Wise.io: A Machine-Learning Platform (PyData SV 2013)

1,305 views
1,160 views

Published on

Video can be found here: https://vimeo.com/63271828

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
1,305
On SlideShare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
25
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Wise.io: A Machine-Learning Platform (PyData SV 2013)

  1. 1. Henrik Brink, CTOPyData SV 2013, March 19Machine Learning, Pythonand Raspberry Pi’s@brinkar @wiseio
  2. 2. 11kly11kxReference New DifferencePalomar Transient Factory (PTF)~1.5 million candidates per night~10 new transientshttp://www.astro.caltech.edu/ptf/
  3. 3. PTF11kly (SN 2011fe)©Peter NugentSupernova Discovery in the Pinwheel Galaxy11 hr after explosionNearest SN Ia in >3 decades
  4. 4. http://bigmacc.info
  5. 5. Python Bootcamps at Berkeley
  6. 6. Machine Learning in
  7. 7. ML pain points I• Data is messy!• Hard to scale non-linear algorithms tolarge datasets• Ad-hoc feature engineering• Collaboration on data, features andmodels is difficultdata scientists
  8. 8. Random Forest®Random Forest® is a registered trademark of Salford Systems
  9. 9. Brink+2012
  10. 10. Brink+201210% label noise
  11. 11. http://wise.io
  12. 12. bit.ly/YZZb9dWiseRF™
  13. 13. WiseRF™12 GB MNIST in 90 seconds8 core EC2 instance
  14. 14. WiseRF™A brain for the Internet of Things!
  15. 15. Demo™WiseRF™
  16. 16. Higher speedsLarger datasetsHadoop / MahoutEnergy sensorsAd biddingCredit cardfraud detectionVideo trackingFinancial predictionsBatch productrecommendations Real-timerecommendationsInternet of ThingsHealthcaresensorsFast vs Scalable
  17. 17. High-frequencydata scienceHigh-frequencypredictionFeature engineeringData ingestionModel deploymentModel validationHigh-frequency Machine Learning
  18. 18. • Statistical validation of models• Lack of feature engineering expertise• Dealing with data and computinginfrastructureML pain points IIapplication developers
  19. 19. Machine Learning as a Service™
  20. 20. Machine Learning as a Service™bit.ly/15eWEZG
  21. 21. Reusable features
  22. 22. Collaboration
  23. 23. Integration
  24. 24. docs.wise.io
  25. 25. • Scalable infrastructure required• Hard to go from data scienceexperiments to production.• Complete privacy / security.ML pain points IIIbusiness and enterprise
  26. 26. @brinkar@wiseiohenrik@wise.ioWe’re hiring!contact@wise.io

×