Steam Cracking Of Renewable Naphtha

2,887 views
2,692 views

Published on

Tests show that olefin plants (steam crackers) can diversify to biorenewable feeds without modifying their facilities or operations. And by doing this, they will help "sequester" CO2 into plastics.

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,887
On SlideShare
0
From Embeds
0
Number of Embeds
23
Actions
Shares
0
Downloads
182
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide
  • The information about which components and their quantities are available is crucial to gain better insight in a side phenomenon in steam cracking, the coke formation in the reactor coil. The latter depends strongly on the quantities of these polyaromatic hydrocarbons, and hence,
  • Steam Cracking Of Renewable Naphtha

    1. 1. http://www.lct.ugent.be 1 Laboratory for Chemical Technology, Universiteit Gent 2 Syntroleum Corp., Tulsa, OK, rabhari@syntroleum.com Steam Cracking of Renewable Naphtha Kevin M. Van Geem 1 , Ramin Abhari 2 , Steven P. Pyl 1 , Marie-Françoise Reyniers 1 and Guy B. Marin 1 Ethylene Producers Conference March 22-25, 2010, San Antonio, TX, USA
    2. 2. <ul><li>Introduction </li></ul><ul><li>Bio-Synfining process </li></ul><ul><li>Steam cracking of renewable naphtha </li></ul><ul><li>Commercialization Status </li></ul><ul><li>Conclusions </li></ul>Outline EPC, San Atonio, TX, 22/03/2010
    3. 3. <ul><li>Biomass to hydrocarbons </li></ul><ul><ul><li>Gasification+FT (“BTL”) and enzyme routes not commercial </li></ul></ul><ul><ul><li>Hydrotreated Vegetable Oil (e.g. Bio-Synfining™ ) commercialized </li></ul></ul><ul><li>Economics based on diesel and jet fuel </li></ul><ul><li>Naphtha co-product tested as feedstock for conventional steam crackers </li></ul>Introduction EPC, San Atonio, TX, 22/03/2010 Feedstock Process Diesel, Jet, Naphtha
    4. 4. Bio-Synfining™ Feedstocks EPC, San Atonio, TX, 22/03/2010 U.S. sources ~ 360,000 BPD (16 million tonne/y) hydrocarbon equivalent …and increasing
    5. 5. <ul><li>Introduction </li></ul><ul><li>Bio-Synfining process </li></ul><ul><li>Steam cracking of renewable naphtha </li></ul><ul><li>Conclusions </li></ul>Outline EPC, San Atonio, TX, 22/03/2010
    6. 6. Chemistry EPC, San Atonio, TX, 22/03/2010 Paraffinic hydrocarbons from bio oils via hydrodeoxygenation (Eqs 1a-b) and hydrocracking (Eq 2)
    7. 7. Process EPC, San Atonio, TX, 22/03/2010 Simple, low capital cost process
    8. 8. Feed pretreatment EPC, San Atonio, TX, 22/03/2010
    9. 9. Feed pretreatment EPC, San Atonio, TX, 22/03/2010 Acid wash removes 95% of solubilized metals and phosphorus
    10. 10. Hydrodeoxygenation EPC, San Atonio, TX, 22/03/2010 Stable catalyst: activity/selectivity
    11. 11. Hydrocracker product yields: JET EPC, San Atonio, TX, 22/03/2010 Hydrocracker distillate consistent – jet fuel flash point dictates naphtha end point
    12. 12. <ul><li>Introduction </li></ul><ul><li>Bio-Synfining process </li></ul><ul><li>Steam cracking of renewable naphtha </li></ul><ul><li>Commercialization Status </li></ul><ul><li>Conclusions </li></ul>Outline EPC, San Atonio, TX, 22/03/2010 Feedstock analysis
    13. 13. GC  GC set-up EPC, San Atonio, TX, 22/03/2010 4-port 2-way valve Liq. CO 2 in valves jets 2nd dim. column 1st dim. column 2nd dim. column 1st dim. column cooling carrier gas cooling cooling Tof-MS FID
    14. 14. GC  GC analysis renewable naphtha EPC, San Atonio, TX, 22/03/2010 Separation based on boiling point Separation based on polarity
    15. 15. Offline renewable naphtha analysis: Tof-MS EPC, San Atonio, TX, 22/03/2010
    16. 16. Group type separation EPC, San Atonio, TX, 22/03/2010 C9 e: di-naphthenes f: (iso)paraffins g: mono-naphthenes n and isoparaffins aromatics naphthenes Group type separation by selecting specific ions in the Tof-MS chromatogram Visualusation of ppb amounts of components
    17. 17. Group type separation: no oxygenates EPC, San Atonio, TX, 22/03/2010 Separation based on boiling point Separation based on polarity
    18. 18. Detailed PIONA EPC, San Atonio, TX, 22/03/2010 C9 Identification of over 300 different individual components  Quantification in to 300 components P I O N A SUM 3 0.17 0.00 0.00 0.00 0.00 0.17 4 1.45 0.93 0.00 0.00 0.00 2.38 5 4.41 4.77 0.00 0.00 0.00 9.18 6 7.49 9.57 0.00 1.02 0.00 18.07 7 7.66 12.38 0.00 1.34 0.10 21.49 8 5.39 10.72 0.02 1.64 0.29 18.06 9 3.13 10.34 0.25 1.64 0.32 15.67 10 1.19 6.27 0.06 0.60 0.09 8.21 11 0.24 2.09 0.00 0.04 0.00 2.38 12 0.06 0.56 0.00 0.00 0.00 0.62 13 0.04 0.17 0.00 0.00 0.00 0.20 14 0.03 0.07 0.00 0.00 0.00 0.11 15 0.69 0.14 0.00 0.00 0.00 0.83 16 0.68 0.31 0.00 0.00 0.00 0.99 17 0.34 0.55 0.00 0.00 0.00 0.89 18 0.17 0.60 0.00 0.00 0.00 0.77 SUM 33.14 59.46 0.33 6.28 0.80 100.00
    19. 19. <ul><li>Introduction </li></ul><ul><li>Bio-Synfining process </li></ul><ul><li>Steam cracking of renewable naphtha </li></ul><ul><li>Commercialization Status </li></ul><ul><li>Conclusions </li></ul>Outline EPC, San Atonio, TX, 22/03/2010 Pilot plant test
    20. 20. Pilot plant set-up EPC, San Atonio, TX, 22/03/2010
    21. 21. Pilot plant set-up EPC, San Atonio, TX, 22/03/2010
    22. 22. Nitrogen is used as internal standard Methane functions as a second internal standard Pilot plant set-up EPC, San Atonio, TX, 22/03/2010
    23. 23. Pilot plant set-up EPC, San Atonio, TX, 22/03/2010 Heated transfer line to GC  GC
    24. 24. Online GC  GC Tof-MS chromatogram EPC, San Atonio, TX, 22/03/2010 Division of GC  GC chromatogram in a 1-dimensional and 2-dimensional part
    25. 25. Online GC  GC Tof-MS chromatogram EPC, San Atonio, TX, 22/03/2010
    26. 26. Online GC  GC FID chromatogram EPC, San Atonio, TX, 22/03/2010 Reduced peak overlap when using GC  GC allows more accurate quantification COT = 820°C COT = 865°C
    27. 27. Detailed effluent with GC  GC FID EPC, San Atonio, TX, 22/03/2010 Over 100 components are identified and quantified each run Product Yield (wt%) COT = 820°C COT = 835°C COT = 850°C COT = 865°C hydrogen 0.71 0.80 0.88 0.96 CO 0.32 0.32 0.23 0.18 CO2 0.15 0.03 0.07 0.03 methane 13.55 15.28 16.28 17.67 ethylene 27.26 29.87 30.85 32.02 ethane 4.22 4.19 4.16 4.09 propylene 19.51 18.85 17.59 16.39 propane 0.72 0.66 0.60 0.54 isobutene 3.96 3.60 3.09 2.60 Trans 2-butene 3.16 2.40 1.73 1.13 Cis 2-butene 0.85 0.65 0.53 0.41 1-butene 0.61 0.50 0.57 0.47 1,3-butadiene 5.80 5.33 5.42 5.13 n-butane 0.49 0.34 0.27 0.18 benzene 3.18 4.42 5.58 6.02 toluene 1.62 2.05 2.08 2.46 Et-benzene 0.18 0.21 0.20 0.18 m-xylene 0.24 0.26 0.24 0.26 p-xylene 0.10 0.10 0.05 0.13 styrene 0.30 0.46 0.59 0.73 o-xylene 0.11 0.12 0.12 0.13 indene 0.11 0.21 0.25 0.31 naphthalene 0.15 0.23 0.32 0.43
    28. 28. Simulated trends with COILSIM1D EPC, San Atonio, TX, 22/03/2010
    29. 29. Pilot plant coking run EPC, San Atonio, TX, 22/03/2010 Feed Renewable Naphtha + 100 ppm DMDS Renewable Naphtha Time on stream 1h 5h 1h 5h Conditions         HC-flow (kg/hr) 4.008 3.990 4.008 3.996 H 2 O-flow (kg/hr) 1.764 1.812 1.728 1.800 Dilution (kg/kg) 0.440 0.454 0.431 0.450 COT (°C) 850 850 850 850 COP (bar abs) 1.64 1.69 1.67 1.66 hydrogen 0.88 0.87 0.93 0.89 CO 0.05 0.06 0.30 0.12 CO 2 0.00 0.00 0.04 0.01 methane 15.99 16.10 16.39 16.48 ethylene 31.21 31.20 30.90 31.13 ethane 4.11 4.29 4.23 4.21 propylene 18.27 18.34 17.52 17.63 1-butene 1.78 1.76 1.66 1.59 1,3-butadiene 5.70 5.61 5.13 5.35 benzene 5.38 5.46 5.58 5.60 toluene 2.18 2.28 2.38 2.24 styrene 0.64 0.61 0.56 0.45 naphthalene 0.38 0.39 0.29 0.40
    30. 30. Measured coke yields EPC, San Atonio, TX, 22/03/2010 0 1 2 3 4 5 6 7 8 Renewable Naphtha Renewable Naphtha + 100ppm DMDS Ethane Petroleum Naphtha Condensate
    31. 31. Run length simulation EPC, San Atonio, TX, 22/03/2010 TLE inlet inlet Reactor coil Type Number of reactors Number of passes Reactor length Internal reactor diameter (passes 1-4) External reactor diameter (passes 1-4) Internal reactor diameter (passes 5-6) External reactor diameter (passes 5-6) Wall thickness Naphtha flow rate per reactor coil Steam dilution CIT (a) COP (b) GK I Split coil 8 6 53.89 m 0.080 m 0.096 m 0.114 m 0.130 m 0.008 m 2785 kg h -1 0.70 kg/kg 620 °C 1.45 10 5 Pa Feedstock characteristics PINA analysis (wt%) n-praffins isoparaffins naphthenes aromatics ASTM D86 BP (wt%) IBP 50% FBP Specific density 37.0 wt% 33.0 wt% 18.0 wt% 12.0 wt% 36.0 94.5 161.0 0.706 Outlet specification Ethylene yield 28.6 wt%
    32. 32. Simulated run length with COILSIM1D EPC, San Atonio, TX, 22/03/2010 Simulated Run length : Renewable Naphtha 158 days Fossil based Naphtha 83 days (Industrial 85 days)
    33. 33. <ul><li>Introduction </li></ul><ul><li>Bio-Synfining process </li></ul><ul><li>Steam cracking of renewable naphtha </li></ul><ul><li>Commercialization Status </li></ul><ul><li>Conclusions </li></ul>Outline EPC, San Atonio, TX, 22/03/2010
    34. 34. Commercialization status EPC, San Atonio, TX, 22/03/2010 <ul><li>75 million gal/y plant in Geismar, LA </li></ul><ul><li>Renewable naphtha 10% of output </li></ul>
    35. 35. <ul><li>Introduction </li></ul><ul><li>Bio-Synfining process </li></ul><ul><li>Steam cracking of renewable naphtha </li></ul><ul><li>Commercialization Status </li></ul><ul><li>Conclusions </li></ul>Outline EPC, San Atonio, TX, 22/03/2010
    36. 36. <ul><li>Process to convert bio oils to hydrocarbons commercialized </li></ul><ul><li>Renewable naphtha major co-product </li></ul><ul><li>Excellent feedstock for conventional steam crackers </li></ul><ul><li>High ethylene and propylene yields </li></ul><ul><li>Low coking tendency = long run lengths </li></ul><ul><li>Opportunity for petrochemical producers to transition to biorenewable feeds without modifying process </li></ul><ul><li>Reduced carbon footprint for olefin plants </li></ul>Conclusions EPC, San Atonio, TX, 22/03/2010
    37. 37. Thank you for your attention!
    38. 38. GC  GC: Optimization Offline analysis EPC, San Atonio, TX, 22/03/2010 a dimethyl polysiloxane ( Restek ); b 50% phenyl polysilphenylene-siloxane ( SGE ) Detector FID, 300°C Tof-MS, 35-400 amu Injection 0.2 μl, split flow 150 ml/min, 250°C First column Rtx-1 PONA a 50 m L × 0.25 mm I.D. × 0.5 μm df Second column BPX-50 b 2 m L × 0.15 mm I.D. × 0.15 μm df Oven temperature 50°C  250°C at 3°C/min Modulation Period 4 s Carrier gas He, constant flow 2.1 ml/min He, constant flow 1.6 ml/min
    39. 39. Other GC’s EPC, San Atonio, TX, 22/03/2010 a dime thyl polysiloxane ( Restek ) PGA DHA Injection Gas injection, 55°C Gas injection, 250°C Carrier gas He He Pre-column Hayesep N (2 m L × 1/8” I.D.) - Column Carbosphere (1.8 m L × 1/8” I.D.) Rtx-1 PONA a (50 m L × 0.2 mm I.D. × 0.55 μm df) Oven temperature 55°C -40°C  40°C (5°C/min)  90°C (3°C/min)  250°C (5°C/min) Detector TCD, 160°C FID, 250°C
    40. 40. Other GC’s EPC, San Atonio, TX, 22/03/2010 a dime thyl polysiloxane ( Restek ); b Al 2 O 3 /KCl ( Restek ) RGA Channel 1 Channel 2 Channel 3 Injection Gas injection, 80°C Gas injection, 80°C Gas injection, 80°C Carrier gas He He N 2 Pre-column Rtx-1 a (15 m L × 0.53 mm I.D. × 3 μm df) Hayesep Q (0.25 m L × 1/8” I.D.) Hayesep T (1 m L × 1/8” I.D.) Column Rt-Alumina BOND b (25 m L × 0.53 mm I.D. × 15 μm df) Hayesep N (1 m L× 1/8” I.D.), Molsieve 5A (1 m L × 1/8” I.D.) Carbosphere (2 m L × 1/8” I.D.) Oven temperature 50  120°C at 5°C/min 80°C 80°C Detector FID, 200°C TCD, 160°C TCD, 160°C

    ×