Equações 1º grau simples e com parenteses

0 views
26,917 views

Published on

0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
0
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
370
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Equações 1º grau simples e com parenteses

  1. 1. Ficha de Trabalho de Matemática Tema: Equações do 1º grau com uma incógnita 7º AnoNome: ____________________________________________________Turma:______N.º____Resolve cada uma das seguintes equações: 1) 2 x  3  33  x 10)  x  3  2 x  1 19) 5b  7 10  3b  13 12 S  12 S  2 S  2 2) 7  2 x  4  x 11) 0,5x  3  3,5  1,5x 20) 0   x  3  2 x  5 S  1 S  0,5 8  S   3 3) 5t  6  3  4t 12) 2a  3  a  5 21) 5x  3  2 x  1  0 S  1 S  8 4 S   7  4) 9  3x  5  4 x 13) 3x 1   x  3 22) 4 x 1  3x  2x  7 x 1 S  2 S  1 S  0 5) 7 x  10  6 x  5 14)  x  1  3x  4 23) 2  x  5  2 x  3x 10x S  15 5 S    3 S    4  8 6) 3x  8  5x  16 15) 2 x 1  3x  10 24) 1  3x  7 x  4  2  0 S  1 11  1 S   S   5 10  7) x  4  5x  4x  8 16) 2 x  3  1  x  2 25) 0  3x  1  x  7 x  10 x 15 S  6 2 S   S  14 3 8) 25  3a  2  2a  17 17) 2 x  7  3  x 1  5 26) 2 x  1  3x  7  0,1 S  10 S  0 S  1,58 18)  x  1  2 x  3 27) 2 x  2 x  0, 2 x  1  0,5x 9) 14t  24  10t  2t  30 S  3 4  10  S   S    3  37 
  2. 2. Resolve cada uma das seguintes equações com parênteses: 1) 2  5  x   10  4 10) 2   t  7   t  0,5  t  4  19) 0,1 x 1  0,5 1  0,1x   2,7 S  2  14  S  46 S     3 2) 3  4  2a  2   0 11) 3a  8 1  a   10  a 20) 2  x  1  3x  5 5   1 S  3 S   S    8   33 3) 3  2b  1  4b  9 12) 5b  2  b  3  0 21)    x  1  2 x  2  x  5 3 6 S  9 S   S   5  7  4) 5x  2  3  x   5 13) 3x  4   2 x  1  2  x  3 22) 5  x  2   3  x  7   0  1  11  S    S     7 S  11  2 5) 8  2  x  3  8 14) 2  x  1  3  x  2   5  x 23) 4 x    x  1  2   x  3 S  3  9 S  0 S     4 6) 2  5  s  1  3  0 15)   x  3   2 x  1  7 1  x  24) 1  3x  7 x  4  2  0 4 1 S   S   5 5  10  S   8  7) 12  1  2  a  1 16)   t  3  2t   3t  1  0 25) 20 x    x  5  3x  5  9 S  2  5 S    S     2  8 8) t  2  t  3  3t 17)   1  2t    3  t   5t 26)   x  2    3x  5   3x  2  3 1  S  9 S   S   2 2 9) 1   n  3  1  3  n  2 18) 0, 2  3  x  3    1  x  27) 0  2  x  3  5  x  5    x  2  9  S   S  4,1  21  S   4 4

×