RECUWATT Conference - Bernd Morun lecture

1,009 views

Published on

SECTION VII: EFFICIENT WASTE-TO-ENERGY
“Increase of power plant efficiency by using best available FGC - technologies” by Mr. Bernd Morun, Director General of DrySo Tec Consult, Germany

Published in: Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,009
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
75
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

RECUWATT Conference - Bernd Morun lecture

  1. 1. Increase of power plant efficiency by using bestavailable FGC- technologies Dr. B. Morun DrySoTecTable of contents:1.: clean gas values for MWI- plants and “how to reach it”2.: criteria for BAT (best available technology) and energy efficiency3.: comparison of different FGC- technologies4.: practical experience / results with dry absorption plants - changing wet scrubber technology to dry absorption - changing semi-wet system to dry absorption - optimized dry- system for city- heating - desulphurisation in an industrial plant DrySoTec 1
  2. 2. Abstract of the 17.BImSchV (D) ; EU Guideline 2000/76/EGClean gas values for FGC- relevant components: DAV HHAVHCl: < 10 mg/Nm3,dry < 60 mg/Nm3,drySO2: < 50 mg/Nm3,dry < 200 mg/Nm3,dryHF: < 1 mg/Nm3,dry < 4 mg/Nm3,dryHg: < 30 µg/Nm 3,dry < 50 µg/Nm3,dryNOx: < 200 mg/Nm3,dry < 10 mg/Nm3,dryDust: < 10 mg/Nm3,dry < 30 mg/Nm3,dryCd/Tl: < 0,05 mg/Nm3,dry*PCDD/-DF: < 0,1 ng/Nm3,dry*TOC: < 10 mg/Nm3,dryDAV: Daily average valueHHAV: Half hourly average value*) for each measurement period DrySoTec Raw gas values and necessary absorption rates 17. BImSchV for acid components: HCl SO2 HF DAV HHAV DAV HHAV DAV HHAV < 10 < 60 < 50 < 200 <1 <4 m g/Nm 3,tr Raw gas Necessary minimum- HCl absorption rate (%) (DAV) 1000 99,00 2000 99,50 3000 99,67 4000 99,75 SO2 300 83,33 600 91,67 1000 95,00 1500 96,67 2000 97,50 DrySoTec 2
  3. 3. Basic techniques currently used for flue gas cleaning: - wet flue gas cleaning - semi-wet scrubber - (conditioned) dry absorption DrySoTec Flue gas cleaning in a waste incineration plant with wet cleaning: Gasburner SCR- cat Fixed bed coke filter Quench Lime HCl- and SO2- scrubber Heat exchangerSpray dryer Fabric filter Booster fan ID fan (Each m3 water input for conditioning leads to appr. 800 KW loss in heat) DrySoTec 3
  4. 4. Flue gas cleaning with a semi wet system (and additional additive) 17.BIm SchV Milk of lime / w ater Furnace Kessel Sprü Spr üh- absorber GWF Spray- Spray- absorption Filter SCR NH4OH Activated additional coke Kakmilch/ Kakmilch/ Additiv Residue HOK(Each m3 water input for conditioning leads to appr. 800 KW loss in heat) DrySoTec Conditioned dry absorption system with lime: Ca(OH)2 Water powder ID- fan Emission Source Reactor to Stack Filter Recirculation Residue(Each m3 water input for conditioning leads to appr. 800 KW loss in heat) DrySoTec 4
  5. 5. (New) Simple dry flue gas cleaning with NaHCO3: NaHCO3 Activated Carbon Fan Fabric filter Mill (red.) Emission source ID- Fan Heat Residue exchanger DrySoTec Today important: Clean gas values and energy effiency in accordance with RL2008/98/EG Since 2007/08: approx. 50 % of the new builded incineration plants in Germany have a “simple” dry FGC- system* using NaHCO3, activated coke and an optimized energy recovery. Examples: - HKW Blumenthal, Bremen - Continental Korbach - TVR Schwarza, Schwarza - EBS Bernburg, Bernburg - EVI Emlichheim, Emlichheim - TREA Gießen, Gießen - EVA Harmuth, Essen - MVV Gersthofen …….*) because each m3 water input for conditioning leads to appr. 800 KW loss in heat DrySoTec 5
  6. 6. Criteria for finding the best available technology (BAT) Absorption rate Operating costs System- availability / -security (Energy, Personnel, M&I…) Behavior at pollutant peaks/ Residue disposal costs BAT suddently changing flue gas Additive supply costs Investment costs Regulation action DrySoTec Known absorption rates with different techniques: Technique: Wet Spray- MKT- Conditioned Total dry absorption system dry-absorption** (Bicar) Additiv: CaO CaO CaO/Ca(OH)2 Ca(OH)2 NaHCO3typical HCL >99 ~98 >99 >98 >99absorption rate (%): SO2 ~90 ~75 ~85 ~70 >95stöchiom. ratio: ~1,1 ~2,2 ~2,0 >2,3 ~1,2(Additiv/(HCl+SO2))Heavy metals and organic Emissions are adsorbed with high efficiency by blowing inactivated carbon powder. This point is here not further discussed. DrySoTec 6
  7. 7. Advantages and disadvantages of different techniques: Technique: wet Spray- MKT-System (cond.) Dry- Total dry absorption absorption (Bicar) Additiv: CaO CaO CaO/Ca(OH)2 Ca(OH)2 NaHCO3Behavior at pollutant (-) (---) (++) (+) (+++)peaks:Additiv supply costs: (+++) (++) (-) (-) (--)Residue disposal costs: (++) (--) (-) (--) (++)Space requirements: (---) (--) (--) (++) (++)Handling milk of lime: yes yes yes no noInvestment costs: (---) (--) (--) (+++) (++)Availability: (+-) (+-) (+) (+++) (+++)Operating costs: (---) (--) (--) (++) (++)Regulation action: (+-) (-) (++) (++) (+++) DrySoTec Absorption rate vs. Stöchiometric ratio in comparision Abscheideverhalten verschiedener Additive of different additives: gegenüber SO und HCl 2 NaHCO3 Ca(OH)2 fürHCl für SO2 für SO2 f ür HCl special lime SP neue HSH 100 90 al te HSH special lime A 80 70 Normal lime Normal hydrat 60 50 40 30 20 10 0 0 1 2 3 4 5 6 7 Stoechiometric ratio StöchiometrischesVerhältnis (stöch.Molzahl Additiv / SO2) DrySoTec 7
  8. 8. Examples related to practice; increasing of energy- efficiency by changing the FGC- systemA) Conversion of a wet system to a total dry systemPicture: (old) FGC- system of the MVA Weisweiler DrySoTec MVA Weisweiler (3 Lines for 16t Waste/h each) Raw gas values (acids): HCl: 900 bis max. 3.000 mg/Nm3 SO2: 350 bis max. 1.000 mg/Nm3 HF: 30 bis max. 40 mg/Nm3 Vol.- stream: 76.000 Nm3/h,tr Cleangas values: Wet system: Dry system: HCl: << 5 mg/Nm3 HCl: << 5 mg/Nm3 SO2: << 5 mg/Nm3 SO2: << 5 mg/Nm3 HF: < 1 mg/Nm3 HF: < 1 mg/Nm3 DrySoTec 8
  9. 9. Picture: New FGC- system of the MVA Weisweiler(Line 1 since 06.2010 in oparation; L 2 since Februar 2011; L 3 starting April 2011) The clean gas values are the same as with 2 stage wet scrubber before DrySoTecExpected energy savings for all three lines in comparison to the wetsystem (validated for the first line started june 2010; 2. line is running sinceFebruary 2011; 3. line starts at this moment):- electrical energy consumption: ca. 15.000 MWh/a = minus 48 %- Use of natural gas: ca. 54.000 MWh/a = minus 97 %- steam consumption/ expanded use of flue gas heat: ca. 31.000 MWh/a = minus 84 %(without additional benefits for less maintenance and lower personal costs) DrySoTec 9
  10. 10. B) Conversion of a semi wet system to a dry FGC- system:MHKW Rosenheim: DrySoTecB) Conversion of a semi wet system to a dry FGC- system:Picture: MHKW Rosenheim; old FGC- system (until 2009) DrySoTec 10
  11. 11. Picture: MHKW Rosenheim with NaHCO3- FGC- system and additional use of flue gas heat (after 2008) DrySoTecAfter conversion founded:- 10% increase of burned waste because the (old) Bottleneck FGC- system was not further given- > 2 MWh/h expanded use of flue gas heat (and the possibility of more in future by using the rest- heat in cleangas (160 110 °C) if necessary DrySoTec 11
  12. 12. MHKW Rosenheim; comparison of running costs semi wet / dry:* Difference milk of lime system CaO NaHCO3Running costs (only) (semi 2008 2009 wet)to NaHCO3 (dry) Costs for additive € 188.000 308.329 120.329 Costs for residues € 353.000 181.975 -171.025 Costs for electr. Power € 50.200 23.400 -26.800 Costs for spare parts € 25.000 5.000 -20.000 Maintenance & Repair € 50.000 5.000 -45.000 Total costs € 666.200 523.704 -142.496(Without additional benefits for the plus of heat energy (2 MW))*) linearisized for direct comparison DrySoTec C) RPF- plant with optimized energy- output: TREA Gießen Basic data: Volume stream: appr. 22 - 25.000 Nm3/h Temperature in Filter: appr. 165 °C HCl (raw gas): appr. 2.300 mg/Nm3 SO2 (raw gas): appr. 800 mg/Nm3 HCl (clean gas): under limit of detection SO2 (clean gas): ca. 1 - 10 mg/Nm3 RPF: ca. 3 t RPF/h Pure production of district heating Coverage of appr. 12 % of the complete district heating DrySoTec 12
  13. 13. C) RPF- plant with optimized use of energy: TREA GießenPrinciple FGC- system: Residue DrySoTec TREA Gießen; Wirkungsgrad DrySoTec 13
  14. 14. D: Example of industrial desulfurization: Lead- FactoryIn this case: Two possibilities of dry sorption are tested:Dry sorption with special hydrated lime (> 40 m2/g)A) Dry sorption with NaHCO3Constellation: Air / dust from production- room Additives T = 40 - 60°C ID- fan T > 150 °C T ~ 50 °COven Fabric filter DrySoTec Comparison between different additives 900 SO2 without additives 800 SO2 with 104 kg/h Sorbacal SO2 with 40 kg/h NaHCO3 SO2 in stack (mg/Nm³) 700 600 500 400 300 200 100 0 0 50 100 150 200 250 300 350 400 Time (min) DrySoTec 14
  15. 15. Are the important points for BAT fulfilled with the total dry NaHCO3- system? Energy efficiency of the FGC Absorption rate Operating costs (Energy, Personnel, M&I…) System - availability / -security Behavior at pollutant peaks/Residue disposal costs suddently changing flue gas BAT Additive supply costs Investment costs Regulation action DrySoTec Thanks for your attention ! DrySoTec contact in Spain: ingeniería del P.A.E. Ibarrabarri, edif. A1 GORCO medio ambiente 48940 LEIOA (Vizcaya) 944635244 / 944801223 gorco@gorco.es DrySoTec 15

×