Capturing	
  the	
  Flux	
  in	
  
Scienti2ic	
  Knowledge	
  
Centre	
  for	
  eResearch	
  	
  
Dept.	
  of	
  Computer	...
“The	
  flux	
  of	
  things	
  is	
  one	
  ul0mate	
  generaliza0on	
  around	
  which	
  we	
  must	
  weave	
  our	
  p...
Example…
v  Paradigm	
  shiR	
  

	
  
Wave-­‐parLcle	
  	
  
Duality	
  

	
  

18th	
  Century	
  –	
  Light	
  	
  
as...
Incremental	
  changes	
  
v  Constant	
  reorganizaLon	
  of	
  

PhylogeneLc	
  tree	
  

	
  

hBp://www.wiley.com/col...
Incremental	
  changes	
  
v  Constant	
  reorganizaLon	
  of	
  

PhylogeneLc	
  tree	
  

	
  
v  New	
  ObservaLon/da...
How	
  do	
  we	
  currently	
  handle	
  the	
  
“Change”	
  
v  Schema	
  EvoluLon	
  (Databases	
  and	
  XML)	
  /	
 ...
Example	
  of	
  an	
  ontology	
  change	
  log	
  

It	
  tells	
  us	
  Knowledge-­‐that:	
  what	
  is	
  
the	
  chan...
How	
  did	
  this	
  
change	
  came	
  
into	
  being?	
  

Example	
  of	
  an	
  ontology	
  change	
  log	
  

It	
  ...
ScienLfic	
  Enterprise	
  
Theories,	
  
Laws	
  etc.	
  

Conceptual	
  
Model	
  

ApplicaLons	
  
e.g.	
  Maps	
  

Dat...
ScienLfic	
  Enterprise	
  
Theories,	
  
Laws	
  etc.	
  

Conceptual	
  
Model	
  

ApplicaLons	
  
e.g.	
  Maps	
  

Dat...
ScienLfic	
  Enterprise	
  
Theories,	
  
Laws	
  etc.	
  

Conceptual	
  
Model	
  

ApplicaLons	
  
e.g.	
  Maps	
  

Dat...
ScienLfic	
  Enterprise	
  
Theories,	
  
Laws	
  etc.	
  

Conceptual	
  
Model	
  

ApplicaLons	
  
e.g.	
  Maps	
  

Dat...
ScienLfic	
  Enterprise	
  
Theories,	
  
Laws	
  etc.	
  

Conceptual	
  
Model	
  

ApplicaLons	
  
e.g.	
  Maps	
  

Dat...
Life-­‐Cycle	
  of	
  a	
  Category	
  	
  
Life-­‐Cycle	
  of	
  a	
  Category	
  	
  
Birth	
  of	
  a	
  category	
  
Data	
  
Processes	
  
Theory	
  

Contexts/	...
Life-­‐Cycle	
  of	
  a	
  Category	
  	
  
Birth	
  of	
  a	
  category	
  
Data	
  
Processes	
  
Theory	
  

Contexts/	...
How	
  can	
  we	
  answer	
  	
  
How	
  and	
  why	
  aspect	
  	
  
of	
  change	
  ?	
  

Change	
  

What	
  knowledg...
How	
  can	
  we	
  answer	
  	
  
How	
  and	
  why	
  aspect	
  	
  
of	
  change	
  ?	
  

What	
  knowledge	
  are	
  ...
What’s	
  in	
  the	
  process!	
  
v  Source	
  of	
  interpretaLon	
  

v  Can	
  answer	
  quesLons	
  related	
  to	...
Proposed	
  Solution	
  
Now	
  I	
  	
  understand	
  
why	
  this	
  category	
  
is	
  the	
  way	
  it	
  is…	
  

Cat...
Conceptual	
  Signi2icance	
  
v  Fourth	
  facet	
  to	
  a	
  category’s	
  representaLon	
  	
  
v  Address	
  the	
 ...
Process	
  of	
  Science	
  
give	
  birth	
  to	
  
improve	
  
Conceptual	
  
Change	
  
ScienLfic	
  ArLfacts	
  
connec...
Computational	
  Framework	
  
Service	
  1	
  

Service	
  2	
  

Service	
  3	
  

Change	
  Analyzer	
  
Change	
  
eve...
Computational	
  Framework	
  
Service	
  1	
  
Change	
  Analyzer	
  
Change	
  
event	
  

Categorical	
  
templates	
  ...
Computational	
  Framework	
  
Service	
  1	
  
Data-­‐based	
  

Change	
  
event	
  

• 
• 
• 
• 
• 

Dataset	
  
Traini...
Computational	
  Framework	
  
Service	
  1	
  
Change	
  Analyzer	
  
Change	
  
event	
  

Categorical	
  
templates	
  ...
Computational	
  Framework	
  
Service	
  2	
  
Change	
  Analyzer	
  
Change	
  
event	
  

Categorical	
  
templates	
  ...
Computational	
  Framework	
  
Service	
  3	
  
Change	
  Analyzer	
  
Change	
  
event	
  

Categorical	
  
templates	
  ...
Questions	
  ??	
  
Thanks	
  to	
  
	
  Mark	
  Gahegan	
  (Supervisor)	
  
	
  Gill	
  Dobbie	
  (co-­‐supervisor)	
  
	...
Upcoming SlideShare
Loading in …5
×

NZ eResearch Symposium 2013 - Capturing the Flux in Scientific Knowledge

223 views

Published on

15 mins presentation at NZ eResearch symposium 2013 illustrating my current PhD research

Published in: Technology, Education, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
223
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

NZ eResearch Symposium 2013 - Capturing the Flux in Scientific Knowledge

  1. 1. Capturing  the  Flux  in   Scienti2ic  Knowledge   Centre  for  eResearch     Dept.  of  Computer  Science   University  of  Auckland     Prashant  Gupta  (PhD  student)     Mark  Gahegan  
  2. 2. “The  flux  of  things  is  one  ul0mate  generaliza0on  around  which  we  must  weave  our  philosophical  system.”                           hBp://smeitexpo2011.blogspot.co.nz/2010/11/era-­‐of-­‐technological-­‐revoluLon.html        -­‐-­‐Alfred  N.  Whitehead,  Process  and  Reality  
  3. 3. Example… v  Paradigm  shiR     Wave-­‐parLcle     Duality     18th  Century  –  Light     as  material  corpuscles   Early  20th  Century  –  Light   as  wave  parLcles  
  4. 4. Incremental  changes   v  Constant  reorganizaLon  of   PhylogeneLc  tree     hBp://www.wiley.com/college/praB/0471393878/student/acLviLes/phylogeneLc_trees/  
  5. 5. Incremental  changes   v  Constant  reorganizaLon  of   PhylogeneLc  tree     v  New  ObservaLon/data   v  New  Understanding   v  Societal  drivers   hBp://www.wiley.com/college/praB/0471393878/student/acLviLes/phylogeneLc_trees/  
  6. 6. How  do  we  currently  handle  the   “Change”   v  Schema  EvoluLon  (Databases  and  XML)  /   Ontology  EvoluLon     Level  of  abstracLon   v  CategorizaLon     Complexity-based Complex   Composite   Atomic   v  Provenance  /  Change  Logs   Domain-­‐ specific  
  7. 7. Example  of  an  ontology  change  log   It  tells  us  Knowledge-­‐that:  what  is   the  change,  when  it  happened,  who  did   it,  what  was  the  target,  etc..   M.  Javed,  Y.  M.  Abgaz,  and  C.  Pahl,  “Ontology  Change  Management  and  IdenLficaLon  of  Change  PaBerns,”  J   Data  Semant,  May  2013.    
  8. 8. How  did  this   change  came   into  being?   Example  of  an  ontology  change  log   It  tells  us  Knowledge-­‐that:  what  is   the  change,  when  it  happened,  who  did   it,  what  was  the  target,  etc..   But  we  sLll  miss  Knowledge-­‐how  (and  why)   M.  Javed,  Y.  M.  Abgaz,  and  C.  Pahl,  “Ontology  Change  Management  and  IdenLficaLon  of  Change  PaBerns,”  J   Data  Semant,  May  2013.     Why  did  they   make    that   decision?  
  9. 9. ScienLfic  Enterprise   Theories,   Laws  etc.   Conceptual   Model   ApplicaLons   e.g.  Maps   Data  Model     Categories     hBp://sLck.ischool.umd.edu/innovaLon_ontology.html   Process   Model  
  10. 10. ScienLfic  Enterprise   Theories,   Laws  etc.   Conceptual   Model   ApplicaLons   e.g.  Maps   Data  Model     Categories     Ontology   Database   hBp://sLck.ischool.umd.edu/innovaLon_ontology.html   Process   Model   Workflow  
  11. 11. ScienLfic  Enterprise   Theories,   Laws  etc.   Conceptual   Model   ApplicaLons   e.g.  Maps   Data  Model     Categories     Ontology   Database   hBp://sLck.ischool.umd.edu/innovaLon_ontology.html   Process   Model   Workflow  
  12. 12. ScienLfic  Enterprise   Theories,   Laws  etc.   Conceptual   Model   ApplicaLons   e.g.  Maps   Data  Model     Categories     affects   Change   hBp://sLck.ischool.umd.edu/innovaLon_ontology.html   Process   Model  
  13. 13. ScienLfic  Enterprise   Theories,   Laws  etc.   Conceptual   Model   ApplicaLons   e.g.  Maps   Data  Model   Process   Model           Categories   Change   Categories   Categories  Categories           affects   Change   hBp://sLck.ischool.umd.edu/innovaLon_ontology.html  
  14. 14. Life-­‐Cycle  of  a  Category    
  15. 15. Life-­‐Cycle  of  a  Category     Birth  of  a  category   Data   Processes   Theory   Contexts/   Researchers’   SituaLons   knowledge   Category   Place  in   Intension   Extension   Conceptual   hierarchy  
  16. 16. Life-­‐Cycle  of  a  Category     Birth  of  a  category   Data   Processes   Theory   Contexts/   Researchers’   SituaLons   knowledge   Category   Place  in   Intension   Extension   Conceptual   hierarchy   Conceptual   change   May  lead  to  new    understanding   May  cause  change  to   exisLng  theory   New   observaLons   Societal     needs   Richer   characterizaLon   Category   Place  in   Intension   Extension   Conceptual   hierarchy   EvoluLon     of  a     category  
  17. 17. How  can  we  answer     How  and  why  aspect     of  change  ?   Change   What  knowledge  are                    we  missing  !  
  18. 18. How  can  we  answer     How  and  why  aspect     of  change  ?   What  knowledge  are                    we  missing  !   Change   We  focus  on        products  of  science                and  ignore                    process  of  science  
  19. 19. What’s  in  the  process!   v  Source  of  interpretaLon   v  Can  answer  quesLons  related  to  how  and   why  aspect  behind  the  change  
  20. 20. Proposed  Solution   Now  I    understand   why  this  category   is  the  way  it  is…   Categories   Process   of   science  
  21. 21. Conceptual  Signi2icance   v  Fourth  facet  to  a  category’s  representaLon     v  Address  the  informaLon  interoperability   problem   v  BeBer  understanding  of  how  our  scienLfic   knowledge  evolves  over  Lme    
  22. 22. Process  of  Science   give  birth  to   improve   Conceptual   Change   ScienLfic  ArLfacts   connected  as   Workflow   Database   modify   Ontology   ApplicaLon  
  23. 23. Computational  Framework   Service  1   Service  2   Service  3   Change  Analyzer   Change   event   Categorical   templates   •  Recording  changes   and  processes   involved   •  Analyze  changes   •  Broadcast  changes   Machine-­‐learning   techniques   •  Neural  networks     •  Bayesian  Network                …….   Category-­‐versioning   system   stub   stub   Change   event  
  24. 24. Computational  Framework   Service  1   Change  Analyzer   Change   event   Categorical   templates   •  Recording  changes   and  processes   involved   •  Analyze  changes   •  Broadcast  changes   Machine-­‐learning   techniques   •  Neural  networks     •  Bayesian  Network                …….   Category-­‐versioning   system   stub   stub   Change   event  
  25. 25. Computational  Framework   Service  1   Data-­‐based   Change   event   •  •  •  •  •  Dataset   Training  set   Categorical   Classifier   templates   Parameters   ValidaLon   method   Change  Analyzer   •  Recording  changes   and  processes   involved   •  Analyze  changes   •  Broadcast  changes   Machine-­‐learning   techniques   •  Neural  networks     •  Bayesian  Network                …….   Category-­‐versioning   system   stub   stub   Change   event  
  26. 26. Computational  Framework   Service  1   Change  Analyzer   Change   event   Categorical   templates   •  Recording  changes   and  processes   involved   •  Analyze  changes   •  Broadcast  changes   Machine-­‐learning   techniques   •  Neural  networks     •  Bayesian  Network                …….   Category-­‐versioning   system   stub   stub   Change   event  
  27. 27. Computational  Framework   Service  2   Change  Analyzer   Change   event   Categorical   templates   •  Recording  changes   and  processes   involved   •  Analyze  changes   •  Broadcast  changes   Machine-­‐learning   techniques   •  Neural  networks     •  Bayesian  Network                …….   Category-­‐versioning   system   stub   stub   Change   event  
  28. 28. Computational  Framework   Service  3   Change  Analyzer   Change   event   Categorical   templates   •  Recording  changes   and  processes   involved   •  Analyze  changes   •  Broadcast  changes   Machine-­‐learning   techniques   •  Neural  networks     •  Bayesian  Network                …….   Category-­‐versioning   system   stub   stub   Change   event  
  29. 29. Questions  ??   Thanks  to    Mark  Gahegan  (Supervisor)    Gill  Dobbie  (co-­‐supervisor)    CeR  Fellows           Prashant  Gupta   PhD  student   p.gupta@auckland.ac.nz  

×