Aula 02 conjuntos

13,692 views
13,309 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
13,692
On SlideShare
0
From Embeds
0
Number of Embeds
27
Actions
Shares
0
Downloads
143
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Aula 02 conjuntos

  1. 1. REUNIÃO DE CONJUNTOS Dados dois conjuntos A e B, chama-se reunião ou união de A e B o conjunto formadopelos elementos que pertencem a A ou a B. A ∪ B = {x | x ∈ A ou x ∈ B} O conjunto A ∪ B (lê-se “A reunião B” ou “A união B”) é formado pelos elementos quepertencem a pelo menos um dos conjuntos A e B. Notemos que x é elemento de A ∪ B se ocorrer ao menos uma das condições seguintes: x ∈ A ou x ∈ BEXEMPLOS:1) {a, b} ∪ {c, d} = {a, b, c, d}2) {a, b} ∪ {a, b, c, d} = {a, b, c, d}3) {a, b, c} ∪ {c, d, e} = {a, b, c, d, e}4) {a, b, c} ∪ ∅ = {a, b, c}5) ∅ ∪ ∅ = ∅ Propriedades da reunião Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades: • A ∪ A = A (idempotente) • A ∪ ∅ = A (elemento neutro) • A ∪ B = B ∪ A (comutativa) • (A ∪ B) ∪ C = A ∪ (B ∪ C) (associativa)
  2. 2. INTERSEÇÃO DE CONJUNTOS Dados dois conjuntos A e B, chama-se interseção de A e B o conjunto formado peloselementos que pertencem a A e a B. A ∩ B = {x | x ∈ A e x ∈ B} O conjunto A ∩ B (lê-se “A inter B”) é formado pelos elementos que pertencem aos doisconjuntos (A e B) simultaneamente. Se x ∈ A ∩ B, isso significa que x pertence a A e também x pertence a B. O conectivo ecolocado entre duas condições significa que elas devem ser obedecidas ao mesmo tempo.EXEMPLOS:• {a, b, c} ∩ {b, c, d, e} = {b, c}• {a, b} ∩ {a, b, c, d} = {a, b}• {a, b, c} ∩ {a, b, c} = {a, b, c}• {a, b} ∩ {c, d} = ∅• {a, b} ∩ ∅ = ∅ Propriedades da interseção Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades: • A ∩ A = A (idempotente) • A ∩ U = A (elemento neutro) • A ∩ B = B ∩ A (comutativa) • (A ∩ B) ∩ C = A ∩ (B ∪ C) (associativa) Conjuntos Disjuntos Quando A ∩ B = ∅, isto é, quando os conjuntos A e B não têm elemento comum, A e Bsão denominados conjuntos disjuntos.
  3. 3. Propriedades Sendo A, B e C conjuntos quaisquer, valem as seguintes propriedades, que inter-relacionam a reunião e a interseção de conjuntos: • A ∪ (A ∩ B) = A • A ∩ (A ∪ B) = A • A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) • A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) EXERCÍCIOS1. Dados os conjuntos A = {a, b, c}, B = {c, d} e C = {c, e}, determine A ∪ B, A ∪ C, B ∪ C e A ∪ B ∪ C. A ∪ B = {a, b, c, d} B ∪ C = {c, d, e} A ∪ C = {a, b, c, e} A ∪ B ∪ C = {a, b, c, d, e}2. Classifique em V ou F: a) ∅ ⊂ (A ∪ B) V b) (A ∪ B) ⊂ A F c) A ⊃ (A ∪ B) F d) (A ∪ B) ⊂ (A ∪ B ∪ C) V e) (A ∪ B) ⊂ (A ∪ B) V f) B ⊂ (A ∪ B) V Admitindo que A, B e C são conjuntos quaisquer.3. Dados os conjuntos A={a, b, c, d}, B={b, c, d, e} e C = {c, e, f}, descreva A ∩ B, A ∩ C, B ∩ C e A ∩ B ∩ C. A ∩ B = {b, c, d} A ∩ C = {c} B ∩ C = {c, e} A ∩ B ∩ C = {c}4. Classifique em V ou F: a) ∅ ⊂ (A ∩ B) V b) A ⊂ (A ∩ B) F c) A ∈ (A ∩ B) F d) (A ∩ B) ⊃ (A ∩ B ∩ C) V e) (A ∩ B) ⊂ (A ∩ B) V f) (A ∩ B) ⊂ B V Admitindo que A, B e C são conjuntos quaisquer
  4. 4. 5. Dados os conjuntos A = {1, 2, 3}, B = {3, 4} e C = {1, 2, 4}, determine o conjunto X tal que X ∪ B = A ∪ C e X ∩ B = ∅. X= {1, 2}6. Determine o conjunto X tal que: • {a, b, c, d} ∪ X = {a, b, c, d, e} • {c, d} ∪ X = {a, c, d, e} • {b, c, d} ∩ X = {c} X = {a, c, e}7. Sabe-se que • A ∪ B ∪ C = {n ∈ ℕ| 1 ≤ n ≤ 10} • A ∩ B={2, 3, 8} • A ∩ C = {2, 7} • B ∩ C = {2, 5, 6} • A ∪ B = {n ∈ ℕ| 1 ≤ n ≤ 8}. Determine C. C = { 2, 5, 6, 7, 9, 10}8. Determine o número de conjuntos X que satisfazem a relação {1, 2} ⊂ X ⊂ {1, 2, 3, 4} 4 conjuntos9. Assinale no diagrama abaixo, um de cada vez, os seguintes conjuntos:
  5. 5. 10. Sejam os conjuntos A com 2 elementos, B com 3 elementos, C com 4 elementos. Qual é o número máximo de elementos de (A ∩ B) ∩ C? 2 elementosDIFERENÇA DE CONJUNTOS Dados dois conjuntos A e B, chama-se diferença entre A e B o conjunto formado peloselementos de A que não pertencem a B. A - B = {x | x ∈ A e x ∉ B}EXEMPLOS:1) {a, b, c} - {b, c, d, e} = {a}2) {a, b, c} - {b, c} = {a}3) {a, b} - {c, d, e, f} = {a, b}4) {a, b} - {a, b, c, d, e} = ∅V COMPLEMENTAR DE B EM A Dados dois conjuntos A e B, tais que B ⊂ A, chama-se complementar de B em relação aA o conjunto A – B, isto é, o conjunto dos elementos de A que não pertencem a B. Utilizamos a notação quando queremos determinar o complementar de A em relação aum conjunto universo U. Logo:
  6. 6. EXEMPLOS:1) Se A = {a, b, c, d, e} e B = {c, d, e}, então = {a, b}2) Se A = {a, b, c, d} = B, então =∅3) Se A = {a, b, c, d} e B = ∅, então = {a, b, c, d} = A Propriedades Sendo B e C subconjuntos de A, valem as seguintes propriedades: EXERCÍCIOS11. Sejam os conjuntos A = {a, b, c, d}, B = {c, d, e, f, g} e C = {b, d, e, g}. Determine: a) A – B {a, b} d) (A ∪ C) – B {a, b} b) B – A {e, f, g} e) A – (B ∩ C) {a, b, c} c) C – B {b} f) (A ∪ B) – (A ∩ C) {f}12. Classifique em V ou F as sentenças: a) (A – B) ⊃ ∅ V b) (A – B) ∪ (A ∩ B) = A V c) (A – B) ⊂ B F d) (A – B) ⊂ (A ∪ B) V Admitindo que A e B são conjuntos quaisquer.13. Dados os conjuntos A = {1, 2, 3, 4, 5}, B = {1, 2, 4, 6, 8} e C = {2, 4, 5, 7}, obtenha um conjunto X tal que X ⊂ A e A – X = B ∩ C. X = {1, 3, 5}14. Assinale no diagrama ao lado, um de cada vez, os seguintes conjuntos:
  7. 7. 15. Classifique em V ou F as seguintes sentenças:16.17. Descreva os elementos dos conjuntos abaixo:18. Seja E = {a, {a}}. Diga quais das proposições abaixo são verdadeiras.19. Dados A e B conjuntos tais que n(A) = 4, n(B) = 5 e n(A ∩ B) = 3, determine o número de subconjuntos de A ∪ B. 64 subconjuntos20. Se A = {3n| n ∈ ℕ} e B = {n ∈ ℕ| n é divisor de 120}, qual é o número de elementos de A ∩ B? 8 elementos
  8. 8. 21. Em uma escola que tem 415 alunos, 221 estudam inglês, 163 estudam francês e 52 estudam ambas as línguas. Quantos alunos estudam inglês ou francês? Quantos alunos não estudam nenhuma das duas? 332 alunos / 83 alunos22. Uma população consome três marcas de sabão em pó: A, B e C. Feita uma pesquisa de mercado, colheram-se os resultados tabelados abaixo: Forneça: a) O número de pessoas consultadas; 500 pessoas b) O número de pessoas que só consomem a marca A; 61 pessoas c) O número de pessoas que não consomem as marcas A ou C; 257 pessoas d) O número de pessoas que consomem ao menos duas marcas. 84 pessoas23. Em certa comunidade há indivíduos de três raças: branca, preta e amarela. Sabendo que 70 são brancos, 350 são não pretos e 50% são amarelos, responda: a) Quantos indivíduos têm a comunidade? 560 indivíduos b) Quantos são os indivíduos amarelos? 280 indivíduos24. De todos os empregados de uma firma, 30% optaram por um plano de assistência médica. A firma tem a matriz na capital e somente duas filiais, uma em Santos e outra em Campinas. 45% dos empregados trabalham na matriz e 20% dos empregados trabalham na filial de Santos. Sabendo que 20% dos empregados da capital optaram pelo plano de assistência médica e que 35% dos empregados da filial de Santos o fizeram, qual a porcentagem dos empregados da filial de Campinas que optaram pelo plano? 40% dos empregados
  9. 9. 25. Determine os conjuntos A, B e C que satisfazem as seguintes seis condições:

×