Electrical component at airport for airfield lighting circuit

8,721 views

Published on

Construction and Installation of Components Affecting Airfield Lighting Circuits Reliability and Performance

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
8,721
On SlideShare
0
From Embeds
0
Number of Embeds
23
Actions
Shares
0
Downloads
201
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Electrical component at airport for airfield lighting circuit

  1. 2. <ul><li>Construction and Installation of Components Affecting Airfield Lighting Circuits Reliability and Performance </li></ul><ul><li>Richard Larivée, Eng. </li></ul>Aviation Committee Illuminating Engineering Society Memphis 2008
  2. 3. Outline <ul><li>Introduction </li></ul><ul><li>Airfield lighting circuit </li></ul><ul><ul><li>System and reliability </li></ul></ul><ul><li>Basic components </li></ul><ul><ul><li>Cable </li></ul></ul><ul><ul><li>Transformer </li></ul></ul><ul><ul><li>Connector/connection </li></ul></ul><ul><li>Experimentation </li></ul><ul><ul><li>Theory </li></ul></ul><ul><ul><li>Findings and results </li></ul></ul><ul><li>Conclusion </li></ul>
  3. 4. 1-Introduction <ul><li>- Past conferences and issues about </li></ul><ul><li>meggering and values </li></ul><ul><li>- Fundamentals of meggering, Seward Ford </li></ul><ul><li>- Insulation resistance testing for airfield </li></ul><ul><li>lighting circuits, Carl Johnson 2008 IESALC </li></ul><ul><li>‘’… A Passive System.. R. Farmer/L. Blizzard 2007 IESALC stated ‘’… Different plug/receptacle system …’’ </li></ul><ul><li>‘’ Power Distribution for the all LED circuit ‘’ FAA 2006 IESALC </li></ul>
  4. 5. 2-Airfield Lighting Circuit Equipments <ul><li>2 Variables </li></ul><ul><ul><li>Factory made equipment </li></ul></ul><ul><ul><li>Field installation </li></ul></ul><ul><li>Standards & Guidelines </li></ul>
  5. 6. 2-Airfield Lighting Circuit Reliability of cables and cable joints <ul><li>Airfield lighting circuit </li></ul><ul><ul><li>1 circuit – 7930 meters (25 774 feet) = </li></ul></ul><ul><ul><li>0.158 failure/year </li></ul></ul><ul><ul><li>58 edge and 16 threshold lights = </li></ul></ul><ul><ul><li>0.288 failure/year </li></ul></ul><ul><li>* 1 From IEEE Std 493-1997. Modify for joint as per double </li></ul><ul><li> ratio of utility </li></ul><ul><li>* 2 Factory installation, multiplier of 50% from site value </li></ul><ul><li>* 3 2 crimps per connection, double value of primary </li></ul>or 11 places 3 cable joints Field Factory 0.006130 Cable (failure / 1000’) 0.001728 Cable joint – secondary* 3 (site) 0.000864 Cable joint – secondary* 2,3 (factory) 0.000864 Cable joint – primary (site) 0.000432 Cable joint – primary* 2 (factory) Failure unit/year* 1 Equipment
  6. 7. 2-Airfield Lighting Circuit Reliability of cables and cable joints
  7. 8. 2-Airfield Lighting Circuit Reliability of cables and cable joints <ul><li>Defense Estates * 4 </li></ul><ul><ul><li>Installation and maintenance of aeronautical ground lighting cables circuits - Technical Bulletin (2002) </li></ul></ul><ul><ul><li>Rate of decline of insulation resistance </li></ul></ul><ul><ul><li>3 causes: accessory design, installation and maintenance </li></ul></ul><ul><ul><ul><li>Cable – excessive pulling tension in trench and </li></ul></ul></ul><ul><ul><ul><li>in out of light base </li></ul></ul></ul><ul><ul><ul><li>Cable joints </li></ul></ul></ul><ul><ul><ul><ul><li>Heat shrink, tape joints, misuse of cutting tool </li></ul></ul></ul></ul><ul><ul><li>Maintenance, Commissioning and Safety Datum </li></ul></ul><ul><ul><ul><li>Safety RSD = KVA/primary current/body current (th=10mA) kΩ </li></ul></ul></ul><ul><ul><ul><li>RSD = 23.5/6.6/10x10 -3 = 356 kΩ </li></ul></ul></ul><ul><li>* 4 Ministry of Defence in UK </li></ul>
  8. 9. 2-Airfield Lighting Circuit Reliability of cables and cable joints <ul><li>Defence Estates </li></ul><ul><ul><li>Policy Instruction 2005 </li></ul></ul><ul><ul><li>Derived from 2002 Technical Bulletin </li></ul></ul><ul><ul><li>Maintenance Remedial Level (MRL) => 10 RSD now called Safety Datum Level (SDL) – Do something now! </li></ul></ul><ul><ul><li>5 MΩ minimum for 500V. insulation tester on secondary cable </li></ul></ul><ul><ul><li>ALC and GP cables IR down to 2 MΩ - OK </li></ul></ul>
  9. 10. 3-Basic Component Details <ul><li>Cable </li></ul><ul><ul><li>Indoor – cable tray, conduit </li></ul></ul><ul><ul><li>Underground - conduit or direct burial </li></ul></ul><ul><li>Transformer </li></ul><ul><ul><li>In pull pit, light base or anything else </li></ul></ul><ul><li>Connector </li></ul><ul><ul><li>At cable </li></ul></ul><ul><ul><li>At transformer </li></ul></ul><ul><ul><li>At CCR </li></ul></ul><ul><ul><li>And exposed to various conditions </li></ul></ul>
  10. 11. 3-Cable Description <ul><li>Standards and approvals </li></ul><ul><ul><li>CSA C22.2 no 179-00 (R2005) </li></ul></ul><ul><ul><li>FAA AC 150/5345-7E (ICEA/NEMA) </li></ul></ul><ul><ul><li>IEC TS 62100 (2004) </li></ul></ul><ul><li>Characteristics </li></ul><ul><ul><li>CSA - Resistance max @25 o C </li></ul></ul><ul><ul><ul><li>1.38 Ω /km, AWG#6 </li></ul></ul></ul><ul><ul><ul><li>2.10 Ω /km, AWG#8 </li></ul></ul></ul><ul><ul><li>Insulation </li></ul></ul><ul><ul><ul><li>Ethylene propylene-rubber (EPR) </li></ul></ul></ul><ul><ul><ul><li>Crosslink polyethylene (XLPE) </li></ul></ul></ul><ul><ul><li>Stress control </li></ul></ul><ul><ul><li>Jacket </li></ul></ul>
  11. 12. 3-Cable Characteristics <ul><li>Megohmeter testing - Insulation Resistance (IR) </li></ul><ul><li>IR = K . Log (D/d) (per 1000 feet) * 5 </li></ul><ul><li>IR for bigger OD and related to material </li></ul><ul><li>CSA AWG#8 Min. IR </li></ul><ul><ul><li>2200 G Ω .m (@15 o C) K = 6000 </li></ul></ul><ul><ul><li>16.6 G Ω .m (@90 o C) K = 45 </li></ul></ul><ul><li>* 5 Field testing excerpt - Prysmian’s Wire and Cable Engineering Guide </li></ul>Brand 12 192 .600’’ 15.1 mm 0.080’’ 2.03 mm 0.125’’ 3.18 mm B Jacket thickness 8 862 0.405’’ 10.3 mm 0.110’’ 2.79 mm 0.015’’ 0.38 mm 0.146’’ 3.71 mm .0486’’ A 8 193 0.375’’ 0.110’’ 0.146’’ C IR M Ω for 1000’ Cable O.D. Dia (D) Insulation thickness Shield thickness AWG 8 dia. (d) Strand dia
  12. 13. 3-Cable Construction <ul><li>FAA AC 150/ 5345-7E </li></ul><ul><ul><li>Type‘’B’’ EPR (ethylene propylene rubber) </li></ul></ul><ul><ul><li>Type‘’C’’ XLPE (cross-link polyethylene) </li></ul></ul><ul><ul><ul><li>Not recommended for high water table </li></ul></ul></ul><ul><li>Engineering brief - Announced by FAA in 2007 for cable selection </li></ul><ul><li>Stress control of electrical field </li></ul><ul><li> WO semi con W semi con W shield </li></ul>From BETAlux 5 kV Airfield Lighting Cables
  13. 14. 3-Cable Preparation-Installation <ul><li>FAA 5370-10C L-108 </li></ul><ul><ul><li>Cable end sealing – transport, storage & laying </li></ul></ul><ul><ul><li>‘’ Cable shall not be dragged across base can or manhole edges, pavement or earth. … lay cable out on a canvas tarp or other means … to prevent abrasion to the cable jacket .’’ </li></ul></ul><ul><ul><li>50 M Ω minima 1000V megger </li></ul></ul><ul><li>Pulling tension (PT) and method </li></ul><ul><li>Skinning cable tool </li></ul><ul><ul><li>Semiconductive layer - conduction issues </li></ul></ul><ul><li>Cleaning prior to connector installation and direction of contaminant </li></ul>Ripley WS-49
  14. 15. <ul><li>‘ ’ Mechanical stresses during installation are generally more severe than those encountered while in service ’’ Southwire – Power Cable Installation Guide </li></ul><ul><li>From and to base </li></ul>3-Cable Preparation-Installation Figure 23 AC 150/5340-30C
  15. 16. 3-Cable Preparation-Installation <ul><li>Cable bend – see manufacturer’s recommended minimum bending radius </li></ul>
  16. 17. 3-Transformer Description <ul><li>Standards and approvals </li></ul><ul><ul><li>FAA AC 150/5345-47B </li></ul></ul><ul><ul><li>CSA C22.2 no 180-M1983 (R2004) </li></ul></ul><ul><ul><li>IEC 61823 (2002) </li></ul></ul><ul><li>From FAA AC 150/5345-47B </li></ul><ul><li>CSA, IEC Leakage (max) primary 2 μ A at 15 kV </li></ul>5`0 1000 5.0 Hot/Cold Secondary over 150W 5.0 3000 15.0 Hot/Cold Primary over 150 W 2.0 2500 5.0 Hot/Cold Secondary up to 150 W 2.0 7500 15.0 Hot/Cold Primary up to 150 W Maximum Leakage Current (Micro amps) Minimum Insulation Resistance (Megohms) Voltage Applied (kV DC) Winding under Test
  17. 18. 3-Connector At Cable and Transformer <ul><li>Standards and approvals </li></ul><ul><li>Characteristics </li></ul><ul><ul><li>Electrical </li></ul></ul><ul><ul><li>Environmental </li></ul></ul><ul><ul><li>Various </li></ul></ul><ul><li>Construction </li></ul><ul><li>Installation </li></ul>
  18. 19. 3-Connector Standards and Approvals <ul><li>Definition: Electromechanical system separable electrical connection between two subsystems </li></ul><ul><li>FAA AC 150/5345-26C </li></ul><ul><ul><li>Class A – Factory </li></ul></ul><ul><ul><li>Class B – Field attached </li></ul></ul><ul><ul><ul><li>Type I - Primary cable </li></ul></ul></ul><ul><ul><ul><li>Type II - Secondary cable </li></ul></ul></ul><ul><li>IEC Draft </li></ul>
  19. 20. 3-Connector Other Standards <ul><li>ASTM B868 - 96 (reapproved 2002) </li></ul><ul><ul><li>Standard Practice for Contact Performance Classification of Electrical Connection Systems </li></ul></ul><ul><ul><li>Developed to standardize format and language for expressing the contact performance of electrical connections and changes in time </li></ul></ul><ul><ul><li>2 categories – Based on resistance </li></ul></ul><ul><ul><ul><li>Power connection – temperature rise (30 o C at rated current) and voltage drop requirement </li></ul></ul></ul><ul><ul><ul><li>Signal connection (max 1 amp) – requirement of 10 to 20 mΩ change in resistance </li></ul></ul></ul><ul><ul><li>Rd 1.1 < Rc < 1000 Rd </li></ul></ul><ul><ul><li>Rc = resistance change </li></ul></ul><ul><ul><li>Rd ~ Resistance equivalent to size of cable diameter </li></ul></ul><ul><ul><li> AWG #8=6.84 μΩ AWG #12=10.94 μΩ </li></ul></ul><ul><li>ASTM B539 – Test method for Measuring Resistance of Electrical Connections </li></ul>
  20. 21. 3-Connector Characteristics <ul><li>Electrical </li></ul><ul><ul><li>Primary criteria – low electrical resistance </li></ul></ul><ul><li>From FAA AC 150/5345-26C </li></ul><ul><li>Across the contact (Voltage drop) </li></ul><ul><ul><ul><li>From primary cable pin and socket connection </li></ul></ul></ul><ul><ul><ul><li>Calculation for 6.6 amp – 1140 μΩ </li></ul></ul></ul><ul><ul><li>** AC says 750 MΩ </li></ul></ul>25 000 25 000 Min. insulation resistance M Ω (Dielectric test) 23 500 4.7 6.0 II 75 000** 15 7.5 I Min. insulation resistance M Ω (Production test) Test Voltage (kV) Voltage drop max. (mV) Type of connector
  21. 22. 3-Connector Characteristics <ul><li>Electrical </li></ul><ul><ul><li>Contact area and contact pressure requirement </li></ul></ul><ul><ul><li>Thermal expansion and contraction phenomenon due to current flow </li></ul></ul><ul><ul><li>Use a crimping tool designed for the specific type of connector to ensure that crimps or indents meet the necessary tensile strength . AC150/5340-30C 12.4 a 5 </li></ul></ul><ul><li>Environmental </li></ul><ul><ul><li>FAA -55 to +65 o C </li></ul></ul><ul><ul><ul><li>(IEC draft -40 to 55 o C) </li></ul></ul></ul><ul><ul><li>Corrosion deteriorate contact </li></ul></ul>Timron Scientific Consulting
  22. 23. 3-Connector Installation <ul><li>Connector </li></ul><ul><li>Wire </li></ul><ul><li>Working conditions </li></ul>
  23. 24. 3-Connector Installation <ul><li>Manufacturer’s instruction </li></ul><ul><ul><li>Cable preparation </li></ul></ul><ul><ul><li>Cleaning of cable prior to physical installation </li></ul></ul><ul><li>Electrician but a very good one </li></ul>
  24. 25. 3-Connector Installation with crimping tool <ul><li>Crimping tool usage </li></ul><ul><li>Dimension of the tool compare to crimp needed </li></ul><ul><li>Jaws position over connection and contact surface </li></ul><ul><li>Key crimp tooling characteristics (ref #42) </li></ul><ul><ul><li>Geometry and associated tolerances </li></ul></ul><ul><ul><li>Materials </li></ul></ul><ul><ul><li>Surface condition </li></ul></ul><ul><ul><li>Surface treatment </li></ul></ul><ul><li>Can we make a bad connection? </li></ul>
  25. 26. 3-Connector Installation with crimping tool <ul><li>Crimping tool usage </li></ul><ul><li>Improper alignment of die – increase of resistance </li></ul><ul><li>Harmful </li></ul>R = 81 μΩ R= 2150 μΩ From Fixed-position electric heaters report - R. Butturini January 2002
  26. 27. 3-Other Types of Connector For cable and CCR <ul><li>Compression lug </li></ul>
  27. 28. 3-Other Types of Connector For cable and CCR <ul><li>Lug, crimp, … </li></ul>Water protection or drained?
  28. 29. 3-Other Types of Connector For cable and CCR <ul><li>Bolted connection </li></ul><ul><ul><li>Loosening due to vibration, expansion and contraction ( load cycle & ambient temp.) resulting in resistance and temperature rise </li></ul></ul><ul><ul><li>Control dynamic movement – select proper mechanical arrangement </li></ul></ul><ul><ul><li>Why tightening bolted connection? Does it have a limit? </li></ul></ul><ul><ul><li>Bonding resistance: 1000 μΩ consider a good connection – with clean and proper pressure (ref #36) </li></ul></ul><ul><ul><li>Torque of bolt for a good connection 10 N.m give 150 μΩ (ref #38) </li></ul></ul>Solon Manufacturing
  29. 30. 3-Other Types of Connector For cable and CCR <ul><li>Utility industries (ref #34) </li></ul><ul><ul><li>15 μΩ normal value </li></ul></ul><ul><ul><li>3000 psi instead of 8000 psi 30 μΩ </li></ul></ul><ul><ul><li>Defect 500 mΩ </li></ul></ul>Solon Manufacturing
  30. 31. <ul><li>Use of heat shrink </li></ul><ul><ul><li>Small diameter cable </li></ul></ul><ul><ul><li>Thin wall requirement </li></ul></ul><ul><ul><li>Difficulties to execute a good heat shrink </li></ul></ul><ul><ul><ul><li>Temperature (PVC 90 o C – XLPE 120 o C) </li></ul></ul></ul><ul><ul><ul><li>Heating direction </li></ul></ul></ul><ul><ul><ul><li>Characteristics on data sheet and selection </li></ul></ul></ul><ul><li>Cold shrink </li></ul><ul><ul><li>Flexible </li></ul></ul><ul><ul><li>Max. 1000V. Not appropriate for voltage insulation </li></ul></ul><ul><ul><li>5 to 8 kV and size of wire or connector </li></ul></ul><ul><ul><li>Edges of connector </li></ul></ul>3-Shrink Properties
  31. 32. <ul><li>Montréal International Airport – Mirabel </li></ul><ul><li>Goal: Identify heat signature of good and bad connections with infrared technique on airfield lighting circuits </li></ul><ul><li>Montreal airport staff </li></ul>4-Experimentation Planning
  32. 33. 4-Experimentation Planning <ul><li>Testing during day time and night time </li></ul><ul><li>Work plan </li></ul><ul><ul><li>Light fitting connector (P & S) </li></ul></ul><ul><ul><ul><li>Runway & Taxiway edge light </li></ul></ul></ul><ul><ul><ul><li>Inset light </li></ul></ul></ul><ul><ul><ul><li>Approach light – steady burning and flashing </li></ul></ul></ul><ul><ul><li>Splice on primary cable </li></ul></ul><ul><ul><li>Connections at CCR </li></ul></ul><ul><ul><li>High voltage relay (Vacuum switch) </li></ul></ul><ul><ul><li>Test bench of failed connection </li></ul></ul><ul><li>Future testing </li></ul>
  33. 34. 4-Experimentation Infrared measurement <ul><li>2 types of instrument </li></ul><ul><li>0.05 o C res. </li></ul><ul><li>0.10 o C res. </li></ul>
  34. 35. 4-Experimentation Theory of infrared measurement <ul><li>Thermography also IR measurement </li></ul><ul><li>Detection of loose connections or bad splice. High resistance , create an increase of temperature and radiate electromagnetic energy </li></ul><ul><li>ASTM E 1934 - 99a ‘’Standard Guide for Examining Electrical and Mechanical Equipment with Infrared Thermography’’ </li></ul>
  35. 36. 4-Experimentation Theory of infrared measurement <ul><li>4.1.9 Infrared Thermometer AC150/5340-26 </li></ul><ul><li>Infrared thermometers are hand-held devices that can give a direct temperature readout of any surface from several feet away. They can be aimed at the target via a laser target sight. In addition to identifying loose connections in panel boards , these instruments may be used for troubleshooting of ground faults in airfield lighting circuits. By measuring the temperature of different light bases on the runway or taxiway and comparing the temperature differential between light bases, it is possible to find the location of a ground fault if the cable and transformer assembly have been arcing and burning inside a light base. </li></ul>2 1 3
  36. 37. 4-Experimentation Theory of infrared measurement <ul><li>Optical resolution </li></ul><ul><li>D:S ratio </li></ul>Image from R&C instrumentation
  37. 38. 4-Experimentation Findings <ul><li>Rule of thumb: 40% of cable capacity to detect changes in temperature Δ T ~ RI 2 </li></ul><ul><ul><li>Secondary cable ok </li></ul></ul><ul><ul><li>Primary cable less than 15% </li></ul></ul><ul><li>Faulty secondary connector ∆T 2 o C </li></ul>
  38. 39. 4-Experimentation Findings <ul><li>Heat and surface </li></ul><ul><li>Heat and sun </li></ul>T 29.9 o C T 35.5.9 o C T 39.1 o C
  39. 40. 4-Experimentation Findings <ul><li>Secondary connector failed </li></ul><ul><li>At regulator – loose connection </li></ul>
  40. 41. 4-Experimentation Findings <ul><li>At regulator – loose connection </li></ul><ul><li>Other findings </li></ul><ul><ul><li>Can not measure with plexi </li></ul></ul>
  41. 42. 4-Experimentation Findings <ul><li>Other findings </li></ul><ul><ul><li>Can not measure behind insulating material such Bakelite </li></ul></ul>
  42. 43. 4-Experimentation Future test By passed 6.6 amps regulator 20 amps regulator (raised heating) Transformer out of circuit Load bank
  43. 44. 5-Conclusion General <ul><li>Cable specification and installation influence characteristic of airfield lighting circuit </li></ul><ul><ul><li>AGL cable leakage 0.02 μA/100 m, transformer 0.02 μA </li></ul></ul><ul><ul><li>1 kV tester 2 ma output (from DE) – faulty joint factor of 100 </li></ul></ul><ul><ul><li>Values at 20 o C, double for each 10 o C increase </li></ul></ul><ul><li>What is the influence of material surrounding the cabling </li></ul><ul><ul><li>PVC tube? </li></ul></ul><ul><ul><li>Soil? </li></ul></ul><ul><li>Would shielded cable be better for reliability? </li></ul>Current leakage
  44. 45. 5-Conclusion General <ul><li>Possible improvement of contact resistance at connector </li></ul><ul><li>Are the existing standards for contact measurement appropriate? </li></ul><ul><li>Infrared measurements are possible with some limitation </li></ul><ul><li>Potential increase of susceptibility of field installed connection with lower current circuit (2.8 amps) </li></ul><ul><ul><li>Will the present connector for LED technology will be adequate? </li></ul></ul>
  45. 46. 5-Conclusion Reliability <ul><li>Can we identify the main failures and increase the reliability of airfield lighting circuits? </li></ul><ul><li>Failure of Electrical Distribution System </li></ul>Based on: Hartford Steam Boiler Claims Data 8.1 10- All others causes 2.2 9- Accumulation of dust, dirt and oil 2.4 8- Overloading / inadequate capacity 3.9 7- Collision 7.3 6- Foreign objects / short circuiting 8.1 5- Lightning 9.9 4- Defective / inadequate insulation 10.4 3- Line disturbance (other than lightning) 17.4 2- Moisture 30.3 1- Loose connections / parts % Component
  46. 47. 5-Conclusion Installation <ul><li>Can we improved on-site installation for connectors and investigate to monitor failures ? </li></ul><ul><li>Is it possible to have a tool combining connectors and cables for on-site installation? </li></ul><ul><li>Care during pulling cable installation in light base is a must </li></ul><ul><li>Is there room to improve guidance material and standards about field installation? </li></ul><ul><li>Areas of future work and study: </li></ul><ul><ul><li>Cable failure analysis </li></ul></ul><ul><ul><li>Connector/connection failure analysis </li></ul></ul><ul><ul><li>Resistance of connection </li></ul></ul><ul><ul><li>Statistic for IR measurements, including circuit parameter and data </li></ul></ul>
  47. 48. 5-Conclusion Special thanks <ul><li>Cristian Faraon, Eng. – Montreal Airport </li></ul><ul><li>Denis Piché and his crew – Montreal Airport </li></ul><ul><li>Claude Boudreault – ITM instrument </li></ul><ul><li>André-Pierre Sweeney – coop student BPR </li></ul><ul><li>John Stubbs and Andrew Dunn – Defence Estates </li></ul><ul><li>Jim Cotoara and Harman Dhillon – Amerace </li></ul>
  48. 49. QUESTIONS?
  49. 50. <ul><li>Reference </li></ul><ul><li>Fundamentals of Meggering Seward Ford - Visual Aids Digest - September 2007 </li></ul><ul><li>Electrical Power Cable Engineering – William A. Thue </li></ul><ul><li>Technical bulletin – a comparison of Three Different Methods of Marking Primary - Amerace </li></ul><ul><li>Installation, commissioning and maintenance of AGL cable circuits Policy Instruction number 29 </li></ul><ul><li>2005 Defence Estates – Ministry of Defence </li></ul><ul><li>Installation and maintenance of AGL cable circuits – Technical Bulletin 02/13 Defence Estates – </li></ul><ul><li>Ministry of Defence </li></ul><ul><li>Southwire – Power Cable Installation Guide </li></ul><ul><li>FAA AC 150/5345-7E SPECIFICATION FOR L-824 UNDERGROUND ELECTRICAL CABLE FOR AIRPORT LIGHTING CIRCUITS </li></ul><ul><li>FAA AC150/5370-10C STANDARDS FOR SPECIFYING CONSTRUCTION OF AIRPORTS </li></ul><ul><li>CSA C22.2 no 179-00 Airport Series Lighting Cables </li></ul><ul><li>IEC TS 62100 Cables for aeronautical ground lighting primary circuits </li></ul><ul><li>Screened versus Non-Screened – Eupen Airfield Lighting Cable </li></ul><ul><li>FAA AC 150/5345-47B SPECIFICATION FOR SERIES TO SERIES ISOLATION TRANSFORMERS FOR AIRPORT LIGHTING SYSTEMS </li></ul><ul><li>CSA C22.2 no 180-00 M1983 Series Isolating Transformers for Airport Lighting </li></ul><ul><li>IEC 61823 Electrical installations for lighting and beaconing of aerodromes – AGL series transformers </li></ul><ul><li>AMERACE web site </li></ul><ul><li>FAA AC 150/5345-26C FAA specification for L-823, plug and receptacle, cable connectors </li></ul><ul><li>IEC Draft standard Connecting Devices Equipement specifications and tests </li></ul><ul><li>ASTM B 868-96 (Reapproved 2002) Standard Practice for Contact Performance Classification of Electrical connection systems </li></ul><ul><li>Stored Energy Electrical Connectors – Carl R. Tamm –CYTO Meridian Inc. 6C-TPC-3 </li></ul><ul><li>Splicing and Terminating Excerpt Prysmian’s wire and cable engineering guide </li></ul><ul><li>Performance classification for electrical connections using ASTM B 868 </li></ul>
  50. 51. n <ul><li>Reference </li></ul><ul><li>Electrical Contact Resistance: Review of Elementary Concepts – R.S. Timsit – Timron Scientific Consulting Inc. </li></ul><ul><li>Final report on fixed-Position Electric Heaters – Randy Butturini – January 2002 </li></ul><ul><li>Critical Reliability Aspects of Electrical Contacts – Piet van Dijk </li></ul><ul><li>A perspective on Connector Reliability Dr. Robert S. Mroczkowski connNtext associates </li></ul><ul><li>Connector Design/Materials and Connector Reliability - Robert S. Mroczkowski AMP incorporated </li></ul><ul><li>Estimating the Reliability of Electrical Connectors – Robert S. Mroczkowski & James M. Maynard IEEE Transaction on Reliability December 1991 </li></ul><ul><li>N.A. </li></ul><ul><li>Mechanical Analysis of the Crimping Connection S. Ogihara, K. Takata, Y. Hattori, K. Yoshida IEEE </li></ul><ul><li>Connector Theory and Application – FCI Burndy Products </li></ul><ul><li>Optimization of Cable Terminations – S.V. Nikolajevic, N.M. Pekaric-Nad, R.M. Dimitrijevic IEEE Transactions on Power Delivery April 1997 </li></ul><ul><li>Stability and Contact Resistance Failure Criteria Robert D. Malucci </li></ul><ul><li>NEBS Level 3 for Power and Grounding Lugs Thomas J. Turner Panduit </li></ul><ul><li>Aging of Defective Electrical Joints in Underground Power Distribution Systems – Daniel Founier IREQ </li></ul><ul><li>Compression Technology Applied to the Construction of Primary Grounding Systems – E.W. Perry jr, F.A. O’Loughlin, J.F. Rodrigues – Thomas and Betts Corporation </li></ul><ul><li>Military Handbook – Grounding, bonding and shielding for electronic equipments and facilities – volume 1 basic theory – MIL-HDBK-419A December 1987 </li></ul><ul><li>Maintain Bolt Preload on Electrical Connections Using Belleville Springs – George Davet - Solon Manufacturer company </li></ul><ul><li>Failure Analysis on Bolt-Type Power Connector’s Application – Guo-Ping Luo, Ji-Gao Zhang – IEEE </li></ul><ul><li>Effect of Connection Design on the Contact Resistance of High Power Overlapping Bolted Joints – M. Braunovic from MB Interface – IEEE 2001 </li></ul>
  51. 52. n <ul><li>Reference </li></ul><ul><li>Effect of Connector Design on the Performance of Service Entrance Power Connectors – Milenko Braunovic – IEEE Transaction on Components and Packaging Technologies March 2004 </li></ul><ul><li>The Effect of Initial Connector Insertions on Electrical Contact Resistance R.L. Jackson, W.R. Ashurts, G.T. Flowers, S. Angadi, S. Cloe, M.J. Bozack IEEE </li></ul><ul><li>Crimp tooling – Where form meets function – Tyco Electronics </li></ul><ul><li>Wire Crimp Connectors Verification using Ultrasonic Inspection –K. E. Cramer, D. F. Perey, W. T. Yost NASA-Langley Research Center </li></ul><ul><li>Lubrication of Electrical Contacts Bella H. Chudnovsky Schneider Electric / Square D </li></ul><ul><li>Primary series circuits cables ADB-Siemens </li></ul><ul><li>3M web site </li></ul><ul><li>Principles of infrared temperature measurement part 1and 2 – R & C Instrumentation. </li></ul><ul><li>Fluke Web site </li></ul>

×