Science Foundation 
Atividade Complementar 1 
1) Conceitue biotecnologia. 
2) Quais são as grandes áreas da biotecnologia. Descreva cada uma delas. 
3) Conceitue nanotecnologia. 
4) A quem pertencerá à tecnologia? 
5) Estará altamente restringida, ou amplamente disponível? 
6) Como afetará ao fosso entre ricos e pobres? 
7) Você conhece algum produto de origem biotecnológica? Quais. 
V. Clonagem 
O termo clone foi criado em 1903 pelo botânico Herbert J. Webber enquanto pesquisava plantas no Departamento de Agricultura dos Estados Unidos. Entretanto, desde a antigüidade o ser humano vem selecionando e utilizando organismos com características que lhe interessam sob algum ponto de vista. Para isso, o ser humano desenvolveu ao longo dos anos uma ciência que passou a ser denominada “Biotecnologia”, composta por numerosas técnicas por meio das quais não apenas seleciona, mas também modifica organismos (Lopes, 2003). 
Contudo, a palavra clone foi originada (do grego klon, significa “broto”) é utilizada para designar um conjunto de indivíduos que deram origem a outros por reprodução assexuada, sendo um método científico de reprodução que utiliza células somáticas (Lopes, 2003). 
A clonagem pode ocorrer espontaneamente na natureza ou ser desenvolvida em laboratório. A clonagem natural ocorre em todos os seres vivos que se reproduzem assexuadamente. A reprodução assexuada pode ocorrer por: cissiparidade, esporulação, brotamento, estrobilização e regeneração. Alguns exemplos são: vegetais, plantas, árvores, fungos e leveduras, algas, alguns moluscos e crustáceos, esponjas, alguns protozoários, como a Ameba, e as bactérias. 
"Clonagem”: (1) Na pesquisa do DNA recombinante, o processo de criar e ampliar segmentos específicos de DNA. (2) A produção de organimos geneticamente idênticos a partir de células somáticas de um organismos individual. 
“Clone”: (1)Um grupo de células geneticamente idênticas ou organismos individuais derivados por divisão assexual de um ancestral comum. (2) Um organismo individual formado por algum processo sexual de modo que seja geneticamente a seu genitor. 
Anthony J. F. Griffiths et al.,
10 
O conhecimento do comportamento dos genes nas populações é de importância capital para compreender os mecanismos da evolução e para solucionar numerosos problemas práticos. 
Brasil (2000), descreve que no âmbito das tecnologias da clonagem, a engenharia genética, área da ciência que tem se desenvolvido rapidamente nos últimos anos, tem sido um dos assuntos científicos mais comentados pela mídia em todo o mundo em função de suas importantes aplicações em situações concretas em diversos campos como medicina, química industrial, agricultura, etc. Conseqüentemente, aspectos relacionados com engenharia genética passaram a fazer parte da maioria dos currículos propostos para o ensino de ciências (Figura 4). 
Cultivo in vitro de embriões 
Figura 4: Métodos de clonagem in vitro de célula animal. (1) Embrião. (2) Embrião no estágio de blastocisto. (3) Blastômero isolado. (4) Células de fibroblasto de rato para alimentar a colônia. (5) As células são separadas e vão para outro recipiente. (6) Cultura estável de células-tronco. (Fonte: http://4.bp.blogspot.com/_FK5QjE4gwZc/Sb19ROF0CcI/AAAAAAAABNE/GjFFTd5UuwI/s1600- h/cultivo%252520de%252520c%2525C3%2525A9lulas%252520tronco.jpg, 2009.) 
Vale lembrar que é um método artificial, pois, como sabemos, na natureza, os seres vivos se reproduzem através de células sexuais e não por células somáticas. As exceções deste tipo de reprodução são os vírus, as bactérias e diversos seres unicelulares. 
Clonagem de plantas 
A reprodução de plantas realiza-se por dois processos: a reprodução sexuada e a reprodução assexuada (multiplicação vegetativa). A reprodução sexuada caracteriza-se pela fecundação, a qual dá origem à formação de indivíduos diferentes dos seus progenitores. A reprodução assexuada permite a propagação de indivíduos idênticos à planta-mãe, tendo como conseqüência a formação de clones. 
1 
2 
3 
4 
5 
6
11 
As células vegetais possuem a capacidade de entrar em divisão e dar origem, por via assexuada a uma planta idêntica à planta donde provêm, ou seja, um clone dessa planta. Devido a esta capacidade denominada totipotência celular que a cultura in vitro de plantas deve todo o seu desenvolvimento (Figura 5). 
Cultivo in vitro de plantas 
Figura 5: Métodos de micropropagação in vitro. (Adaptado de George, 1996). (1) Matriz (Planta mãe). (2) Cultivo in vitro. (3) Metabólitos secundários. (4) Clones. (5) Híbridos. 
A micropropagação ou a propagação vegetativa in vitro consiste no cultivo de órgãos, tecidos ou células vegetais em uma solução nutritiva apropriada e asséptica. Baseia-se no fato de qualquer célula é um organismo vegetal totipotente, isto é, encerra em seu núcleo todas as informações genéticas necessárias à regeneração de uma planta completa, apta a dar origem a uma nova planta (Silva et al., 2007). 
Segundo Teixeira (2002), as células quando colocadas em tubo de ensaio, frascos ou biorreatores desenvolvem-se com rapidez, possibilitando a conservação do patrimônio genético das plantas ameaçadas em extinção, formando milhões de outras células ou milhões de outras plantas (Figura 6 A e B). 
Cultivo in vitro (Tubo e Frasco) 
1 
2 
3 
4 
5
12 
Figura 6: Cultivo in vitro de plantas. (A) Planta completa de Dyckia maritima. (B) Cotilédone de porongo com organogênese direta. (Fonte: Laboratório de Biotecnologia Vegetal - Pós-Graduação em Processos Biotecnologicos - Universidade Federal do Paraná, 2009.) 
Scheidt (2008) descreve que a possibilidade de obter em laboratório produtos e/ou mudas, em condições controladas e reprodutíveis, independentemente da sazonalidade dos ciclos agrícolas, torna a micropropagação a melhor alternativa para se conseguir material vegetal de qualidade, fixação de ganhos genéticos e fitossanitária garantida. Contudo, deve-se mencionar que as culturas de células in vitro representam um importante recurso para a obtenção de produtos vegetais de valor elevado, desde que a viabilidade econômica do processo seja comprovada. Portanto, a utilização da tecnologia de culturas de células vegetais aparece como uma alternativa eficaz na produção de mudas, particularmente, em espécies raras ou as que estão em processo de extinção. 
Segundo Silva (2006), a micropropagação de plantas, apresenta alto custo de produção, o que torna as mudas produzidas nestes sistemas caras e de difícil aquisição pelos produtores rurais. Estes custos de produção são devidos à mão-de- obra, que chega a 40% ou 60% dos custos de produção. Portanto, novo enfoque dos processos biotecnológicos tornou-se necessário, principalmente com vistas à redução de custos na produção de mudas (Scheidt et al., 2009). No tocante ao cultivo in vitro, sistema de automação para a propagação clonal pode ser uma alternativa interessante, então, vislumbrou-se a possibilidade da micropropagação com os biorreatores (Figura 7). 
A 
B
13 
Cultivo in vitro (Biorreatores) 
Figura 7: Desenho esquemático dos biorreatores de imersão. 
Fig. A (R.I.T.A.®): (1) Entrada de ar. (2): Saída de ar. (3) Tampa. (4) Suporte para o cultivo. (5) Base Interna. (6) Frasco. (Fonte: Teisson e Alvard (1994)) 
Fig. B (B.I.B.®): (1) Saída de ar. (2) Kit Fixação. (3) Estágios. (4) Placa porosa. (5) Base. (6) Entrada de ar. (Fonte: Soccol et al. (2008)). 
Clonagem de animais 
As pesquisas de clonagem de animais, plantas e até genes, tecidos e células humanas (excetuando os embriões) podem ser benéficas e não representam nenhum problema moral intrínseco. No entanto, quando as pesquisas voltam a atenção para seres humanos, precisamos nos assegurar de que a dignidade humana não seja minada na busca do progresso humano (Albagli, 1998; Bordingnon, 2003) . 
Para se realizar a clonagem (em animais e/ou humanos) são conhecidas hoje duas técnicas: a divisão embrionária e a transferência nuclear. 
Na divisão embrionária, separam-se as células de um embrião em seu estágio inicial de multiplicação celular, produzindo simultaneamente novos indivíduos geneticamente idênticos, porém diferentes de qualquer outro existente. Isso ocorre na natureza, durante a geração de gêmeos univitelinos. Na transferência nuclear são usadas informações (genoma) de algum ser vivo para a produção de outro idêntico a ele. Essa técnica foi utilizada para se criar a ovelha Dolly (Figura 8). 
A 
B 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6
14 
Clonagem 
Figura 8: Clonagem de ovelhas. (1) Ovelha de cara preta. (2) Ovelha de cara branca. (3) Ovo doador. (4) Célula. (5) Núcleo removido. (6) Fusão da célula e ovo sem núcleo com eletricidade. (7) Ovo fundido com célula. (8) Embrão. (9) Embrião implantado. (10). Ovelha de cara branca com carneiro de cara branca (Clone). (Fonte: http://www.universitario.com.br/noticias/noticias_noticia.php?id_noticia=5316, 2009). 
A técnica de transferência nuclear permite a produção de animais contendo genomas idênticos. Para tal, o material genético nuclear de uma célula do animal que se deseja clonar é introduzido em um oócito previamente enucleado, chamado de citoplasto. Esse conjunto célula-citoplasto é submetido a pulsos elétricos, que promovem a fusão das membranas, seguidos de uma ativação artificial quimicamente semelhante àquela desencadeada pelo espermatozóide em uma fecundação normal. Havendo sucesso, o núcleo celular será reprogramado e dará início ao desenvolvimento embrionário. Cada embrião assim reconstruído será geneticamente idêntico ao animal que deu origem às células doadoras de núcleo (Kato et al., 2000; Bressan et al., 2008). 
A transferência nuclear utilizando células modificadas geneticamente como doadoras de núcleo permitiu grandes avanços técnicos na produção de animais transgênicos (Figura 9). O DNA exógeno, quando incorporado no genoma celular, pode ter sua inserção e expressão verificadas antes da utilização destas células na produção animal. 
1 
2 
3 
4 
6 
5 
7 
8 
9 
10
15 
Tranferência nuclear 
Figura 9: Esquema representativo das etapas da transferência nuclear utilizando células somáticas transgênicas como doadoras de núcleo. (1) Transdução lentiviral. (2) Seleção das células que expressam o transgene. (3) Maturação in vitro de oócitos. (4) Seleção dos oócitos que extruíram o 1º corpúsculo polar. (5) Enucleação do oócito: retirada da placa metafásica. (6) Introdução de uma célula transgênica no espaço perivitelínico do citoplasto receptor. (7) Eletrofusão das membranas. (8) Ativação química dos complexos. (9) Cultivo in vitro dos embriões e inovulação em fêmeas receptoras. (Fonte: Bressan et al., 2008). 
Porém: “Os genes sozinhos não determinam todos os caracteres físicos e comportamentos de um organismo e sim um constante diálogo com o ambiente, interagindo com o mesmo”, por isso não são idênticos (Figura 10). 
Até então não existem provas concretas de que animais clonados sejam totalmente normais. Diversas alterações podem ocorrer na gestante do clone, já que os órgãos do clone como rins, pulmões e o coração, podem crescer de tamanho exagerado, resultando em fortes dores, dificultando a respiração e a metabolização de alimentos, chegando ao ponto de 82% dos bovinos clonados, não chegarem aos noventa dias de prenhes. A explicação deste problema, é que os “núcleos de células diferenciadas não são corretamente reconduzidos a um estágio embrionário dos embriões clonados, levando à expressão errada dos genes, prejudicando ou impedindo o desenvolvimento do animal”. 
Clones 
3 
4 
6 
1 
2 
5 
7 
8 
9
16 
Figura 10: Clones univitelinos. (Fonte: http://cheirinhosdeciencia.blogspot.com/, 2009). 
Atividade Complementar 2 
1) O que é clonagem? 
2) O que é DNA? 
3) Explique as diversas formas de cultivo in vitro de plantas e de animais. 
4) Pesquise sobre tradução e transcrição. 
VI. Transgênicos 
Poucos assuntos geram tanta controvérsia como os transgênicos. Organismos transgênicos, ou organismos geneticamente modificados (OGMs), são animais e plantas que sofrem modificações geradas pela transferência de características (genes) de uma espécie para a outra (Losey et al., 1999). 
Um organismo transgênico pode ser definido como um animal ou planta produzido a partir da célula embrionária na qual foi incorporado uma sequência de DNA clonado. São produtos geneticamente modificados que buscam melhorar, principalmente, a produção de alimentos, de forma mais racional e sustentável. Consequentemente, com redução de custos de produção, aumento de produtividade, redução de insumos e defensivos. 
A introdução do transgene na célula pode ser realizada por vários métodos: 
 Sistema Agrobacterium tumefaciens: Método pelo qual é inserido um gene de interesse no genótipo de uma bactéria que, ao se associar a uma planta, retransmite a mesma característica.  Bombardeamento com micro partículas revestidas de DNA: Sistema pelo qual o DNA é revestido em micro esferas de tungstênio e transferido para dentro do tecido da planta.  Transferência por electroporação: Introdução de DNA em células expostas a um campo elétrico.  Micro injeção de DNA: Consiste numa injeção de DNA na célula através de uma micropipeta. 
Cada um desses métodos tem como objetivo introduzir o transgene no núcleo da célula, onde se encontra o material genético, sem danificar a célula. Então, a planta se desenvolve e suas células apresentarão o transgene de interesse podendo transmiti- lo a seus descendentes. 
Os transgênicos não apareceram na forma de “geração espontânea”. O surgimento da tecnologia do DNA recombinante onde os transgênicos estão inseridos, possibilitam, manipulações de organismos até então não obtidas através de processos 
"Contra a clonagem humana não se pronunciaram apenas autoridades religiosas, teólogos, politicos e filósofos, mas também relevantes homens da ciência. Pa citar um só exemplo: o legendário James Watson, que nunca olhou com bons olhos esse assunto." 
Maria C. C. L. Santos
17 
envolvendo a compatibilidade de cruzamentos (Rech, 2004). 
Atualmente pode-se ver a utilização de organismos transgênicos, sobretudo na area agrícola (Figura 11). 
Transgene 
Figura 11: Método de transgene. (1) Bactéria. (2) Isolamento do DNA bacteriano. (3) Clonado o DNA. (4) Extração do gene de interesse. (5) Fabricando o gene (transgene). (6) Inserção do transgene no tecido da planta. (7) Planta. (8) Reprodução. 
A polêmica em torno dos transgênicos tem como ponto principal o medo do desconhecido, pois hoje muitas pessoas são copntra as tecnologias porque elas observam seus erros passados. Eles associam a tecnologia com problemas, como fizeram diversas outras pessoas em cada geração em que novas tecnologias foram apresentadas. 
A promessa de um futuro ambientalmente mais saudável e de uma agricultura mais produtiva; de outro a ansiedade gerada pela pouca informação a cerca da qualidade dos produtos transgênicos e pelo medo do desconhecido inerente a todos os seres humanos (Figura 12). 
1 
2 
3 
4 
5 
6 
7 
8 
"As plantas transgênicas caracterizam-se um ou mais genes provenientes de um pool gênico mais distante. Pelo uso dessa tecnologia espera-se produzir novos produtos ecologicamente sustetáveis, mais produtivos, com superior qualidade e que sejam caapzes de colaborar na solução da falta nutricional dos mais de 1.5 bilhões de pessoas no mundo, que sofrem de subnutrição, bem como, reduzir substacialmente a agressão ao meio ambiente." 
Sachse
18 
Figura 12: Charge do Ivo Viu a Uva. (Fonte: http://www.ivoviuauva.com.br/?p=433, 2009) 
Contudo, o aprimoramento das técnicas de obtenção de organismos geneticamente modificados, bem como o aumento da sua utilização, surgiram novos produtos, visando a produção dos mesmos em larga escala. 
Atividade Complementar 3 
1) O que são transgênicos? 
2) Quais os fenômenos de transgênese na natureza? Citar exemplos de transgêneses naturais. 
3) Como podemos identificar os alimentos transgênicos? 
4) Quais as técnicas usadas na produção de transgênicos? 
VII. Bioprospecção 
Basicamente, a bioprospecção consiste na exploração e investigação de recursos provenientes da fauna e da flora, a fim de identificar princípios ativos para a obtenção de novos produtos e processos com vistas à comercialização. É essencialmente um fenômeno de redes, que integra atores e práticas, as mais diversas – da atividade biotecnológica a sociedades indígenas, grandes indústrias e organizações não governamentais – e explicita muitos conflitos, ainda bastante ativos. Tudo isso ressalta a necessidade de mecanismos regulatórios e de toda uma base de legitimação para garantir a sua sustentabilidade no mundo globalizado (Artuso, 2002). 
Em resumo: A prospecção da biodiversidade ou simplesmente bioprospecção significa “A exploração da diversidade biológica por recursos genéticos e bioquímicos, de valor comercial, e que, eventualmente, pode fazer uso do conhecimento de comunidades indígenas ou tradicionais”. 
Sant’Ana
19 
A bioprospecção tem como forte tendência propiciar intenso debate no interior da sociedade, sobre temas os mais diversos, que dizem respeito à sobrevivência das espécies e a do próprio planeta, ao aproximar o mundo biológico do mundo político, o mundo natural do mundo tecnológico (Figura 13). 
Bioprospecção 
Figura 13: Esquema representativo das etapas de biopropecção. 
Em termos mais específicos, os processos de transformação das matérias-primas em resultados, na prática bioprospectiva, podem ser, basicamente, de dois tipos: um deles, voltado à obtenção das condições efetivas para a realização da produção de novos recursos biológicos e novos conhecimentos; e o outro, que consiste em todas as ações relacionadas, diretamente, aos processos investigativos é a pesquisa propriamente dita, que ocorrem mediante complexos processos (Trigueiro, 2002; Castree, 2003). 
Além dos citados princípios é necessário também que sejam tomadas ações concretas no sentido de incrementar o processo de bioprospecção, aos quais podemos entender: fazer o inventário da biodiversidade formando uma base de dados concreta para que se conheça o que se tem e assim fornecer subsídios para se conhecer seu potencial, fomentar a conscientização da importância da biodiversidade para a sobrevivência dos ecossistemas e das próprias espécies em geral (Trigueiro, 2006). O processo de bioprospecção deve observar princípios para que tenha credibilidade científica, política e econômica, com destaque a: 
Prevenção: Quanto aos impactos irreparáveis; 
Conservação: Evitar o esgotamento do recurso; 
Controle público e privado: O processo deve ser controlado pelos órgãos de fiscalização assim como pelas entidades não governamentais; 
Compensação: A comunidade ou a pessoa fornecedora da matéria prima ou do conhecimento. 
Matéria-prima 
Recursos biológicos disponíveis em uma reserva de biodiversidade 
Necessidades e demandas 
Conhecimento tradicional 
Estoque de conhecimentos 
científicos e tecnológicos 
Processos de bioprospecção 
Recursos biológicos para a obtenção de produtos e processos biotecnológicos industriais
20 
Fonte: http://www.cpafro.embrapa.br/embrapa/Artigos/bioprospec.htm, 2010. 
Quanto às visões de futuro da prática bioprospectiva, a percepção parece estar dividida entre uma visão mais otimista e outra mais cética entre os especialistas. Talvez esse seja o principal atrativo da investigação do tema da bioprospecção: a possibilidade de levantar questões que apontem para aspectos ainda não explorados, ou que sugira a necessidade de dedicarmos maior atenção à análise da complexidade do fenômeno (Sant'ana, 2002; Dias e Costa, 2007). 
Contudo, não podemos esquecer ainda que a biodiversidade que é o alicerça da bioprospecção não forma um recurso sem dono, pelo contrário pertence ao povo do país onde existe, podendo ser considerado como um bem de caráter difuso, isto é de cada um e conseqüentemente de todos, de forma que deve ser defendido por todos. 
Atividade Complementar 4 
1) Conceitue bioprospecção. 
2) A biodiversidade é o alicerce da bioprospecção? 
3) A biopropecção pode conbriuir no desenvolvimento sustentável. De que maneira? 
4) De que forma os saberes tradicionais pode contribuir para a bioprospecção? 
VIII. As questões éticas em biotecnologia 
Os cientistas, os técnicos e a sociedade em geral deverão debater com seriedade as questões de ordem ética que se levantam com a utilização destas técnicas nos animais e no ser humano (Anjos, 1997). Para tal deverá ser garantida uma informação que nos permita o cada momento, saber quais os potenciais vantagens e desvantagens. 
A permissão de registro de patentes de cromossomas humanos produzidos artificialmente, e recentemente ocorrida nos EUA, deveria ser ponderada, por razões que se prendem com a evolução do conhecimento científico (Shiva, 2004). Entretanto, no ser humano deverá ser evitada a manipulação de células sexuais ou embrionárias que resulte na transmissão das alterações provocadas à descendência. 
Contudo, a disseminação de animais clonados na pecuária intensiva pode conduzir a uma diminuição da desejada variabilidade genética das populações, conduzindo, em curto prazo, à perda de genes que podem vir a ser considerados 
"Os resultados de Wilmut et al. têm sem dúvida muito mérito. Um desses efeitos é obrigar-nos a encarar as nossas responsabilidades. Não será uma barreira técnica que nos protegerá das perspectivas mais negras, mas uma barreira moral, baseada numa reflexão sobre as bases da nossa dignidade. Essa barreira é certamente o aspecto mais dignificante do génio humano." 
Axel Kahn 
“A Terra provê o suficiente para as necessidades de todos os homens, mas não para a voracidade de todos”. 
Mahatma Gandhi
21 
importantes para futuras ações de seleção e de adaptação. Este problema poderá ser evitado se for instituída a obrigatoriedade de utilizar animais doadores, oriundos de linhas afastadas, contribuindo inclusivamente para aumentar a diversidade genética. 
Do mesmo modo seria desumano clonar seres humanos completos e tal não é necessário visto que a investigação pode recorrer a animais. As alternativas existentes ao nível da manipulação de células somáticas e a clonagem de órgãos permitirão resolverem muitos dos problemas sem que isso implique a transmissão de características à descendência (Closet, 2000). 
Hoje existe um grande debate no seio da comunidade científica, procurando conciliar o aspecto ético, com o inevitável direito do homem em querer saber mais sobre os mecanismos que regulam os processos biológicos na natureza e com o próprio direito à vida. 
Charge do Ivan 
(Fonte: http://ivancabral.blogspot.com/2007/06/tica.html, 2009) 
A evolução da ciência biotecnológica está caminhando a passos largos e pode-se dizer que a biotecnologia moderna ainda é uma criança, considerando todas as potencialidades e o que ainda vai ser descoberto. Nesse sentido, é estratégico para o Brasil aumentar o investimento em ciência e tecnologia e desobstruir tudo o que tem dificultado as pesquisas pelas instituições públicas e privadas, desde que tenha ética. 
Atividade Complementar 5 
1) O que é ética? 
2) Conceitue bioética em biotecnologia. 
3) O que é variabilidade genética? 
IX. Conclusões 
O assunto da biotecnologia industrial tem várias facetas, entretanto não se pode negar a contribuição que o desenvolvimento dessas tecnologias, representa para a humanidade.
22 
É inquestionável que a biotecnologia, incluindo as tecnologias de cultivo in vitro e transformação genética, é hoje uma das ferramentas de grande importância para o desenvolvimento sustentável, além de propiciar benefícios a diferentes setores da sociedade. 
A bioprospecção é um seguimento pertinente e ocorre em âmbito mundial uma nova forma de exploração dos recursos naturais biológicos, legalmente a diversidade de vida existente em determinado local para os fins comerciais. 
Em suma, as aplicações da biotecnologia moderna são múltiplas e, por isso mesmo, envolvem um mercado potencial de bilhões de dólares, o que exige, por tarde da iniciativa privada, bem como do governo investimentos significativos no desenvolvimento de pesquisas. 
Conduto espera-se que tenhamos contribuído para o módulo (Processos emergentes e biodiversidade) de forma bastante positiva. Espera-se, também que esse trabalho seja contextualizada, e que instigue a todos que a leiam a cursar esta disciplina. 
X. Referências 
ALBAGLI, S. Da biodiversidade à biotecnologia: a nova fronteira da informação. Ciência da Informação, v. 27, 1998. 
ANJOS, M. F. Bioética: abrangência e dinamismo. O Mundo da Saúde, São Paulo, ano 21, v. 21, 1997. 
ARTUSO. A. Bioprospecting, benefit Sharing, and biotechnological capacity building. World Development, v. 30, 2002. 
BORDINGNON, V. Clonagem de animais por transferência nuclear: Avanços e desafios. Acta Scientiae Veterinarie. Supl. 31, 2003. 
BORZANI, W.; SCHMIDELL, W.; LIMA, U. A.; AQUARONE, E. Biotecnologia Industrial: Fundamentos. 1 ª ed, São Paulo: Editora Edgard Blücher Ltda. v. 1. 2001. 
BRASIL. Parâmetros Curriculares Nacionais (Ensino Médio), Parte III – Ciências da Natureza, Matemática e suas Tecnologias. Brasília: Ministério da Educação e Cultura, 2000. 
BRESSAN, F. F.; MIRANDA, M. S.; DE BEM, T. H.; PEREIRA, F. T. V.; BINELLI, M.; MEIRELLES, F. V. Produção de animais transgênicos por transferência nuclear como modelo de estudo biológico. Revista Brasileira de Reprodução Animal, v. 32, 2008. 
CARVALHO, H. C. Fundamentos de Genética e Evolução. Atheneu: Rio de Janeiro/São Paulo, 1987. 
CANHOS, V. P.; MANFIO, G. P. Recursos Microbiológicos para Biotecnologia. Campinas, 2010. http://www.anbio.org.br/pdf/2/mct_recursos_biologicos.pdf 
CASTREE, N. Bioprospecting: from theory to practice (and back again). Transactions of the Institute of British Geographers, 2003. 
CLOSET, J. Bioética como ética aplicada e genética. In: Garrafa, V.; Costa, S. I. F.
23 
(Org.), A bioética no século XXI. Brasília: Editora da UNB, 2000. 
DIAS, C. C.; COSTA, M. C. Cooperação internacional e bioprospecção no Brasil e no Peru, RECIIS – Revista Eletrônica de Comunicação Informação & Inovação em Saúde, v.1, 2007. 
GUIMARÃES, M. C. C.; FILHO, G. R. V.; CORREIA, V. G. Biotecnologia e desenvolvimento sustentável no Brasil. Revista Visões, v. 1, 2008. 
KREUZER, H.; MASSEY, A. Engenharia Genética e Biotecnologia. 2ª ed., Editora Artmed. 2002. 
LOPES, S. Biologia Essencial. 1ª. ed. São Paulo: Editora Saraiva., 2003. 
LOSEY, J. E.; RAYOR, L. S.; CARTER M. E. Transgenic pollen harms monarch larvae. Nature, v. 399, 1999. 
MALAJOVICH, M. A. Biotecnologia. Editora Axcel Books do Brasil. 2004. 
RECH, E. L. A agropecuaria molecular. In: Luis Mir, outros. (Org.). Genômica. 1ª ed., Sao Paulo: Editora Atheneu, v. 1, 2004. 
ROSELINO, A. M. Biologia molecular aplicada às dermatoses tropicais. Anais Brasileiros de Dermatolologia, v. 83, 2008 . 
SANT'ANA, P. J. P. É possível a bioprospecção no Brasil. Rio de Janeiro: UFRJ/COOPE, 2002. (Tese de Doutorado). 
SCHEIDT, G. N. Desenvolvimento de um biorreator do tipo imersão por bolhas para as técnicas de micropropagação e cultura de células vegetais. Tese (Doutorado em Processos Biotecnológicos) - Universidade Federal do Paraná, Curitiba, Paraná, 2008. 
SCHEIDT, G. N.; ARAKAKI, A. H.; CHIMILOVSKI, J. S.; PORTELLA, A. C. F.; SPIER, M. R.; WOICIECHOWSKI, A. L.; BIASI, L. A.; SOCCOL, C. R. Utilization of the Biorreactor of Imersion by Bubbles at the Micropropagation of Ananas comosus L. Merril. Brazilian Archives of Biology and Technology, v. 52, 2009. 
SHIVA, V. Biodiversidade, direitos de propriedade intelectual e globalização, In: SOUSA SANTOS, B. (Org.) Semear outras soluções: os caminhos da biodiversidade e dos conhecimentos rivais. Porto: Afrontamento, 2004. 
SILVA, A. B.; PASQUAL, M.; TEIXEIRA, J. B.; ARAÚJO, A. G. Métodos de micropropagação de abacaxizeiro. Pesquisa Agropecuária Brasileira, v. 42, 2007. 
SILVA, L. C. da. Estabelecimento in vitro de cultivares de mirtilo (Vaccinium ashei Reade) para início da micropropagação. Dissertação (Mestrado em Agronomia- Fruticultura de Clima Temperado) - Universidade Federal de Pelotas, Pelotas, 2006. 
SOCCOL, C. R.; SCHEIDT, G. N.; MOHAN, R. Biorreator do tipo imersão por bolhas para as técnicas de micropropagação vegetal. Universidade Federal do Paraná. Patente, (DEPR. 01508000078), 3 Março, 2008.
24 
TEISSON, C.; ALVARD, D. A new concept of plant in vitro cultivation in liquid medium: temporary immersion. In: VIII INTERNATIONAL CONGRESS OF PLANT TISSUE AND CELL CULTURE, 1994, Florence. Abstract… Florence: ICPTCC, 54, 1994. 
TEIXEIRA, J. B. Biorreatores. Revista Ciência e desenvolvimento, v. 24, 2002. 
TOMA, H. E. O mundo nanométrico: a dimensão do novo século. São Paulo: Oficina de Textos, 2004. 
TRIGUEIRO, M. G. S. Bioprospecção: uma nova fronteira da sociedade, Campinas: IG-UNICAMP, mimeo., 2006. 
TRIGUEIRO, M. G. S. O Clone de Prometeu; a biotecnologia no Brasil: uma abordagem para a avaliação. Brasília, Editora da UnB, 2002. 
VAN, T. C. Biotechnology for sustainable development in partner countries. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, 1999. 
VILLEN, R. A. Biotecnologia-Histórico e Tendências. http://www.hottopos.com/regeq10/rafael.htm., 24/10/2009. 
ZECHENDORF, B. Sustainable development: how can biotechnology contribute? Trends in Biotechnology, 1999. 
Referências da internet 
www.bioinfo.ufpb.br/difusao, 2009. 
http://lqes.iqm.unicamp.br/institucional/bibliotecas/bibliotecas_lqes_nanotecnologia_conf_levy.html www.quadrante.com.br/.../031005/01_05.jpg, 2009. 
http://4.bp.blogspot.com/_FK5QjE4gwZc/Sb19ROF0CcI/AAAAAAAABNE/GjFFTd5UuwI/s1600h/cultivo%252520de%252520c%2525C3%2525A9lulas%252520tronco.jpg, 2009. 
http://www.universitario.com.br/noticias/noticias_noticia.php?id_noticia=5316, 2009. 
http://cheirinhosdeciencia.blogspot.com/, 2009. 
http://ivancabral.blogspot.com/2007/06/tica.html, 2009. 
http://plantasgm.wordpress.com/category/biotecnologia-e-historia-da-biotec/2010. 
http://www.cpafro.embrapa.br/embrapa/Artigos/bioprospec.htm, 2010.
25 
ANEXO 
Vocabulário 
Biodiversidade: A biodiversidade pode ser definida como a variedade e a variabilidade existentes entre organismos vivos e as complexidades ecológicas nas quais elas ocorrem. Ela pode ser entendida como uma associação de vários componentes hierárquicos: ecossistema, comunidade, espécies, populações e genes em uma área definida. 
Bioética: É o estudo sistemático da conduta humana na área das ciências da vida e cuidado da saúde, enquanto essa conduta é examinada à luz dos valores e princípios morais. É a nova imagem da ética médica. 
Biopirataria: Apropriação ilegal de produtos. 
Biotecnologia: É o conjunto de técnicas que permite desenvolver produtos de serviço por meio de processos biológicos utilizando a tecnologia do DNA recombinante e a cultura de tecidos. 
Célula: Unidade microscópica de matéria viva. Contêm em seu núcleo 46 cromossomos, onde se armazenam as informações que instruem o funcionamento do organismo. 
Clonagem: Obtenção de um grupo de células, ou tecidos, ou até de indivíduo completo a partir de uma única célula. 
Comitê de Ética em Pesquisa: É o órgão institucional que tem por objetivo proteger o bem-estar dos indivíduos pesquisados. É um comitê interdisciplinar, constituído por profissionais de ambos os sexos, além de pelo menos um representante da comunidade, que tem por função avaliar os projetos de pesquisa que envolva a participação de seres humanos. As características e atribuições dos Comitês de Ética em Pesquisa no Brasil estão contidas na Resolução 196/96 do Conselho Nacional de Saúde. 
CTNbio: Comissão Técnica Nacional de Biossegurança. É a comissão especial do Ministério da Ciência e Tecnologia que regulamenta as atividades relacionadas com pesquisa, transporte e comercialização de organismos transgênicos e seus derivados. Esta comissão emite pareceres técnicos sobre os quais outros ministérios componentes (da Saúde, da Agricultura e do Abastecimento, do Meio Ambiente e da Amazônia Legal) irão exercer as suas atribuições, incluindo-se aí a regulamentação e a fiscalização. 
Engenharia Genética: É a modificação de seres vivos pela manipulação direta do DNA, através da inserção ou deleção de fragmentos específicos. Sua aplicação pode ser na produção de vacinas, proteínas por microrganismos, alimentos, transplantes, terapia gênica, animais transgênicos. 
Gene: É a unidade hereditária ou genética, situada no cromossomo, e que determina as características de um indivíduo. Trata-se de uma seqüência de letras A (Adenina), T
26 
(Tinina), C (Citosina), e G (Guanina), com a receita de uma proteína específica. As combinações de letras e variantes de genes é que determinam as características individuais. 
Genoma: É o patrimônio genético de um ser vivo, ou seja, a coleção de genes alojada nos cromossomos, que ficam no núcleo de cada célula. Os 23 cromossomos somam cerca de 3 bilhões de letras. 
Patentes: É o registro comercial de autoria. É o primeiro passo para extrair lucro de uma descoberta. A patente proíbe qualquer exploração (fabricação, uso, venda ou importação) por terceiros sem autorização de seu titular. 
Plantas Transgênicas: São plantas que contêm um ou mais genes introduzidos por meio da técnica de transformação genética. Através desta técnica, um ou mais genes são isolados bioquimicamente e inseridos numa célula. Em seguida, esta célula se multiplica e origina uma nova planta, carregando cópias idênticas do gene. As plantas transgênicas são também chamadas de organismos geneticamente modificados (OGM). Vejam quais são os processos para se obter uma nova planta: 
1. Cruzamento natural: ocorre entre duas plantas, quando o próprio ar ou os insetos realiza a troca do pólen contido nas flores das plantas; 
2. Cruzamento para melhoramento genético: a troca do pólen das flores é feita pelo pesquisador, que cruza duas plantas para obter uma nova, com características desejadas pela pesquisa (resistência a doenças, produtividade, adaptação a uma região, etc.).; e 
3. Transformação genética: nesta técnica, não há cruzamento entre duas plantas. A célula de uma planta recebe um gene em laboratório e se multiplica, resultando numa planta transgênica. O gene introduzido na célula não é necessariamente da mesma planta. Pode ser de qualquer organismo vivo, como um animal, uma planta diferente ou mesmo bactéria. 
Terapia Gênica: É a manipulação de genes do indivíduo para corrigir defeitos genéticos. A terapia gênica pode ser do tipo: 
1. Correção: quando ocorre a inserção de um gene “sadio” no local de um “defeituoso” ou deleção de um gene deletério; 
2. Complementação: quando é feita a introdução de uma cópia normal sem modificação do original; ou 
3. Adição: com o acréscimo de um gene ausente no genoma.

More Related Content

What's hot

Sustentabilidade x biotecnologia
Sustentabilidade x biotecnologiaSustentabilidade x biotecnologia
Sustentabilidade x biotecnologia12101240
 
Biotecnologia
BiotecnologiaBiotecnologia
BiotecnologiaURCA
 
Biotecnologia industrial vol. 2 valter borzani - 1ª ed. pt.
Biotecnologia industrial vol. 2   valter borzani - 1ª ed. pt.Biotecnologia industrial vol. 2   valter borzani - 1ª ed. pt.
Biotecnologia industrial vol. 2 valter borzani - 1ª ed. pt.livro10
 
Biotecnologia farmaceutica
Biotecnologia farmaceuticaBiotecnologia farmaceutica
Biotecnologia farmaceuticaGlauce Trevisan
 
Biotecnologia Aplicada à Agricultura - XXVI SECAM - Unimar, 20/10/14
Biotecnologia Aplicada à Agricultura - XXVI SECAM - Unimar, 20/10/14Biotecnologia Aplicada à Agricultura - XXVI SECAM - Unimar, 20/10/14
Biotecnologia Aplicada à Agricultura - XXVI SECAM - Unimar, 20/10/14Darío Palmieri
 
Seminario da agricultura tradicional à biotecnologia
Seminario da agricultura tradicional à biotecnologiaSeminario da agricultura tradicional à biotecnologia
Seminario da agricultura tradicional à biotecnologiaLUIS ABREU
 

What's hot (20)

Sustentabilidade x biotecnologia
Sustentabilidade x biotecnologiaSustentabilidade x biotecnologia
Sustentabilidade x biotecnologia
 
Biotecnologia
BiotecnologiaBiotecnologia
Biotecnologia
 
Biotecnologia industrial vol. 2 valter borzani - 1ª ed. pt.
Biotecnologia industrial vol. 2   valter borzani - 1ª ed. pt.Biotecnologia industrial vol. 2   valter borzani - 1ª ed. pt.
Biotecnologia industrial vol. 2 valter borzani - 1ª ed. pt.
 
Biotecnologia
BiotecnologiaBiotecnologia
Biotecnologia
 
Biotecnologia 2012
Biotecnologia 2012Biotecnologia 2012
Biotecnologia 2012
 
Avanços da biotecnologia 2 B
Avanços da biotecnologia   2 BAvanços da biotecnologia   2 B
Avanços da biotecnologia 2 B
 
Biotecnologia farmaceutica
Biotecnologia farmaceuticaBiotecnologia farmaceutica
Biotecnologia farmaceutica
 
Biotecnologia agricola
Biotecnologia agricolaBiotecnologia agricola
Biotecnologia agricola
 
Biotecnologia 2 B
Biotecnologia 2 BBiotecnologia 2 B
Biotecnologia 2 B
 
Avanços da biotecnologia
Avanços da biotecnologiaAvanços da biotecnologia
Avanços da biotecnologia
 
Biotecnologia
BiotecnologiaBiotecnologia
Biotecnologia
 
Avanços da biotecnologia 2 A
Avanços da biotecnologia 2 AAvanços da biotecnologia 2 A
Avanços da biotecnologia 2 A
 
Biotecnologia Aplicada à Agricultura - XXVI SECAM - Unimar, 20/10/14
Biotecnologia Aplicada à Agricultura - XXVI SECAM - Unimar, 20/10/14Biotecnologia Aplicada à Agricultura - XXVI SECAM - Unimar, 20/10/14
Biotecnologia Aplicada à Agricultura - XXVI SECAM - Unimar, 20/10/14
 
Biotecnologia
Biotecnologia Biotecnologia
Biotecnologia
 
Biotecnologia
BiotecnologiaBiotecnologia
Biotecnologia
 
Webquest genética e biotecnologia
Webquest genética e  biotecnologiaWebquest genética e  biotecnologia
Webquest genética e biotecnologia
 
Avanços da biotecnologia 2 AA
Avanços da biotecnologia 2 AAAvanços da biotecnologia 2 AA
Avanços da biotecnologia 2 AA
 
Biotecnologia 2 B
Biotecnologia 2 BBiotecnologia 2 B
Biotecnologia 2 B
 
Seminario da agricultura tradicional à biotecnologia
Seminario da agricultura tradicional à biotecnologiaSeminario da agricultura tradicional à biotecnologia
Seminario da agricultura tradicional à biotecnologia
 
Avanços da biotecnologia 2 A
Avanços da biotecnologia 2 AAvanços da biotecnologia 2 A
Avanços da biotecnologia 2 A
 

Similar to Biotecnologia clonagem transgênicos bioprospecção

TÓPICOS EM BIOTECNOLOGIA - TEXTO INTRODUTÓRIO
TÓPICOS EM BIOTECNOLOGIA - TEXTO INTRODUTÓRIOTÓPICOS EM BIOTECNOLOGIA - TEXTO INTRODUTÓRIO
TÓPICOS EM BIOTECNOLOGIA - TEXTO INTRODUTÓRIOJuliana Aguiar
 
Trabalho agro biotecnologia e biodiversidade
Trabalho   agro biotecnologia e biodiversidadeTrabalho   agro biotecnologia e biodiversidade
Trabalho agro biotecnologia e biodiversidadeCromossomioGenias
 
2- Aplicação da biotecnologia(Ciencias).pptx
2- Aplicação da biotecnologia(Ciencias).pptx2- Aplicação da biotecnologia(Ciencias).pptx
2- Aplicação da biotecnologia(Ciencias).pptxwilliam pereira dahora
 
BIOTECNOLOGIA NA INDÚSTRIA DO PETRÓLEO: 1988-1997
BIOTECNOLOGIA NA INDÚSTRIA DO PETRÓLEO: 1988-1997BIOTECNOLOGIA NA INDÚSTRIA DO PETRÓLEO: 1988-1997
BIOTECNOLOGIA NA INDÚSTRIA DO PETRÓLEO: 1988-1997ProjetoBr
 
Introdução Biotecnologia (1).pptx
Introdução Biotecnologia (1).pptxIntrodução Biotecnologia (1).pptx
Introdução Biotecnologia (1).pptxAndersonLima225742
 
Cartilha transgenicos
Cartilha transgenicosCartilha transgenicos
Cartilha transgenicosfabio silva
 
53-Texto do Artigo-160-1-10-20171020.pdf
53-Texto do Artigo-160-1-10-20171020.pdf53-Texto do Artigo-160-1-10-20171020.pdf
53-Texto do Artigo-160-1-10-20171020.pdfLUCIENECRISTALDOALBU
 
Palestra Biotecnologia e Ambiente - Centro Paula Souza 2010 - Assis
Palestra Biotecnologia e Ambiente - Centro Paula Souza 2010 - AssisPalestra Biotecnologia e Ambiente - Centro Paula Souza 2010 - Assis
Palestra Biotecnologia e Ambiente - Centro Paula Souza 2010 - AssisDarío Palmieri
 
Tese Mestrado de Tiago Bonacho_Transgénicos e Bioética
Tese Mestrado de Tiago Bonacho_Transgénicos e BioéticaTese Mestrado de Tiago Bonacho_Transgénicos e Bioética
Tese Mestrado de Tiago Bonacho_Transgénicos e BioéticaJoão Soares
 
Vestibular 2011 02_bh_biologia_i
Vestibular 2011 02_bh_biologia_iVestibular 2011 02_bh_biologia_i
Vestibular 2011 02_bh_biologia_iAdilson Fernandes
 

Similar to Biotecnologia clonagem transgênicos bioprospecção (20)

TÓPICOS EM BIOTECNOLOGIA - TEXTO INTRODUTÓRIO
TÓPICOS EM BIOTECNOLOGIA - TEXTO INTRODUTÓRIOTÓPICOS EM BIOTECNOLOGIA - TEXTO INTRODUTÓRIO
TÓPICOS EM BIOTECNOLOGIA - TEXTO INTRODUTÓRIO
 
Trabalho agro biotecnologia e biodiversidade
Trabalho   agro biotecnologia e biodiversidadeTrabalho   agro biotecnologia e biodiversidade
Trabalho agro biotecnologia e biodiversidade
 
Avanços da biotecnologia 2 A..
Avanços da biotecnologia 2 A..Avanços da biotecnologia 2 A..
Avanços da biotecnologia 2 A..
 
2- Aplicação da biotecnologia(Ciencias).pptx
2- Aplicação da biotecnologia(Ciencias).pptx2- Aplicação da biotecnologia(Ciencias).pptx
2- Aplicação da biotecnologia(Ciencias).pptx
 
Avanço da-biotecnologia -2 B --
Avanço da-biotecnologia -2 B --Avanço da-biotecnologia -2 B --
Avanço da-biotecnologia -2 B --
 
BIOTECNOLOGIA NA INDÚSTRIA DO PETRÓLEO: 1988-1997
BIOTECNOLOGIA NA INDÚSTRIA DO PETRÓLEO: 1988-1997BIOTECNOLOGIA NA INDÚSTRIA DO PETRÓLEO: 1988-1997
BIOTECNOLOGIA NA INDÚSTRIA DO PETRÓLEO: 1988-1997
 
Introdução Biotecnologia (1).pptx
Introdução Biotecnologia (1).pptxIntrodução Biotecnologia (1).pptx
Introdução Biotecnologia (1).pptx
 
Avanços da biotecnologia
Avanços da biotecnologiaAvanços da biotecnologia
Avanços da biotecnologia
 
6a série biotecnologia
6a série   biotecnologia6a série   biotecnologia
6a série biotecnologia
 
Trabalho de avanços biotecnologia 2 C
Trabalho de  avanços  biotecnologia 2 CTrabalho de  avanços  biotecnologia 2 C
Trabalho de avanços biotecnologia 2 C
 
Biotecnologias
BiotecnologiasBiotecnologias
Biotecnologias
 
Cartilha transgenicos
Cartilha transgenicosCartilha transgenicos
Cartilha transgenicos
 
53-Texto do Artigo-160-1-10-20171020.pdf
53-Texto do Artigo-160-1-10-20171020.pdf53-Texto do Artigo-160-1-10-20171020.pdf
53-Texto do Artigo-160-1-10-20171020.pdf
 
Palestra Biotecnologia e Ambiente - Centro Paula Souza 2010 - Assis
Palestra Biotecnologia e Ambiente - Centro Paula Souza 2010 - AssisPalestra Biotecnologia e Ambiente - Centro Paula Souza 2010 - Assis
Palestra Biotecnologia e Ambiente - Centro Paula Souza 2010 - Assis
 
Biotecnologia-2B
Biotecnologia-2BBiotecnologia-2B
Biotecnologia-2B
 
Avanços da biotecnologia 2A
Avanços da biotecnologia 2AAvanços da biotecnologia 2A
Avanços da biotecnologia 2A
 
Tese Mestrado de Tiago Bonacho_Transgénicos e Bioética
Tese Mestrado de Tiago Bonacho_Transgénicos e BioéticaTese Mestrado de Tiago Bonacho_Transgénicos e Bioética
Tese Mestrado de Tiago Bonacho_Transgénicos e Bioética
 
Biossensores.doc
Biossensores.docBiossensores.doc
Biossensores.doc
 
Aviso de Pauta | Forum de bioeconomia
Aviso de Pauta | Forum de bioeconomiaAviso de Pauta | Forum de bioeconomia
Aviso de Pauta | Forum de bioeconomia
 
Vestibular 2011 02_bh_biologia_i
Vestibular 2011 02_bh_biologia_iVestibular 2011 02_bh_biologia_i
Vestibular 2011 02_bh_biologia_i
 

Recently uploaded

PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdfPRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdfprofesfrancleite
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdfLeloIurk1
 
apostila projeto de vida 2 ano ensino médio
apostila projeto de vida 2 ano ensino médioapostila projeto de vida 2 ano ensino médio
apostila projeto de vida 2 ano ensino médiorosenilrucks
 
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdfCurrículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdfTutor de matemática Ícaro
 
Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Ilda Bicacro
 
planejamento_estrategico_-_gestao_2021-2024_16015654.pdf
planejamento_estrategico_-_gestao_2021-2024_16015654.pdfplanejamento_estrategico_-_gestao_2021-2024_16015654.pdf
planejamento_estrategico_-_gestao_2021-2024_16015654.pdfmaurocesarpaesalmeid
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...azulassessoria9
 
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfFrancisco Márcio Bezerra Oliveira
 
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdfENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdfLeloIurk1
 
A QUATRO MÃOS - MARILDA CASTANHA . pdf
A QUATRO MÃOS  -  MARILDA CASTANHA . pdfA QUATRO MÃOS  -  MARILDA CASTANHA . pdf
A QUATRO MÃOS - MARILDA CASTANHA . pdfAna Lemos
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...azulassessoria9
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfHELENO FAVACHO
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...HELENO FAVACHO
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfHELENO FAVACHO
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...IsabelPereira2010
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxTailsonSantos1
 
About Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de HotéisAbout Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de Hotéisines09cachapa
 
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de..."É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...Rosalina Simão Nunes
 
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdfPROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdfHELENO FAVACHO
 

Recently uploaded (20)

PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdfPRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
PRÉDIOS HISTÓRICOS DE ASSARÉ Prof. Francisco Leite.pdf
 
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
5 bloco 7 ano - Ensino Relogioso- Lideres Religiosos _ Passei Direto.pdf
 
apostila projeto de vida 2 ano ensino médio
apostila projeto de vida 2 ano ensino médioapostila projeto de vida 2 ano ensino médio
apostila projeto de vida 2 ano ensino médio
 
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdfCurrículo - Ícaro Kleisson - Tutor acadêmico.pdf
Currículo - Ícaro Kleisson - Tutor acadêmico.pdf
 
Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"Nós Propomos! " Pinhais limpos, mundo saudável"
Nós Propomos! " Pinhais limpos, mundo saudável"
 
planejamento_estrategico_-_gestao_2021-2024_16015654.pdf
planejamento_estrategico_-_gestao_2021-2024_16015654.pdfplanejamento_estrategico_-_gestao_2021-2024_16015654.pdf
planejamento_estrategico_-_gestao_2021-2024_16015654.pdf
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
 
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdfRecomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
Recomposiçao em matematica 1 ano 2024 - ESTUDANTE 1ª série.pdf
 
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdfENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
ENSINO RELIGIOSO 7º ANO INOVE NA ESCOLA.pdf
 
A QUATRO MÃOS - MARILDA CASTANHA . pdf
A QUATRO MÃOS  -  MARILDA CASTANHA . pdfA QUATRO MÃOS  -  MARILDA CASTANHA . pdf
A QUATRO MÃOS - MARILDA CASTANHA . pdf
 
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
PROVA - ESTUDO CONTEMPORÂNEO E TRANSVERSAL: COMUNICAÇÃO ASSERTIVA E INTERPESS...
 
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdfPROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
PROJETO DE EXTENÇÃO - GESTÃO DE RECURSOS HUMANOS.pdf
 
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
PROJETO DE EXTENSÃO I - TECNOLOGIA DA INFORMAÇÃO Relatório Final de Atividade...
 
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptxSlides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
Slides Lição 6, CPAD, As Nossas Armas Espirituais, 2Tr24.pptx
 
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdfProjeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
Projeto_de_Extensão_Agronomia_adquira_ja_(91)_98764-0830.pdf
 
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
DeClara n.º 75 Abril 2024 - O Jornal digital do Agrupamento de Escolas Clara ...
 
Os editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptxOs editoriais, reportagens e entrevistas.pptx
Os editoriais, reportagens e entrevistas.pptx
 
About Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de HotéisAbout Vila Galé- Cadeia Empresarial de Hotéis
About Vila Galé- Cadeia Empresarial de Hotéis
 
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de..."É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
"É melhor praticar para a nota" - Como avaliar comportamentos em contextos de...
 
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdfPROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
PROJETO DE EXTENSÃO I - SERVIÇOS JURÍDICOS, CARTORÁRIOS E NOTARIAIS.pdf
 

Biotecnologia clonagem transgênicos bioprospecção

  • 1. 1 BIOTECNOLOGIA: CLONAGEM, TRANSGÊNICOS E BIOPROSPECÇÃO Autores: Gessiel Newton Scheidt, Andréa Haruko Arakaki, Micheli Rigon Spier e Augustus Caeser Franke Portella Sumário I. Apresentação II. Introdução III. Grandes áreas da biotecnologia IV. Nanociência e nanotecnologia V. Clonagem VI. Transgênicos VII. Bioprospecção VIII. As questões éticas em biotecnologia IX. Conclusões X. Referências
  • 2. 2 I. Apresentação É com grande satisfação que estamos oferecendo-lhe esta unidade que trata os diferentes assuntos da biotecnologia, com ênfase na clonagem, transgênicos e bioprospecção. Atualmente, a biotecnologia tange as diretrizes essenciais ao pensamento científico e ao mundo globalizado. Por quê? O que isso realmente importa? Um mercado forte, competitivo, muitas vezes permite que se tenham o desenvolvimento dos mais diversos bioprocessos, sejam eles direcionados principalmente à qualidade de vida humana ou animal. Contudo, o foco pode ser repassado aos interesses locais ou até mesmo mundiais, dependendo obviamente, a quem ou ao quê será estendido ou não, o futuro. A biotecnologia e/ou a nanotecnologia possui infinitas relações com a indústria e a sociedade, podendo ser utilizada em diversos segmentos e trazer muitos benefícios. No entanto, sabemos que as mudanças não são rápidas e que muitos princípios científicos não são facilmente aceitos pela população. Por esse motivo é importante entender o que realmente pode ser considerado um avanço biotecnológico capaz de beneficiar a sociedade como um todo. Espero que esta unidade seja um processo extremamente agradável de aprendizagem, e que você compreenda os conceitos básicos e a importância dos conhecimentos biotecnológicos nos mais variados setores da atividade humana. Objetivos Ao final dos estudos desta unidade, você será capaz de:  Reconhecer os avanços técnico-científicas que resultaram nas diversas áreas das biotecnologias;  Identificar os impactos desses avanços da biotecnologia no setor produtivo;  Reconhecer como o uso dessas tecnologias pode implicar em dilemas éticos para a sociedade. Contudo, a proposta deste módulo é de revisar os fundamentos das diversas áreas da biotecnologia e de mostrar como estes conhecimentos podem ser aplicados em setores produtivos da sociedade. II. Introdução O uso da biotecnologia teve o seu início com os processos fermentativos, cuja utilização transcende, de muito, o início da era Cristã, confundindo-se com a própria história da humanidade, quando esta se tornou sedentária. Um exemplo simples pode ser observado na obtenção e manutenção dos alimentos ou quando o homem aprendeu a domesticar animais e a desenvolver a agricultura, deixando assim de depender por completo da caça ou da coleta (Tabela 1). Tabela 1: Mostra os principais marcos históricos no avanço científico e tecnológico da Biotecnologia. Período Acontecimento
  • 3. 3 6.000 a. C. Bebidas alcoólicas (cerveja e vinho) são produzidas por sumérios e babilônios 2.000 a.C. Panificação e bebidas fermentadas são utilizadas por egípcios e gregos 1875 d. C. Pasteur mostra que a fermentação é causada por microrganismos 1880- 1910 Surgimento da fermentação industrial (ácido láctico, etanol, vinagre) 1922 Sementes híbridas de milho começam a ser comercializadas. 1910- 1940 Síntese de glicerol, acetona e ácido cítrico 1940- 1950 Antibióticos são produzidos em larga escala por processos fermentativos 1953 Estabelecida a estrutura do DNA (Wilson e Crick revelam a estrutura do DNA) 1073 Início da engenharia genética (Cohen e Boyer transferem um gene de um organismo para outro) 1982 Insulina humana é produzida por engenharia genética 1994 O primeiro alimento geneticamente modificado, o tomate Flavr Savr, chega aos supermercados dos EUA 2000 O arroz geneticamente modificado é criado 2003 O Projeto Genoma, que identificou o mapa genético humano, é concluído Fonte: www.bioinfo.ufpb.br/difusao. A Biotecnologia, ou os processos biotecnológicos, podem ser definidos como: “A nova bio-tecnologia”, a utilização de células e moléculas biológicas para a solução de problemas ou produção de produtos ou processos úteis, com potencial industrial em diversas áreas do conhecimento (Kreuzer e Massey, 2002). De acordo com Malajovich (2004), dentre as tecnologias desenvolvidas até o momento, a biotecnologia é, de longe, a que apresenta maior compatibilidade com a sustentabilidade da vida neste planeta. O seu impacto atinge vários setores produtivos, oferecendo novas oportunidades de emprego e renda. Dentre os inúmeros exemplos, tais como, plantas resistentes a doenças, plásticos biodegradáveis, detergentes mais eficientes, biocombustíveis, processos industriais e agrícolas menos poluentes, métodos de biorremediação do meio ambiente e centenas de testes diagnósticos e novos medicamentos (Figura 1). Figura 1: Adaptada do livro BIOtecnologia (Fonte: Malajovich, 2004). Conhecimentos BIOTECNOLOGIA Agentes Biológicos Produtos e Processos Resolver Problemas
  • 4. 4 As biotecnologias em seu sentido mais amplo compreendem a manipulação de microrganismos, plantas e animais, objetivando a obtenção de processos e produtos de interesse. É importante destacar que a biotecnologia tem um enfoque multidisciplinar, já que envolvem diferentes áreas do conhecimento que incluem a ciência básica, Biologia Molecular, Microbiologia, Biologia celular, Genética, Genômica, Embriologia etc. e, a ciência aplicada Técnicas imunológicas, Químicas e Bioquímicas e outras tecnologias que incluem a matemática básica e aplicada Informática, Ciências da computação, Robótica e Controle de processos (Figura 2). Figura 2: Representação esquemática da interação da biotecnologia com outros ramos do conhecimento. Livro Biotecnologia Industrial, V. I. (Fonte: Borzani et al., 2001). As novas técnicas de engenharia genética estão promovendo uma reavaliação de quase todos os processos industriais que empregam técnicas ou produtos biológicos. Segue abaixo os principais produtos e serviços de origens biotecnológicas (Tabela 2). Tabela 2: Produtos de origem biotecnológica Setores Bens e serviços Agricultura Adubo composto, pesticidas, silagem, mudas de plantas ou de árvores, plantas transgênicas, etc. Alimentação Pães, queijos, picles, cerveja, vinho, proteína unicelular, aditivos, etc. Eletrônica Biosensores. Energia Etanol, biogás. Química Butanol, acetona, glicerol, ácidos, enzimas, metais, etc. Meio Ambiente Recuperação de petróleo, tratamento do lixo, purificação da água Pecuária Seleção e melhoramento genético de embriões Saúde Antibióticos, hormônios e outros produtos farmacêuticos, vacinas, reagentes e testes para diagnóstico, etc. Fonte: Malajovich, 2004. Constatam-se na tabela acima, a amplitude e a profundidade de mudanças que
  • 5. 5 deverão advir com o uso dos processos biotecnológicos. Todos os setores descritos acima são focos primordiais ao que vivenciamos, já que apresentam um retorno lucrativo. Normalmente não percebemos a sutil implantação biotecnológica ou ao menos damos a devida importância, quando às novidades que permeiam as atribuladas relações humanas, mas torna-se perceptível à medida que a necessidade de consumo demanda providências ao mercado. "Não há dúvida que o futuro da humanidade depende, em grande parte, da liberdade que os investigadores tenham de explorar as suas próprias idéias. Embora não se possa considerar descabido os investigadores desejarem tornarem-se famosos, a verdade é que o homem que se dedicar à pesquisa com o objetivo de conseguir riqueza ou notoriedade, escolheu mal a sua profissão!" Alexander Fleming De acordo com Zechendorf (1999), a biotecnologia pretende ser uma atividade sustentável e econômicamente viavél, onde já é entendido que esse não deve ser apenas um simples dizer de palavras, e que apesar de todo o avanço biotecnológico nós não podemos nos esquecer da sustentabilidade (Guimarães et al., 2008). A fim de ser sustentável a biotecnologia deve ser economicamente viável e socialmente responsável para além de ser ambientalmente amigável, apresentar um custo benefício, antes que possa ser aceito pela indústria. III. Grandes áreas da biotecnologia A contribuição das biotecnologias ao desenvolvimento de produtos e processos deve ser analisada em função do impacto causado em cada uma das grandes áreas, com destaque, a “Biotecnologia Branca”: diz respeito às aplicações industriais e ambientais; “Biotecnologia Vermelha”: inclui as aplicações relativas à saúde; “Biotecnologia Verde”: dedica-se às aplicações agrícolas e alimentares; “Biotecnologia Azul”: dedica-se a aplicações com origem em organismos aquáticos. Contudo, espera-se que o desenvolvimento de novas tecnológicas possibilite a conservação ou criação de empregos.
  • 6. 6 Biotecnologia Branca A Biotecnologia Branca diz respeito às aplicações industriais e ambientais: Inclui os processos industriais que utilizam enzimas e organismos para processar e produzir químicos, materiais e energia. Segue abaixo as principais áreas de atuação: Biorremediação de vazamentos de petróleo e resíduos tóxicos; Monitoramento de poluentes (biosensores); Tratamento de resíduos industriais e águas residuárias; Biomineração (recuperação de metais pesados e radioisótopos); Recuperação de áreas degradadas (micorrizas e bactérias fixadoras de nitrogênios). Biotecnologia Vermelha A Biotecnologia Vermelha inclui as aplicações relativas à saúde: Esta área inclui a utilização de processos relacionados com a medicina e a farmacologia e que se baseiam na manipulação genética de organismos. Segue abaixo as principais áreas de atuação: Compostos farmacologicamente ativos; Antibióticos, antimicrobianos e antivirais; Vitaminas e hormônios; Vacinas e probióticos; Biopolímeros de aplicação médica (e.g., pele artificial); Biotransformações em química fina. Biotecnologia Verde A Biotecnologia Verde dedica-se às aplicações agrícolas e alimentares: As aplicações biotecnológicas desta área incluem métodos de melhoramento de variedades vegetais e animais, visando a agro-indústria. Segue abaixo as principais áreas de atuação: Aumento de fertilidade do solo; Fixação biológica de nitrogênio; Controle biológico de insetos e patógenos; Promotores de crescimento de plantas; Promotores de crescimento animal; Anti-parasiticidas, antibióticos, antimicrobianos, antivirais; Vitaminas e hormônios: Vacinas e probióticos. As aplicações biotecnológicas desta área incluem métodos de produção e preservação de alimentos, visando a indústria de alimentos. Segue abaixo as principais áreas de atuação: Produção e preservação de alimentos; Produção de bebidas;
  • 7. 7 Aromas e essências; Aditivos para alimentos (emulsificantes e espessantes); Alimentos funcionais (nutracêuticos). Biotecnologia Azul A Biotecnologia Azul dedica-se a aplicações com origem em organismos aquáticos: Esta área envolve a aplicação de métodos moleculares com base em organismos marinhos e de água doce, ou nos seus tecidos, células ou componentes celulares. Segue abaixo as principais áreas de atuação: Ambiental; Indústria de alimentos; Indústria Química; Indústria farmacêutica; Energia. Fonte: Adaptada: http://www.anbio.org.br/pdf/2/mct_recursos_biologicos.pdf, 2010 e http://plantasgm.wordpress.com/category/biotecnologia-e-historia-da-biotec/ 2010. A biotecnologia é interdisciplinar e por isso muitas aplicações são classificadas com mais de uma cor. Por exemplo, a produção de energia a partir de plantas ou de resíduos pode ser considerada biotecnologia branca ou verde. Portanto, a biotecnologia torna-se um instrumento poderoso, podendo substituir vasto número de processos industriais atualmente empregados e criando com isso novas e melhores soluções para uma grande gama de problemas. IV. Nanociência e nanotecnologia A nanociência e/ou a nanotecnologia é um termo popular para a construção e utilização de estruturas funcionais que possui pelo menos uma dimensão na escala nanométrica, ou é a área da tecnologia que trabalha no universo nanométrico. O princípio básico da nanotecnologia é a construção de estruturas e novos materiais e desenvolver novos produtos baseados na crescente capacidade da tecnologia moderna de ver e manipular átomos e moléculas. É uma área promissora, mas que dá apenas seus primeiros passos, mostrando, contudo, resultados surpreendentes (na produção de semicondutores, nanocompósitos, biomateriais, chips, entre outros). O prefixo “nano” tem origem grega que significa “anão” e se refere a uma unidade de medida que equivale a um bilionésimo de metro, utilizando-se a notação nm ou 10-9 m. Para termos uma idéia da dimensão nanométrica, vamos comparar as dimensões de diferentes materiais como, por exemplo, o diâmetro de um fio de cabelo que pode medir entre 50.000 a 100.000 nm. A nanotecnologia não é uma tecnologia específica, mas todo um conjunto de técnicas, baseadas na física, na química, na biologia, na ciência e Engenharia de
  • 8. 8 materiais, e na computação, que visam estender a capacidade humana de manipular a matéria em nível atômico e molecular (Toma, 2004). Entretanto, a nanociência e nanotecnologia não restringe-se apenas aos materiais e dispositivos semicondutores, envolve materiais plásticos (polímeros), cerâmicas, matérias isolantes e materiais metálicos de alta resistência e confiabilidade, materiais biológicos entre outros.Nesse sentido, a nanotecnologia tem a capacidade de criar estruturas pequenas e/ou com tecnologia superior, usando as técnicas e ferramentas que estão a ser desenvolvidas nos dias de hoje para colocar cada átomo e cada molécula no lugar desejado. Se conseguirmos este sistema de engenharia molecular, o resultado será uma nova revolução industrial. Além disso, teria também importantes conseqüências econômicas, sociais, ambientais e militares. Entretanto a nanotecnologia desenvolveu-se graças aos contributos de várias áreas do conhecimento, atualmente existem três abordagens distintas: uma abordagem de cima para baixo, que consiste na construção de dispositivos por desgaste de materiais macroscópicos, a construção de dispositivos que se formam espontaneamente a partir de componentes moleculares e de materiais átomo a átomo. 1) A primeira abordagem é a abordagem utilizada em microeletrônica para produzir chips e computadores e mais recentemente para produzir testes clínicos em miniatura. 2) A segunda abordagem recorre às técnicas tradicionais de química e das ciências dos materiais. 3) A terceira abordagem é aquela que levará mais tempo a produzir resultados significativos porque requer um controle fino da matéria só possíveis com o aperfeiçoamento da tecnologia. Independentemente, a tendência é controlar mais e mais a matéria manufaturada, o produto final (hoje em dia são gravados sulcos de larguras inferiores ao micrômetro nos chips de computador 100 vezes mais finos que uma folha de papel). Os sensores de choque mecânico dos air-bags usados nos automóveis são gravados diretamente nos chips (Figura 3). Produto da nanotecnologia Figura 1: Micro-acelerômetro (ampliação de cerca de 800). Os dois "pentes" podem deslocar-se, um em
  • 9. 9 relação ao outro, sob efeito de uma violenta aceleração. (Fonte: lqes.iqm.unicamp.br/institucional/bibliotecas/bibliotecas_lqes_nanotecnologia_conf_levy.html www.quadrante.com.br/.../031005/01_05.jpg, 2009.) "Imagine-se o que seria "encolher" todo o conteúdo da Biblioteca Nacional num dispositivo do tamanho de um cubo de açúcar. Ou então desenvolver materiais dez vezes mais resistentes que o aço e com apenas uma fração do peso." U.S. National Science Foundation Atividade Complementar 1 1) Conceitue biotecnologia. 2) Quais são as grandes áreas da biotecnologia. Descreva cada uma delas. 3) Conceitue nanotecnologia. 4) A quem pertencerá à tecnologia? 5) Estará altamente restringida, ou amplamente disponível? 6) Como afetará ao fosso entre ricos e pobres? 7) Você conhece algum produto de origem biotecnológica? Quais. V. Clonagem O termo clone foi criado em 1903 pelo botânico Herbert J. Webber enquanto pesquisava plantas no Departamento de Agricultura dos Estados Unidos. Entretanto, desde a antigüidade o ser humano vem selecionando e utilizando organismos com características que lhe interessam sob algum ponto de vista. Para isso, o ser humano desenvolveu ao longo dos anos uma ciência que passou a ser denominada “Biotecnologia”, composta por numerosas técnicas por meio das quais não apenas seleciona, mas também modifica organismos (Lopes, 2003). Contudo, a palavra clone foi originada (do grego klon, significa “broto”) é utilizada para designar um conjunto de indivíduos que deram origem a outros por reprodução assexuada, sendo um método científico de reprodução que utiliza células somáticas (Lopes, 2003). A clonagem pode ocorrer espontaneamente na natureza ou ser desenvolvida em laboratório. A clonagem natural ocorre em todos os seres vivos que se reproduzem assexuadamente. A reprodução assexuada pode ocorrer por: cissiparidade, esporulação, brotamento, estrobilização e regeneração. Alguns exemplos são: vegetais, plantas, árvores, fungos e leveduras, algas, alguns moluscos e crustáceos, esponjas, alguns protozoários, como a Ameba, e as bactérias. "Clonagem”: (1) Na pesquisa do DNA recombinante, o processo de criar e ampliar segmentos específicos de DNA. (2) A produção de organimos geneticamente idênticos a partir de células somáticas de um organismos individual. “Clone”: (1)Um grupo de células geneticamente idênticas ou organismos individuais derivados por divisão assexual de um ancestral comum. (2) Um organismo individual formado por algum processo sexual de modo que seja geneticamente a seu genitor. Anthony J. F. Griffiths et al.,
  • 10. 10 O conhecimento do comportamento dos genes nas populações é de importância capital para compreender os mecanismos da evolução e para solucionar numerosos problemas práticos. Brasil (2000), descreve que no âmbito das tecnologias da clonagem, a engenharia genética, área da ciência que tem se desenvolvido rapidamente nos últimos anos, tem sido um dos assuntos científicos mais comentados pela mídia em todo o mundo em função de suas importantes aplicações em situações concretas em diversos campos como medicina, química industrial, agricultura, etc. Conseqüentemente, aspectos relacionados com engenharia genética passaram a fazer parte da maioria dos currículos propostos para o ensino de ciências (Figura 4). Cultivo in vitro de embriões Figura 4: Métodos de clonagem in vitro de célula animal. (1) Embrião. (2) Embrião no estágio de blastocisto. (3) Blastômero isolado. (4) Células de fibroblasto de rato para alimentar a colônia. (5) As células são separadas e vão para outro recipiente. (6) Cultura estável de células-tronco. (Fonte: http://4.bp.blogspot.com/_FK5QjE4gwZc/Sb19ROF0CcI/AAAAAAAABNE/GjFFTd5UuwI/s1600- h/cultivo%252520de%252520c%2525C3%2525A9lulas%252520tronco.jpg, 2009.) Vale lembrar que é um método artificial, pois, como sabemos, na natureza, os seres vivos se reproduzem através de células sexuais e não por células somáticas. As exceções deste tipo de reprodução são os vírus, as bactérias e diversos seres unicelulares. Clonagem de plantas A reprodução de plantas realiza-se por dois processos: a reprodução sexuada e a reprodução assexuada (multiplicação vegetativa). A reprodução sexuada caracteriza-se pela fecundação, a qual dá origem à formação de indivíduos diferentes dos seus progenitores. A reprodução assexuada permite a propagação de indivíduos idênticos à planta-mãe, tendo como conseqüência a formação de clones. 1 2 3 4 5 6
  • 11. 11 As células vegetais possuem a capacidade de entrar em divisão e dar origem, por via assexuada a uma planta idêntica à planta donde provêm, ou seja, um clone dessa planta. Devido a esta capacidade denominada totipotência celular que a cultura in vitro de plantas deve todo o seu desenvolvimento (Figura 5). Cultivo in vitro de plantas Figura 5: Métodos de micropropagação in vitro. (Adaptado de George, 1996). (1) Matriz (Planta mãe). (2) Cultivo in vitro. (3) Metabólitos secundários. (4) Clones. (5) Híbridos. A micropropagação ou a propagação vegetativa in vitro consiste no cultivo de órgãos, tecidos ou células vegetais em uma solução nutritiva apropriada e asséptica. Baseia-se no fato de qualquer célula é um organismo vegetal totipotente, isto é, encerra em seu núcleo todas as informações genéticas necessárias à regeneração de uma planta completa, apta a dar origem a uma nova planta (Silva et al., 2007). Segundo Teixeira (2002), as células quando colocadas em tubo de ensaio, frascos ou biorreatores desenvolvem-se com rapidez, possibilitando a conservação do patrimônio genético das plantas ameaçadas em extinção, formando milhões de outras células ou milhões de outras plantas (Figura 6 A e B). Cultivo in vitro (Tubo e Frasco) 1 2 3 4 5
  • 12. 12 Figura 6: Cultivo in vitro de plantas. (A) Planta completa de Dyckia maritima. (B) Cotilédone de porongo com organogênese direta. (Fonte: Laboratório de Biotecnologia Vegetal - Pós-Graduação em Processos Biotecnologicos - Universidade Federal do Paraná, 2009.) Scheidt (2008) descreve que a possibilidade de obter em laboratório produtos e/ou mudas, em condições controladas e reprodutíveis, independentemente da sazonalidade dos ciclos agrícolas, torna a micropropagação a melhor alternativa para se conseguir material vegetal de qualidade, fixação de ganhos genéticos e fitossanitária garantida. Contudo, deve-se mencionar que as culturas de células in vitro representam um importante recurso para a obtenção de produtos vegetais de valor elevado, desde que a viabilidade econômica do processo seja comprovada. Portanto, a utilização da tecnologia de culturas de células vegetais aparece como uma alternativa eficaz na produção de mudas, particularmente, em espécies raras ou as que estão em processo de extinção. Segundo Silva (2006), a micropropagação de plantas, apresenta alto custo de produção, o que torna as mudas produzidas nestes sistemas caras e de difícil aquisição pelos produtores rurais. Estes custos de produção são devidos à mão-de- obra, que chega a 40% ou 60% dos custos de produção. Portanto, novo enfoque dos processos biotecnológicos tornou-se necessário, principalmente com vistas à redução de custos na produção de mudas (Scheidt et al., 2009). No tocante ao cultivo in vitro, sistema de automação para a propagação clonal pode ser uma alternativa interessante, então, vislumbrou-se a possibilidade da micropropagação com os biorreatores (Figura 7). A B
  • 13. 13 Cultivo in vitro (Biorreatores) Figura 7: Desenho esquemático dos biorreatores de imersão. Fig. A (R.I.T.A.®): (1) Entrada de ar. (2): Saída de ar. (3) Tampa. (4) Suporte para o cultivo. (5) Base Interna. (6) Frasco. (Fonte: Teisson e Alvard (1994)) Fig. B (B.I.B.®): (1) Saída de ar. (2) Kit Fixação. (3) Estágios. (4) Placa porosa. (5) Base. (6) Entrada de ar. (Fonte: Soccol et al. (2008)). Clonagem de animais As pesquisas de clonagem de animais, plantas e até genes, tecidos e células humanas (excetuando os embriões) podem ser benéficas e não representam nenhum problema moral intrínseco. No entanto, quando as pesquisas voltam a atenção para seres humanos, precisamos nos assegurar de que a dignidade humana não seja minada na busca do progresso humano (Albagli, 1998; Bordingnon, 2003) . Para se realizar a clonagem (em animais e/ou humanos) são conhecidas hoje duas técnicas: a divisão embrionária e a transferência nuclear. Na divisão embrionária, separam-se as células de um embrião em seu estágio inicial de multiplicação celular, produzindo simultaneamente novos indivíduos geneticamente idênticos, porém diferentes de qualquer outro existente. Isso ocorre na natureza, durante a geração de gêmeos univitelinos. Na transferência nuclear são usadas informações (genoma) de algum ser vivo para a produção de outro idêntico a ele. Essa técnica foi utilizada para se criar a ovelha Dolly (Figura 8). A B 1 2 3 4 5 6 1 2 3 4 5 6
  • 14. 14 Clonagem Figura 8: Clonagem de ovelhas. (1) Ovelha de cara preta. (2) Ovelha de cara branca. (3) Ovo doador. (4) Célula. (5) Núcleo removido. (6) Fusão da célula e ovo sem núcleo com eletricidade. (7) Ovo fundido com célula. (8) Embrão. (9) Embrião implantado. (10). Ovelha de cara branca com carneiro de cara branca (Clone). (Fonte: http://www.universitario.com.br/noticias/noticias_noticia.php?id_noticia=5316, 2009). A técnica de transferência nuclear permite a produção de animais contendo genomas idênticos. Para tal, o material genético nuclear de uma célula do animal que se deseja clonar é introduzido em um oócito previamente enucleado, chamado de citoplasto. Esse conjunto célula-citoplasto é submetido a pulsos elétricos, que promovem a fusão das membranas, seguidos de uma ativação artificial quimicamente semelhante àquela desencadeada pelo espermatozóide em uma fecundação normal. Havendo sucesso, o núcleo celular será reprogramado e dará início ao desenvolvimento embrionário. Cada embrião assim reconstruído será geneticamente idêntico ao animal que deu origem às células doadoras de núcleo (Kato et al., 2000; Bressan et al., 2008). A transferência nuclear utilizando células modificadas geneticamente como doadoras de núcleo permitiu grandes avanços técnicos na produção de animais transgênicos (Figura 9). O DNA exógeno, quando incorporado no genoma celular, pode ter sua inserção e expressão verificadas antes da utilização destas células na produção animal. 1 2 3 4 6 5 7 8 9 10
  • 15. 15 Tranferência nuclear Figura 9: Esquema representativo das etapas da transferência nuclear utilizando células somáticas transgênicas como doadoras de núcleo. (1) Transdução lentiviral. (2) Seleção das células que expressam o transgene. (3) Maturação in vitro de oócitos. (4) Seleção dos oócitos que extruíram o 1º corpúsculo polar. (5) Enucleação do oócito: retirada da placa metafásica. (6) Introdução de uma célula transgênica no espaço perivitelínico do citoplasto receptor. (7) Eletrofusão das membranas. (8) Ativação química dos complexos. (9) Cultivo in vitro dos embriões e inovulação em fêmeas receptoras. (Fonte: Bressan et al., 2008). Porém: “Os genes sozinhos não determinam todos os caracteres físicos e comportamentos de um organismo e sim um constante diálogo com o ambiente, interagindo com o mesmo”, por isso não são idênticos (Figura 10). Até então não existem provas concretas de que animais clonados sejam totalmente normais. Diversas alterações podem ocorrer na gestante do clone, já que os órgãos do clone como rins, pulmões e o coração, podem crescer de tamanho exagerado, resultando em fortes dores, dificultando a respiração e a metabolização de alimentos, chegando ao ponto de 82% dos bovinos clonados, não chegarem aos noventa dias de prenhes. A explicação deste problema, é que os “núcleos de células diferenciadas não são corretamente reconduzidos a um estágio embrionário dos embriões clonados, levando à expressão errada dos genes, prejudicando ou impedindo o desenvolvimento do animal”. Clones 3 4 6 1 2 5 7 8 9
  • 16. 16 Figura 10: Clones univitelinos. (Fonte: http://cheirinhosdeciencia.blogspot.com/, 2009). Atividade Complementar 2 1) O que é clonagem? 2) O que é DNA? 3) Explique as diversas formas de cultivo in vitro de plantas e de animais. 4) Pesquise sobre tradução e transcrição. VI. Transgênicos Poucos assuntos geram tanta controvérsia como os transgênicos. Organismos transgênicos, ou organismos geneticamente modificados (OGMs), são animais e plantas que sofrem modificações geradas pela transferência de características (genes) de uma espécie para a outra (Losey et al., 1999). Um organismo transgênico pode ser definido como um animal ou planta produzido a partir da célula embrionária na qual foi incorporado uma sequência de DNA clonado. São produtos geneticamente modificados que buscam melhorar, principalmente, a produção de alimentos, de forma mais racional e sustentável. Consequentemente, com redução de custos de produção, aumento de produtividade, redução de insumos e defensivos. A introdução do transgene na célula pode ser realizada por vários métodos:  Sistema Agrobacterium tumefaciens: Método pelo qual é inserido um gene de interesse no genótipo de uma bactéria que, ao se associar a uma planta, retransmite a mesma característica.  Bombardeamento com micro partículas revestidas de DNA: Sistema pelo qual o DNA é revestido em micro esferas de tungstênio e transferido para dentro do tecido da planta.  Transferência por electroporação: Introdução de DNA em células expostas a um campo elétrico.  Micro injeção de DNA: Consiste numa injeção de DNA na célula através de uma micropipeta. Cada um desses métodos tem como objetivo introduzir o transgene no núcleo da célula, onde se encontra o material genético, sem danificar a célula. Então, a planta se desenvolve e suas células apresentarão o transgene de interesse podendo transmiti- lo a seus descendentes. Os transgênicos não apareceram na forma de “geração espontânea”. O surgimento da tecnologia do DNA recombinante onde os transgênicos estão inseridos, possibilitam, manipulações de organismos até então não obtidas através de processos "Contra a clonagem humana não se pronunciaram apenas autoridades religiosas, teólogos, politicos e filósofos, mas também relevantes homens da ciência. Pa citar um só exemplo: o legendário James Watson, que nunca olhou com bons olhos esse assunto." Maria C. C. L. Santos
  • 17. 17 envolvendo a compatibilidade de cruzamentos (Rech, 2004). Atualmente pode-se ver a utilização de organismos transgênicos, sobretudo na area agrícola (Figura 11). Transgene Figura 11: Método de transgene. (1) Bactéria. (2) Isolamento do DNA bacteriano. (3) Clonado o DNA. (4) Extração do gene de interesse. (5) Fabricando o gene (transgene). (6) Inserção do transgene no tecido da planta. (7) Planta. (8) Reprodução. A polêmica em torno dos transgênicos tem como ponto principal o medo do desconhecido, pois hoje muitas pessoas são copntra as tecnologias porque elas observam seus erros passados. Eles associam a tecnologia com problemas, como fizeram diversas outras pessoas em cada geração em que novas tecnologias foram apresentadas. A promessa de um futuro ambientalmente mais saudável e de uma agricultura mais produtiva; de outro a ansiedade gerada pela pouca informação a cerca da qualidade dos produtos transgênicos e pelo medo do desconhecido inerente a todos os seres humanos (Figura 12). 1 2 3 4 5 6 7 8 "As plantas transgênicas caracterizam-se um ou mais genes provenientes de um pool gênico mais distante. Pelo uso dessa tecnologia espera-se produzir novos produtos ecologicamente sustetáveis, mais produtivos, com superior qualidade e que sejam caapzes de colaborar na solução da falta nutricional dos mais de 1.5 bilhões de pessoas no mundo, que sofrem de subnutrição, bem como, reduzir substacialmente a agressão ao meio ambiente." Sachse
  • 18. 18 Figura 12: Charge do Ivo Viu a Uva. (Fonte: http://www.ivoviuauva.com.br/?p=433, 2009) Contudo, o aprimoramento das técnicas de obtenção de organismos geneticamente modificados, bem como o aumento da sua utilização, surgiram novos produtos, visando a produção dos mesmos em larga escala. Atividade Complementar 3 1) O que são transgênicos? 2) Quais os fenômenos de transgênese na natureza? Citar exemplos de transgêneses naturais. 3) Como podemos identificar os alimentos transgênicos? 4) Quais as técnicas usadas na produção de transgênicos? VII. Bioprospecção Basicamente, a bioprospecção consiste na exploração e investigação de recursos provenientes da fauna e da flora, a fim de identificar princípios ativos para a obtenção de novos produtos e processos com vistas à comercialização. É essencialmente um fenômeno de redes, que integra atores e práticas, as mais diversas – da atividade biotecnológica a sociedades indígenas, grandes indústrias e organizações não governamentais – e explicita muitos conflitos, ainda bastante ativos. Tudo isso ressalta a necessidade de mecanismos regulatórios e de toda uma base de legitimação para garantir a sua sustentabilidade no mundo globalizado (Artuso, 2002). Em resumo: A prospecção da biodiversidade ou simplesmente bioprospecção significa “A exploração da diversidade biológica por recursos genéticos e bioquímicos, de valor comercial, e que, eventualmente, pode fazer uso do conhecimento de comunidades indígenas ou tradicionais”. Sant’Ana
  • 19. 19 A bioprospecção tem como forte tendência propiciar intenso debate no interior da sociedade, sobre temas os mais diversos, que dizem respeito à sobrevivência das espécies e a do próprio planeta, ao aproximar o mundo biológico do mundo político, o mundo natural do mundo tecnológico (Figura 13). Bioprospecção Figura 13: Esquema representativo das etapas de biopropecção. Em termos mais específicos, os processos de transformação das matérias-primas em resultados, na prática bioprospectiva, podem ser, basicamente, de dois tipos: um deles, voltado à obtenção das condições efetivas para a realização da produção de novos recursos biológicos e novos conhecimentos; e o outro, que consiste em todas as ações relacionadas, diretamente, aos processos investigativos é a pesquisa propriamente dita, que ocorrem mediante complexos processos (Trigueiro, 2002; Castree, 2003). Além dos citados princípios é necessário também que sejam tomadas ações concretas no sentido de incrementar o processo de bioprospecção, aos quais podemos entender: fazer o inventário da biodiversidade formando uma base de dados concreta para que se conheça o que se tem e assim fornecer subsídios para se conhecer seu potencial, fomentar a conscientização da importância da biodiversidade para a sobrevivência dos ecossistemas e das próprias espécies em geral (Trigueiro, 2006). O processo de bioprospecção deve observar princípios para que tenha credibilidade científica, política e econômica, com destaque a: Prevenção: Quanto aos impactos irreparáveis; Conservação: Evitar o esgotamento do recurso; Controle público e privado: O processo deve ser controlado pelos órgãos de fiscalização assim como pelas entidades não governamentais; Compensação: A comunidade ou a pessoa fornecedora da matéria prima ou do conhecimento. Matéria-prima Recursos biológicos disponíveis em uma reserva de biodiversidade Necessidades e demandas Conhecimento tradicional Estoque de conhecimentos científicos e tecnológicos Processos de bioprospecção Recursos biológicos para a obtenção de produtos e processos biotecnológicos industriais
  • 20. 20 Fonte: http://www.cpafro.embrapa.br/embrapa/Artigos/bioprospec.htm, 2010. Quanto às visões de futuro da prática bioprospectiva, a percepção parece estar dividida entre uma visão mais otimista e outra mais cética entre os especialistas. Talvez esse seja o principal atrativo da investigação do tema da bioprospecção: a possibilidade de levantar questões que apontem para aspectos ainda não explorados, ou que sugira a necessidade de dedicarmos maior atenção à análise da complexidade do fenômeno (Sant'ana, 2002; Dias e Costa, 2007). Contudo, não podemos esquecer ainda que a biodiversidade que é o alicerça da bioprospecção não forma um recurso sem dono, pelo contrário pertence ao povo do país onde existe, podendo ser considerado como um bem de caráter difuso, isto é de cada um e conseqüentemente de todos, de forma que deve ser defendido por todos. Atividade Complementar 4 1) Conceitue bioprospecção. 2) A biodiversidade é o alicerce da bioprospecção? 3) A biopropecção pode conbriuir no desenvolvimento sustentável. De que maneira? 4) De que forma os saberes tradicionais pode contribuir para a bioprospecção? VIII. As questões éticas em biotecnologia Os cientistas, os técnicos e a sociedade em geral deverão debater com seriedade as questões de ordem ética que se levantam com a utilização destas técnicas nos animais e no ser humano (Anjos, 1997). Para tal deverá ser garantida uma informação que nos permita o cada momento, saber quais os potenciais vantagens e desvantagens. A permissão de registro de patentes de cromossomas humanos produzidos artificialmente, e recentemente ocorrida nos EUA, deveria ser ponderada, por razões que se prendem com a evolução do conhecimento científico (Shiva, 2004). Entretanto, no ser humano deverá ser evitada a manipulação de células sexuais ou embrionárias que resulte na transmissão das alterações provocadas à descendência. Contudo, a disseminação de animais clonados na pecuária intensiva pode conduzir a uma diminuição da desejada variabilidade genética das populações, conduzindo, em curto prazo, à perda de genes que podem vir a ser considerados "Os resultados de Wilmut et al. têm sem dúvida muito mérito. Um desses efeitos é obrigar-nos a encarar as nossas responsabilidades. Não será uma barreira técnica que nos protegerá das perspectivas mais negras, mas uma barreira moral, baseada numa reflexão sobre as bases da nossa dignidade. Essa barreira é certamente o aspecto mais dignificante do génio humano." Axel Kahn “A Terra provê o suficiente para as necessidades de todos os homens, mas não para a voracidade de todos”. Mahatma Gandhi
  • 21. 21 importantes para futuras ações de seleção e de adaptação. Este problema poderá ser evitado se for instituída a obrigatoriedade de utilizar animais doadores, oriundos de linhas afastadas, contribuindo inclusivamente para aumentar a diversidade genética. Do mesmo modo seria desumano clonar seres humanos completos e tal não é necessário visto que a investigação pode recorrer a animais. As alternativas existentes ao nível da manipulação de células somáticas e a clonagem de órgãos permitirão resolverem muitos dos problemas sem que isso implique a transmissão de características à descendência (Closet, 2000). Hoje existe um grande debate no seio da comunidade científica, procurando conciliar o aspecto ético, com o inevitável direito do homem em querer saber mais sobre os mecanismos que regulam os processos biológicos na natureza e com o próprio direito à vida. Charge do Ivan (Fonte: http://ivancabral.blogspot.com/2007/06/tica.html, 2009) A evolução da ciência biotecnológica está caminhando a passos largos e pode-se dizer que a biotecnologia moderna ainda é uma criança, considerando todas as potencialidades e o que ainda vai ser descoberto. Nesse sentido, é estratégico para o Brasil aumentar o investimento em ciência e tecnologia e desobstruir tudo o que tem dificultado as pesquisas pelas instituições públicas e privadas, desde que tenha ética. Atividade Complementar 5 1) O que é ética? 2) Conceitue bioética em biotecnologia. 3) O que é variabilidade genética? IX. Conclusões O assunto da biotecnologia industrial tem várias facetas, entretanto não se pode negar a contribuição que o desenvolvimento dessas tecnologias, representa para a humanidade.
  • 22. 22 É inquestionável que a biotecnologia, incluindo as tecnologias de cultivo in vitro e transformação genética, é hoje uma das ferramentas de grande importância para o desenvolvimento sustentável, além de propiciar benefícios a diferentes setores da sociedade. A bioprospecção é um seguimento pertinente e ocorre em âmbito mundial uma nova forma de exploração dos recursos naturais biológicos, legalmente a diversidade de vida existente em determinado local para os fins comerciais. Em suma, as aplicações da biotecnologia moderna são múltiplas e, por isso mesmo, envolvem um mercado potencial de bilhões de dólares, o que exige, por tarde da iniciativa privada, bem como do governo investimentos significativos no desenvolvimento de pesquisas. Conduto espera-se que tenhamos contribuído para o módulo (Processos emergentes e biodiversidade) de forma bastante positiva. Espera-se, também que esse trabalho seja contextualizada, e que instigue a todos que a leiam a cursar esta disciplina. X. Referências ALBAGLI, S. Da biodiversidade à biotecnologia: a nova fronteira da informação. Ciência da Informação, v. 27, 1998. ANJOS, M. F. Bioética: abrangência e dinamismo. O Mundo da Saúde, São Paulo, ano 21, v. 21, 1997. ARTUSO. A. Bioprospecting, benefit Sharing, and biotechnological capacity building. World Development, v. 30, 2002. BORDINGNON, V. Clonagem de animais por transferência nuclear: Avanços e desafios. Acta Scientiae Veterinarie. Supl. 31, 2003. BORZANI, W.; SCHMIDELL, W.; LIMA, U. A.; AQUARONE, E. Biotecnologia Industrial: Fundamentos. 1 ª ed, São Paulo: Editora Edgard Blücher Ltda. v. 1. 2001. BRASIL. Parâmetros Curriculares Nacionais (Ensino Médio), Parte III – Ciências da Natureza, Matemática e suas Tecnologias. Brasília: Ministério da Educação e Cultura, 2000. BRESSAN, F. F.; MIRANDA, M. S.; DE BEM, T. H.; PEREIRA, F. T. V.; BINELLI, M.; MEIRELLES, F. V. Produção de animais transgênicos por transferência nuclear como modelo de estudo biológico. Revista Brasileira de Reprodução Animal, v. 32, 2008. CARVALHO, H. C. Fundamentos de Genética e Evolução. Atheneu: Rio de Janeiro/São Paulo, 1987. CANHOS, V. P.; MANFIO, G. P. Recursos Microbiológicos para Biotecnologia. Campinas, 2010. http://www.anbio.org.br/pdf/2/mct_recursos_biologicos.pdf CASTREE, N. Bioprospecting: from theory to practice (and back again). Transactions of the Institute of British Geographers, 2003. CLOSET, J. Bioética como ética aplicada e genética. In: Garrafa, V.; Costa, S. I. F.
  • 23. 23 (Org.), A bioética no século XXI. Brasília: Editora da UNB, 2000. DIAS, C. C.; COSTA, M. C. Cooperação internacional e bioprospecção no Brasil e no Peru, RECIIS – Revista Eletrônica de Comunicação Informação & Inovação em Saúde, v.1, 2007. GUIMARÃES, M. C. C.; FILHO, G. R. V.; CORREIA, V. G. Biotecnologia e desenvolvimento sustentável no Brasil. Revista Visões, v. 1, 2008. KREUZER, H.; MASSEY, A. Engenharia Genética e Biotecnologia. 2ª ed., Editora Artmed. 2002. LOPES, S. Biologia Essencial. 1ª. ed. São Paulo: Editora Saraiva., 2003. LOSEY, J. E.; RAYOR, L. S.; CARTER M. E. Transgenic pollen harms monarch larvae. Nature, v. 399, 1999. MALAJOVICH, M. A. Biotecnologia. Editora Axcel Books do Brasil. 2004. RECH, E. L. A agropecuaria molecular. In: Luis Mir, outros. (Org.). Genômica. 1ª ed., Sao Paulo: Editora Atheneu, v. 1, 2004. ROSELINO, A. M. Biologia molecular aplicada às dermatoses tropicais. Anais Brasileiros de Dermatolologia, v. 83, 2008 . SANT'ANA, P. J. P. É possível a bioprospecção no Brasil. Rio de Janeiro: UFRJ/COOPE, 2002. (Tese de Doutorado). SCHEIDT, G. N. Desenvolvimento de um biorreator do tipo imersão por bolhas para as técnicas de micropropagação e cultura de células vegetais. Tese (Doutorado em Processos Biotecnológicos) - Universidade Federal do Paraná, Curitiba, Paraná, 2008. SCHEIDT, G. N.; ARAKAKI, A. H.; CHIMILOVSKI, J. S.; PORTELLA, A. C. F.; SPIER, M. R.; WOICIECHOWSKI, A. L.; BIASI, L. A.; SOCCOL, C. R. Utilization of the Biorreactor of Imersion by Bubbles at the Micropropagation of Ananas comosus L. Merril. Brazilian Archives of Biology and Technology, v. 52, 2009. SHIVA, V. Biodiversidade, direitos de propriedade intelectual e globalização, In: SOUSA SANTOS, B. (Org.) Semear outras soluções: os caminhos da biodiversidade e dos conhecimentos rivais. Porto: Afrontamento, 2004. SILVA, A. B.; PASQUAL, M.; TEIXEIRA, J. B.; ARAÚJO, A. G. Métodos de micropropagação de abacaxizeiro. Pesquisa Agropecuária Brasileira, v. 42, 2007. SILVA, L. C. da. Estabelecimento in vitro de cultivares de mirtilo (Vaccinium ashei Reade) para início da micropropagação. Dissertação (Mestrado em Agronomia- Fruticultura de Clima Temperado) - Universidade Federal de Pelotas, Pelotas, 2006. SOCCOL, C. R.; SCHEIDT, G. N.; MOHAN, R. Biorreator do tipo imersão por bolhas para as técnicas de micropropagação vegetal. Universidade Federal do Paraná. Patente, (DEPR. 01508000078), 3 Março, 2008.
  • 24. 24 TEISSON, C.; ALVARD, D. A new concept of plant in vitro cultivation in liquid medium: temporary immersion. In: VIII INTERNATIONAL CONGRESS OF PLANT TISSUE AND CELL CULTURE, 1994, Florence. Abstract… Florence: ICPTCC, 54, 1994. TEIXEIRA, J. B. Biorreatores. Revista Ciência e desenvolvimento, v. 24, 2002. TOMA, H. E. O mundo nanométrico: a dimensão do novo século. São Paulo: Oficina de Textos, 2004. TRIGUEIRO, M. G. S. Bioprospecção: uma nova fronteira da sociedade, Campinas: IG-UNICAMP, mimeo., 2006. TRIGUEIRO, M. G. S. O Clone de Prometeu; a biotecnologia no Brasil: uma abordagem para a avaliação. Brasília, Editora da UnB, 2002. VAN, T. C. Biotechnology for sustainable development in partner countries. Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH, 1999. VILLEN, R. A. Biotecnologia-Histórico e Tendências. http://www.hottopos.com/regeq10/rafael.htm., 24/10/2009. ZECHENDORF, B. Sustainable development: how can biotechnology contribute? Trends in Biotechnology, 1999. Referências da internet www.bioinfo.ufpb.br/difusao, 2009. http://lqes.iqm.unicamp.br/institucional/bibliotecas/bibliotecas_lqes_nanotecnologia_conf_levy.html www.quadrante.com.br/.../031005/01_05.jpg, 2009. http://4.bp.blogspot.com/_FK5QjE4gwZc/Sb19ROF0CcI/AAAAAAAABNE/GjFFTd5UuwI/s1600h/cultivo%252520de%252520c%2525C3%2525A9lulas%252520tronco.jpg, 2009. http://www.universitario.com.br/noticias/noticias_noticia.php?id_noticia=5316, 2009. http://cheirinhosdeciencia.blogspot.com/, 2009. http://ivancabral.blogspot.com/2007/06/tica.html, 2009. http://plantasgm.wordpress.com/category/biotecnologia-e-historia-da-biotec/2010. http://www.cpafro.embrapa.br/embrapa/Artigos/bioprospec.htm, 2010.
  • 25. 25 ANEXO Vocabulário Biodiversidade: A biodiversidade pode ser definida como a variedade e a variabilidade existentes entre organismos vivos e as complexidades ecológicas nas quais elas ocorrem. Ela pode ser entendida como uma associação de vários componentes hierárquicos: ecossistema, comunidade, espécies, populações e genes em uma área definida. Bioética: É o estudo sistemático da conduta humana na área das ciências da vida e cuidado da saúde, enquanto essa conduta é examinada à luz dos valores e princípios morais. É a nova imagem da ética médica. Biopirataria: Apropriação ilegal de produtos. Biotecnologia: É o conjunto de técnicas que permite desenvolver produtos de serviço por meio de processos biológicos utilizando a tecnologia do DNA recombinante e a cultura de tecidos. Célula: Unidade microscópica de matéria viva. Contêm em seu núcleo 46 cromossomos, onde se armazenam as informações que instruem o funcionamento do organismo. Clonagem: Obtenção de um grupo de células, ou tecidos, ou até de indivíduo completo a partir de uma única célula. Comitê de Ética em Pesquisa: É o órgão institucional que tem por objetivo proteger o bem-estar dos indivíduos pesquisados. É um comitê interdisciplinar, constituído por profissionais de ambos os sexos, além de pelo menos um representante da comunidade, que tem por função avaliar os projetos de pesquisa que envolva a participação de seres humanos. As características e atribuições dos Comitês de Ética em Pesquisa no Brasil estão contidas na Resolução 196/96 do Conselho Nacional de Saúde. CTNbio: Comissão Técnica Nacional de Biossegurança. É a comissão especial do Ministério da Ciência e Tecnologia que regulamenta as atividades relacionadas com pesquisa, transporte e comercialização de organismos transgênicos e seus derivados. Esta comissão emite pareceres técnicos sobre os quais outros ministérios componentes (da Saúde, da Agricultura e do Abastecimento, do Meio Ambiente e da Amazônia Legal) irão exercer as suas atribuições, incluindo-se aí a regulamentação e a fiscalização. Engenharia Genética: É a modificação de seres vivos pela manipulação direta do DNA, através da inserção ou deleção de fragmentos específicos. Sua aplicação pode ser na produção de vacinas, proteínas por microrganismos, alimentos, transplantes, terapia gênica, animais transgênicos. Gene: É a unidade hereditária ou genética, situada no cromossomo, e que determina as características de um indivíduo. Trata-se de uma seqüência de letras A (Adenina), T
  • 26. 26 (Tinina), C (Citosina), e G (Guanina), com a receita de uma proteína específica. As combinações de letras e variantes de genes é que determinam as características individuais. Genoma: É o patrimônio genético de um ser vivo, ou seja, a coleção de genes alojada nos cromossomos, que ficam no núcleo de cada célula. Os 23 cromossomos somam cerca de 3 bilhões de letras. Patentes: É o registro comercial de autoria. É o primeiro passo para extrair lucro de uma descoberta. A patente proíbe qualquer exploração (fabricação, uso, venda ou importação) por terceiros sem autorização de seu titular. Plantas Transgênicas: São plantas que contêm um ou mais genes introduzidos por meio da técnica de transformação genética. Através desta técnica, um ou mais genes são isolados bioquimicamente e inseridos numa célula. Em seguida, esta célula se multiplica e origina uma nova planta, carregando cópias idênticas do gene. As plantas transgênicas são também chamadas de organismos geneticamente modificados (OGM). Vejam quais são os processos para se obter uma nova planta: 1. Cruzamento natural: ocorre entre duas plantas, quando o próprio ar ou os insetos realiza a troca do pólen contido nas flores das plantas; 2. Cruzamento para melhoramento genético: a troca do pólen das flores é feita pelo pesquisador, que cruza duas plantas para obter uma nova, com características desejadas pela pesquisa (resistência a doenças, produtividade, adaptação a uma região, etc.).; e 3. Transformação genética: nesta técnica, não há cruzamento entre duas plantas. A célula de uma planta recebe um gene em laboratório e se multiplica, resultando numa planta transgênica. O gene introduzido na célula não é necessariamente da mesma planta. Pode ser de qualquer organismo vivo, como um animal, uma planta diferente ou mesmo bactéria. Terapia Gênica: É a manipulação de genes do indivíduo para corrigir defeitos genéticos. A terapia gênica pode ser do tipo: 1. Correção: quando ocorre a inserção de um gene “sadio” no local de um “defeituoso” ou deleção de um gene deletério; 2. Complementação: quando é feita a introdução de uma cópia normal sem modificação do original; ou 3. Adição: com o acréscimo de um gene ausente no genoma.