Your SlideShare is downloading. ×
0
A
“SEMINAR ON ”
Submitted to:-
Ravi Goyal Sir
Submitted by:-
Ram Niwas Bajya
OPTICAL FIBER
Contents
RAM NIWAS BAJIYA
 Optical fibre
 Basic physics of OFC
 Merits & Demerits of OFC
 Nomenclature of OFC
 Absorp...
OPTICAL FIBER
 OFC have Fibres which are long, thin strands made with
pure glass about the diameter of a human hair
RAM N...
Total internal reflection
 At some angle, known as the critical angle θc, light traveling from a higher
refractive index ...
Optical fiber mode
Fibbers that carry
more than one mode
at a specific light
wavelength are called
multimode fibres.
Some ...
Optical fiber's Numerical
Aperture(NA)
Multimode optical fiber will
only propagate light that
enters the fiber within a
ce...
Medium / Link Carrier Information Capacity
Copper Cable
(short distance)
1 MHz 1 Mbps
Coaxial Cable
(Repeater every 4.5 km...
Frequency Vs Attenuation In
Various Types of Cable
• More
information
carrying
capacity
fibbers can
handle
much
higher dat...
Limitations of OFC
 Difficulty in jointing (splicing)
 Highly skilled staff would be required for maintenance
 Precisio...
Nomenclature for Optical Interface
 X can be I or S or L or V or U & denotes haul
 I for intra station (up to 2 km)
 S ...
 • Y can be 1 or 4 or 16 or 64 & denotes STM Level
 – 1 for STM-1
 – 4 for STM-4
 – 16 for STM-16
 – 64 for STM-64
 ...
Examples of Nomenclature for
Optical Interface
 I.16.1 – Intra station STM-16 link on 1310 nm fibre
 S.16.2 – Short haul...
Absorption & Attenuation
 Scattering of light due to molecular level irregularities in the glass
 Light absorption due t...
• Three peaks in attenuation
a). 1050 nm b). 1250 nm c). 1380 nm
• Three troughs in attenuation (Performance windows)
a.) ...
JOINTING AND TERMINATION OF OFC
There are two methods for jointing Optical fibre cable.
a). splicing
b.) connectors
a). sp...
2. Mechanical Splicing-
• Mechanical splicing is of slightly higher losses (about 0.2 db) and
less-reliable performance
• ...
b). Basics about connectors-
• Fibre optic connector facilitates re-mateable connection i.e. disconnection /
reconnection ...
Optical sources
An optical source is a major component of optical transmitters. Fiber
optic communication systems often us...
Optical Detectors
The role of an optical receiver is to convert the optical signal back into
electrical signal and recover...
FBG and
Applications
The Filter that Bragg Grading
Fiber Grating
 Fiber grating is made by periodically changing the refraction index
in the glass core of the fiber. The re...
Fiber Grating Basics
 When the grating period is half of the input light wavelength, this
wavelength signal will be refle...
Creating Gratings on Fiber
 One common way to make gratings on fiber is using Phase Mask for
UV-light to expose on the fi...
Characteristics of FBG
 It is a reflective type filter
 Not like to other types of filters, the demanded
wavelength is r...
Temperature Impact on FBG
 The fiber gratings is generally sensitive to temperature change
(10pm/°C) mainly due to thermo...
Types of Fiber Gratings
TYPES CHARACTERS APPLICATIONS
Simple reflective
gratings
Creates gratings on the fiber that
meets ...
Typical FBG Production
Procedures
Select
Proper
fiber
H2
loading
Laser
writing
Annealing
Athermal
packaging
Testing
Differ...
Current Applications of FBG
 FBG for DWDM
 FBG for OADM
 FBG as EDFA Pump laser stabilizer
 FBG as Optical amplifier g...
Possible Use of FBG in System
Multiplexer
Dispersion
control EDFA
OADM
SwitchEDFA
Demux
ITU FBG filter
Dispersion
compensa...
ITU FBG Filter for DWDM
λ1, λ2 … λn
FBG at λ1
λ1 λ2
Circulator Circulator
FBG at λ2
λ3
Circulator
FBG at λ3
...
λ1, λ2 … λ...
ITU FBG Filter for OADM
Circulator Circulator
FBG
Through signal
Dropped signal Added signal
Outgoing signal
Incoming sign...
Dispersion Compensation
Filter
Dispersed
pulse
circulator
ChirpedFBG
RAM NIWAS BAJIYA
Pump Laser Stabilizer
980
spectrum
Focal lens
Fiber
980 Stabilizer
+
-
Pump Laser
RAM NIWAS BAJIYA
Gain Flattening Filter
1 5 0 0 1 5 2 0 1 5 4 0 1 5 6 0 1 5 8 0 1 6 0 0
W a v e l e n g t h ( n m )
- 1 5
- 1 0
- 5
0
5
1 0...
RAM NIWAS BAJIYA
RAM NIWAS BAJIYA
Upcoming SlideShare
Loading in...5
×

optical fibre ppt

62,860

Published on

Optical fibre
Basic physics of OFC
Merits & Demerits of OFC
Nomenclature of OFC
Absorption & attenuation
Jointing & termination of OFC
Optical sources & Detectors
FBG & Applications

Published in: Education, Business, Technology
7 Comments
58 Likes
Statistics
Notes
No Downloads
Views
Total Views
62,860
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
3,694
Comments
7
Likes
58
Embeds 0
No embeds

No notes for slide

Transcript of "optical fibre ppt"

  1. 1. A “SEMINAR ON ” Submitted to:- Ravi Goyal Sir Submitted by:- Ram Niwas Bajya OPTICAL FIBER
  2. 2. Contents RAM NIWAS BAJIYA  Optical fibre  Basic physics of OFC  Merits & Demerits of OFC  Nomenclature of OFC  Absorption & attenuation  Jointing & termination of OFC  Optical sources & Detectors  FBG & Applications
  3. 3. OPTICAL FIBER  OFC have Fibres which are long, thin strands made with pure glass about the diameter of a human hair RAM NIWAS BAJIYA
  4. 4. Total internal reflection  At some angle, known as the critical angle θc, light traveling from a higher refractive index medium to a lower refractive index medium will be refracted at 90° i.e. refracted along the interface.  If the light hits the interface at any angle larger than this critical angle, it will not pass through to the second medium at all. Instead, all of it will be reflected back into the first medium, a process known as total internal reflection Incident angle = RAM NIWAS BAJIYA
  5. 5. Optical fiber mode Fibbers that carry more than one mode at a specific light wavelength are called multimode fibres. Some fibres have very small diameter core that they can carry only one mode which travels as a straight line at the centre of the core. These fibres are single mode fibres. RAM NIWAS BAJIYA
  6. 6. Optical fiber's Numerical Aperture(NA) Multimode optical fiber will only propagate light that enters the fiber within a certain cone, known as the acceptance cone of the fiber. The half- angle of this cone is called the acceptance angle θmax. For step-index multimode fiber, the acceptance angle is determined only by the indices of refraction: Where n is the refractive index of the medium light is traveling before entering the fiber nf is the refractive index of the fiber core nc is the refractive index of the cladding RAM NIWAS BAJIYA
  7. 7. Medium / Link Carrier Information Capacity Copper Cable (short distance) 1 MHz 1 Mbps Coaxial Cable (Repeater every 4.5 km) 100 MHz 140 Mbps (BSNL) UHF Link 2 GHz 8 Mbps (BSNL), 2 Mbps (Rly.) MW Link (Repeater every 40 km) 7 GHz 140 Mbps (BSNL), 34 Mbps (Rly.) OFC 1550 nm 2.5 Gbps(STM-16 – Rly.) 10 Gbps (STM-64) 1.28 Tbps (128 Ch. DWDM) 20 Tbps (Possible)RAM NIWAS BAJIYA
  8. 8. Frequency Vs Attenuation In Various Types of Cable • More information carrying capacity fibbers can handle much higher data rates than copper. More information can be sent in a second RAM NIWAS BAJIYA
  9. 9. Limitations of OFC  Difficulty in jointing (splicing)  Highly skilled staff would be required for maintenance  Precision and costly instruments are required  Tapping for emergency and gate communication is difficult.  Costly if under- utilised  Special interface equipment’s required for Block working  Accept unipolar codes i.e. return to zero codes only. RAM NIWAS BAJIYA
  10. 10. Nomenclature for Optical Interface  X can be I or S or L or V or U & denotes haul  I for intra station (up to 2 km)  S for short haul (15 km)  L for long haul (40 km at 1310 nm & 80 km at 1550 nm)  V for very long haul (60 km at 1310 nm & 120 km at 1550 nm)  U for ultra-long haul (160 km at 1550 nm)  Optical Interface specified as X.Y.Z RAM NIWAS BAJIYA
  11. 11.  • Y can be 1 or 4 or 16 or 64 & denotes STM Level  – 1 for STM-1  – 4 for STM-4  – 16 for STM-16  – 64 for STM-64  • Z can be 1 or 2 or 3 & denotes fibre type  – 1 for 1310 nm over NDSF (G.652 fibre)  – 2 for 1550 nm over NDSF (G.652 fibre)  – 3 for 1550 nm over DSF (G.653 fibre)  – 5 for 1550 nm over NZDSF (G.655 fibre) RAM NIWAS BAJIYA
  12. 12. Examples of Nomenclature for Optical Interface  I.16.1 – Intra station STM-16 link on 1310 nm fibre  S.16.2 – Short haul STM-16 link on 1550 nm fibre (G.652)  L.16.2 & L.16.3 – Long haul STM-16 link on 1550 nm fibre (G.652 & G.653)  S.4.1 – Short haul STM-4 link on 1310 nm fibre  L.4.1 – Long haul STM-4 link on 1310 nm fibre (40 km)  S.1.1 – Short haul STM-1 link on 1310 nm fibre  L.1.1 – Long haul STM-1 link on 1310 nm fibre (40 km) RAM NIWAS BAJIYA
  13. 13. Absorption & Attenuation  Scattering of light due to molecular level irregularities in the glass  Light absorption due to presence of residual materials, such as metals or water ions, within the fiber core and inner cladding.  These water ions that cause the “water peak” region on the attenuation curve, typically around 1380 nm. RAM NIWAS BAJIYA
  14. 14. • Three peaks in attenuation a). 1050 nm b). 1250 nm c). 1380 nm • Three troughs in attenuation (Performance windows) a.) 850 nm: 2 dB/km b). 1310 nm: 0.35 dB/km c). 1550 nm: 0.25 dB/km Absorption loss & Scattering loss RAM NIWAS BAJIYA
  15. 15. JOINTING AND TERMINATION OF OFC There are two methods for jointing Optical fibre cable. a). splicing b.) connectors a). splicing 1.Fusion Splicing- • Fusion splicing provides a fast, reliable, low-loss, fibre-to-fibre connection by creating a homogenous joint between the two fibre ends. • The fibres are melted or fused together by heating the fibre ends, typically using an electric arc. • Fusion splices provide a high-quality joint with the lowest loss (in the range of 0.01 dB to 0.10 dB for single-mode fibres) and are practically non-reflective. RAM NIWAS BAJIYA
  16. 16. 2. Mechanical Splicing- • Mechanical splicing is of slightly higher losses (about 0.2 db) and less-reliable performance • System operators use mechanical splicing for emergency restoration because it is fast, inexpensive, and easy. • Mechanical splices are reflective and non-homogenous RAM NIWAS BAJIYA
  17. 17. b). Basics about connectors- • Fibre optic connector facilitates re-mateable connection i.e. disconnection / reconnection of fibre • Connectors are used in applications where – Flexibility is required in routing an optical signal from lasers to receivers – Reconfiguration is necessary – Termination of cables is required • Connector consists of 4 parts: – Ferrule – Connector body – Cable – Coupling device RAM NIWAS BAJIYA
  18. 18. Optical sources An optical source is a major component of optical transmitters. Fiber optic communication systems often use semiconductor optical sources such as Light emitting diodes ( LEDs) and semiconductor lasers. Some of the advantages are: •Compact in size • High efficiency • Good reliability • Right wavelength range • Small emissive area compatible with fibre core dimensions • Possibility of direct emulation at relatively high frequencies RAM NIWAS BAJIYA
  19. 19. Optical Detectors The role of an optical receiver is to convert the optical signal back into electrical signal and recover the data transmitted through the optical fibre communication system. Its vital component is a photo detector that converts light into electricity through the photoelectric effect. Some the advantages are: · high sensitivity · fast response · low noise · low cost · high reliability RAM NIWAS BAJIYA
  20. 20. FBG and Applications The Filter that Bragg Grading
  21. 21. Fiber Grating  Fiber grating is made by periodically changing the refraction index in the glass core of the fiber. The refraction changes are made by exposing the fiber to the UV-light with a fixed pattern. Glass core Glass cladding Plastic jacket Periodic refraction index change (Gratings) RAM NIWAS BAJIYA
  22. 22. Fiber Grating Basics  When the grating period is half of the input light wavelength, this wavelength signal will be reflected coherently to make a large reflection.  The Bragg Condition Λ λr = 2neff Λ in Reflection spectrum reflect Transmission spectrum trans. ∆ n (refraction index difference) RAM NIWAS BAJIYA
  23. 23. Creating Gratings on Fiber  One common way to make gratings on fiber is using Phase Mask for UV-light to expose on the fiber core. RAM NIWAS BAJIYA
  24. 24. Characteristics of FBG  It is a reflective type filter  Not like to other types of filters, the demanded wavelength is reflected instead of transmitted  It is very stable after annealing  The gratings are permanent on the fiber after proper annealing process  The reflective spectrum is very stable over the time  It is transparent to through wavelength signals  The gratings are in fiber and do not degrade the through traffic wavelengths, very low loss  It is an in-fiber component and easily integrates to other optical devices RAM NIWAS BAJIYA
  25. 25. Temperature Impact on FBG  The fiber gratings is generally sensitive to temperature change (10pm/°C) mainly due to thermo-optic effect of glass.  Athermal packaging technique has to be used to compensate the temperature drift 1533.8 1534.0 1534.2 1534.4 1534.6 1534.8 1535.0 1535.2 -5 15 35 55 75 Temperature (℃ ) CenterWavelength(nm) Athermal Normal RAM NIWAS BAJIYA
  26. 26. Types of Fiber Gratings TYPES CHARACTERS APPLICATIONS Simple reflective gratings Creates gratings on the fiber that meets the Bragg condition Filter for DWDM, stabilizer, locker Long period gratings Significant wider grating periods that couples the light to cladding Gain flattening filter, dispersion compensation Chirped fiber Bragg gratings A sequence of variant period gratings on the fiber that reflects multiple wavelengths Gain flattening filter, dispersion compensation Slanted fiber gratings The gratings are created with an angle to the transmission axis Gain flattening filter RAM NIWAS BAJIYA
  27. 27. Typical FBG Production Procedures Select Proper fiber H2 loading Laser writing Annealing Athermal packaging Testing Different FBG requires different specialty fiber Increase photo sensitivity for easier laser writing Optical alignment & appropriate laser writing condition Enhance grating stability For temperature variation compensation Spec test RAM NIWAS BAJIYA
  28. 28. Current Applications of FBG  FBG for DWDM  FBG for OADM  FBG as EDFA Pump laser stabilizer  FBG as Optical amplifier gain flattening filter  FBG as Laser diode wavelength lock filter  FBG as Tunable filter  FBG for Remote monitoring  FBG as Sensor  …. RAM NIWAS BAJIYA
  29. 29. Possible Use of FBG in System Multiplexer Dispersion control EDFA OADM SwitchEDFA Demux ITU FBG filter Dispersion compensation filter Pump stabilizer & Gain flattening filter ITU FBG filter Tunable filter ITU FBG filter Pump stabilizer & Gain flattening filter E/O Wave locker Monitor Monitor sensor RAM NIWAS BAJIYA
  30. 30. ITU FBG Filter for DWDM λ1, λ2 … λn FBG at λ1 λ1 λ2 Circulator Circulator FBG at λ2 λ3 Circulator FBG at λ3 ... λ1, λ2 … λn FBG at λ1 λ1 λ2 Circulator Circulator FBG at λ2 λ3 Circulator FBG at λ3 ... Multiplexer De-multiplexerRAM NIWAS BAJIYA
  31. 31. ITU FBG Filter for OADM Circulator Circulator FBG Through signal Dropped signal Added signal Outgoing signal Incoming signal RAM NIWAS BAJIYA
  32. 32. Dispersion Compensation Filter Dispersed pulse circulator ChirpedFBG RAM NIWAS BAJIYA
  33. 33. Pump Laser Stabilizer 980 spectrum Focal lens Fiber 980 Stabilizer + - Pump Laser RAM NIWAS BAJIYA
  34. 34. Gain Flattening Filter 1 5 0 0 1 5 2 0 1 5 4 0 1 5 6 0 1 5 8 0 1 6 0 0 W a v e l e n g t h ( n m ) - 1 5 - 1 0 - 5 0 5 1 0 1 5 2 0 Gain(dB) Gain profile GFF profile Output RAM NIWAS BAJIYA
  35. 35. RAM NIWAS BAJIYA
  36. 36. RAM NIWAS BAJIYA
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×