Loading…

Flash Player 9 (or above) is needed to view presentations.
We have detected that you do not have it on your computer. To install it, go here.

Like this document? Why not share!

02 微渦輪發電機

on

  • 476 views

 

Statistics

Views

Total Views
476
Slideshare-icon Views on SlideShare
476
Embed Views
0

Actions

Likes
0
Downloads
8
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    02 微渦輪發電機 02 微渦輪發電機 Document Transcript

    • 11 Journal of Technology, Vol. 23, No. 1, pp. 11-20 (2008) P-f DYNAMIC SIMULATIONS FOR OPERATION MODE TRANSFER OF A MICRO-TURBINE GENERATOR Chi-Hshiung Lin Department of Electrical Engineering Kao Yuan University Kaohsiung County, Taiwan 82151,R.O.C. Key Words: micro-turbine generator; dynamics simulation, operation mode transfer. ABSTRACT The micro-turbine generator unit is superior to the traditional synchronous generator unit in many aspects; for example, a variety of fuels (e.g. anaerobic methane) may be used. So it is deemed one of the most promising green power sources. Three modes of operation are available for the unit: island, grid-connected and multi-machine modes. To be able to operate in all three modes, it’s a better choice for the unit to adopt the P-f droop mode of control. For a unit with such a control mode, dynamic simulation analyses for operation mode transfer are made in this paper. It is shown that significant transient power disturbance will be induced when the unit is transferred from the island mode to the grid-connected mode. When two units simultaneously connect to a grid, the impact on both units will be even more serious. The degree of impact is not less than the impact on a traditional synchronous generator unit that is subjected to a three-phase-to-ground fault.
    • 12 1 ( ) 0.05 Hz 0.2 Hz 0.03 30 kW Hz 60 kW 7 % H 2S ( ) 10 % 350 btu/scf / 50 % 3% ( ) 1. 1 25~500 kW ( ) 900 1.4~2.0 pu 600 ( ) 1.8~2.5 100 hp 400 kW 300 NdBFe 50,000 rpm 120,000 rpm 3. kHz AC-DC-AC ( ) IEL (Line Filter) [1] (EMC Filter) 2. [2] MatLab-Simulink-PSB 1/5~1/2 [3~7] 25 %~30 % 80 % MatLab-Simulink-PSB (PWM) (PI NOx 10 ppm Controller)
    • 13 [8] [2] [17] (Specific Harmonic Elimination PWM) [9] [1] [10] MatLab-Simulink-PSB [11] AC-DC-AC AC-AC [18] (Cycloconverter) ( ) [19] (Matrix Converter) / 9 [12] 480 V 30 kW 3 0.866 2.6 % (SVM) AC-DC-AC 67 % 7 40 % 47 % ( ) 12 % [8] (Genetic Algorithm) (Fuzzy Controller) PWM 7 / 20 % 5% (P-Q Controlled Mode) [13] (f-V Controlled Mode) [20] [14] P-Q f-V 10 % [15] PWM [21] ( ) (Droop Mode) [16] (Island Mode) (Grid-connected Mode) (DC-DC Chopper CC-VSI) (Multi-machine Mode) (SCR INV Compensator) (SPWM-VSI)
    • 14 / 1 2 3 4 5 R (Ω ) 0.17 w 25 30 31.09 45 26.02 Ld (mH) 1.9 x 0 0 1.059 1.25 3.213 Lq (mH) 1.9 y 0.05 0.05 3.05 2.5 5 p 4 z 1 1 1 1 1 λ (wb) 1.629 V FD-MAX 1.5 1.75 1.77 1.6 1.34 V FD-MIN -0.1 -0.26 -0.17 -0.1 -0.2 Speed/Load Reference V 1 2 3 4 5 w(xs+1) W(xs+1) V K3 0.77 0.68 0.725 0.76 0.716 ys+z T 0 0 0 0 0 a 1 1 1 1 1 N V b 0.05 0.05 0.05 0.05 0.2 c 1 1 1 1 1 Tf 0.4 0.2 0.2 0.2 0.1 2 / Kf 0 0 0 0 0 ECR 0.01 0.01 0.01 0.01 0.01 TCD 0.1 0.2 0.2 0.2 0.2 af -0.299 -0.47 -0.359 -0.316 -0.396 bf 1.3 1.47 1.38 1.316 1.396 cf 1.5 0.5 0.5 0.5 0.5 3 1. ( ) [22] / [23] [24] ( ) / / (Governor) GE Speedtronic Woodward 2 z Droop Isochronous (1 Droop Mode 0 Isochronous Mode) w x y / (N) MatLab-Simulink-PSB ( V FD ) 5 1 ( ) 3 /
    • 15 1.5 1.5 Fuel Demand Fuel Flow 1 1 0.5 0.5 4 0 0 10 20 30 0 0 10 20 30 time-sec time-sec 1.5 1 Turbine Torque 1 0.98 Speed 0.5 0.96 0 0.5 0.94 0 10 20 30 0 10 20 30 time-sec time-sec 6 3. 5 SPWM / 4 1 Governor 2 3 4 4. wf 5 6 7 SPWM 5 m µ SPWM 2. µ P-f MatLab-Simulink-PSB m d 1 R Lq SPWM id = vd − id + pNi q 1 dt Ld Ld Ld v m = m × sin[µ (t )] 6 d 1 R L λpN iq = vq − i q − d pNi d − 2 dt Lq Lq Lq Lq E V µE µV X   Te = 1.5 p λ iq + ( Ld − Lq ) id iq  3   P= EV sin[µ E − µV ] 7 X d 1 N = (Te − DN − Tm ) 4 dt J d θ=N 5 dt
    • 16 FFT window: 2 of 1800 cycles of selected signal Structure : 1 iso_fixfreq_scope2 0.5 lnput : la 0 Signal numbert : -0.5 1 -1 Start time [s] : 0.2 0.2 0.2002 0.2004 0.2006 0.2008 0.201 0.2012 0.2014 0.2016 Number of cycles : 2 7 Time (s) Fundamental (1200Hz) = 0.6556 , THD = 16.67% Display FFT window 15 Fundamental frequency [Hz] : Mag (% of Fundamental) 1200 1500 2000 Max Frequency [Hz] : 10 70000 1000 1000 Vab (inverter) Frequency axis : Vdc 500 0 Hertz 5 Display style : 0 -1000 Bar (relative to Fund. or DC) -500 -2000 0 0 0.5 1 1.5 0 0.5 1 1.5 0 1 2 3 4 5 6 7 Frequency (Hz) 10 4 Display Close time-sec time-sec X 1000 1.4 Modulaton-Index 500 1.2 Vab (load) 1 FFT window: 2 of 1800 cycles of selected signal Structure : 0 0.4 iso_fixfreq_scope2 0.8 0.2 lnput : -500 0.6 la 0 Signal numbert : -1000 0.4 0 0.5 1 1.5 0 0.5 1 1.5 -0.2 1 time-sec time-sec Start time [s] : 1.2 -0.4 1.2 1.2002 1.2004 1.2006 1.2008 1.201 1.2012 1.2014 1.2016 2 Time (s) Number of cycles : Fundamental (1200Hz) = 0.3047 , THD = 22.23% Display FFT window 2 3 20 Fundamental frequency [Hz] : Mag (% of Fundamental) 2 1200 1 15 Max Frequency [Hz] : 1 Va-pu Ia-pu 70000 0 0 10 Frequency axis : -1 Hertz -1 -2 Display style : 5 -2 -3 Bar (relative to Fund. or DC) 0 0.5 1 1.5 0 0.5 1 1.5 time-sec time-sec 0 0 1 2 3 4 5 6 7 1.02 3 Frequency (Hz) X 10 4 Display Close Electric Power-pu 1.015 2 Speed-pu 1.01 1 1.005 9 (a) (b) 1 0 0.995 -1 0 0.5 1 1.5 0 0.5 1 1.5 hypot modulation index 2 time-sec time-sec abc m 1 Vabc (pu) sin_cos P1 Vd Vq inverter dqo abc_to_dq0 Selector Vd Vq abc 1 Transformation Discrete 0 sin_cos 8 (a) 2 P1 Controller VO Dq0_to_abc Vabc_inv 3 Vd_ref (pu) Transformation (b) Freq 0 Vq_ref (pu) sin_cos 3 f(u) Freq 1. Pe p2f wt / 10 MatLab-Simulink-PSB IGBT 50 Hz dN 2H = (Pmech − Pelec ) + DN 8 380 V LC dt 100 kW H 0.3 100 kW D N Pmech Pelec 8 (a) H 8.22 s D 0.1 N-m-s/rad ( 0 15 0.5 PWM ) (b) ( pu 6 A ) 5 2. 7 250 kVA/1200 Hz
    • 17 52 51.5 51 50.5 Frequency-Hz 11 / 50 49.5 49 48.5 48 0 0.5 1 1.5 2 2.5 time-sec 14 / 4 Electric Power-pu 3 2 12 / MatLab-Simulink- 1 0 PSB -1 0 0.5 1 1.5 2 2.5 time-sec 52 1500 2000 Frequency-Hz 51 Vab(inverter) 1000 1000 50 0 Vdc 49 500 -1000 48 -2000 0 0.5 1 1.5 2 2.5 0 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 time-sec time-sec time-sec 1500 1.5 15 32 Modulation Index Vab(load) 1000 1 500 0.5 9(a) (b) 0 0 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 time-sec time-sec 22.23 % 16.67 % 4 4 2 2 3. / Va-pu Ia-pu 0 0 -2 -2 / -4 0 0.5 1 1.5 2 2.5 -4 0 0.5 1 1.5 2 2.5 (f0) 1.04 time-sec time-sec 1.02 4 pu (D) 0.04 (kp ) 0.4 ( ki ) 500 Electric Power-pu 3 Speed-pu 1 2 1 MatLab-Simulink-PSB 10 0.98 0 -1 0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5 250 kVA 380 V/25 kV 10 time-sec time-sec MVA/25 kV/50 Hz 11 MatLab- Simulink-PSB 12 13 / (a) 100 kW 0.3 (b) 2 13 / (a) 0.82 0.62 0.1 0.8 pu 300 V PWM 0.6 pu (b)
    • 18 380V 25kV MTG1 REC INV Grid CBK CBK TR ( ) 72 32 100kW Filter Ppeak (pu) 2.05 1.5 ∆f max (Hz) 1.2 0.9 MTG2 REC INV 380V 25kV CBK TR Filter 100kW 3 pu 2 pu 16 / / / 52 Frequency-Hz 51 50 14 49 48 50.6 Hz 49.4 Hz 0 0.5 1 1.5 2 2.5 time-sec 1.2 50 Hz 2 Electric Power-pu 1.5 1 0.5 72 0 0 0.5 1 1.5 2 2.5 time-sec 32 15 ( Ppeak ) 52 Frequency-Hz 51 ( ∆f max ) 50 25 % 49 48 0 0.5 1 1.5 2 2.5 4. / / time-sec 2 Electric Power-pu / / 1.5 1 16 0.5 0 0 0.5 1 1.5 2 2.5 1.02 time-sec pu 0.04 0.2 1.1 17 (a) MTG1 (b) MTG2 17(a) (b) MTG1 0.6 pu 50.4 Hz 1 pu 50 Hz 50.3 Hz MTG2 50.2 P-f Hz 50 Hz 50.3 Hz 1. 5 2 2 pu 2. 1~2 3 pu~6 pu /
    • 19 3. (Blocking) 1. Lasseter, R., “Dynamic Models for Micro-turbine and Fuel Cells,” Power Engineering Society Summer Meeting, IEEE, Vol. 2, pp. 761-766 (2001). 2. Nagpal, M., Moshref, A., Morison, G. K., and Kundur, P., “Experience with Testing and Modeling of Gas Turbines,” Power Engineering Society Winter Meeting, IEEE, Vol. 2, pp. 652-656 (2001). 3. Cano, A., Jurado, F., and Carpio, J., “Modelling of Power Plants Based on Gasifier/Gas Turbine Technologies,” Africon Conference in Africa, IEEE, Vol. 2, pp. 797-802 (2002). 4. Working Group on Prime Mover and Energy Supply Models for System Dynamic Performance Studies, “Dynamic Models for Combined Cycle Plants in Power D System Studies,” IEEE Trans. Power Systems, Vol. 9, No. E 3, pp. 1698-1708 (1994). H 5. Hannett, L. N., Jee, G., and Fardanesh, B., “A id Governor/Turbine Model for a Twin-shaft Combustion iq Turbine,” IEEE Trans. Power Systems, Vol. 10, No. 1, pp. 133-140 (1995). J 6. Zhang, Q., and So, P. L., “Dynamic Modeling of a Ld Combined Cycle Plant for Power System Stability Lq Studies,” Power Engineering Society Winter Meeting, m IEEE, Vol. 2, pp. 1538-1543 (2000). N 7. Banetta, S., Ippolito, M., Poli, D., and Possenti, A., “A p Model of Cogeneration Plants Based on Small-size Gas Pelec Turbines,” International Conference and Exhibition on Pmech Electricity Distribution, CIRED, Vol. 4, pp. 4-21 (2001). R 8. Jurado, F., Ortega, M., and Acero, N., “Enhancing the Electrical Performance of a Micro-turbine Using a Te Genetic Fuzzy Controller,” Electric Machines and Drives Tm Conference, IEEE, Vol. 3, pp. 1748-1754 (2003). vd 9. Fethi, O., Dessaint, L. A., and Al-Haddad, K., “Modeling vq and Simulation of the Electric Part of a Grid Connected V Microturbine,” Power Engineering Society General X Meeting, IEEE, Vol. 2, pp. 2212-2219 (2004). θ 10. Guda, S. R., Wang, C., and Nehrir, M. H., “A λ Simulink-based Microturbine Model for Distributed µ Generation Studies,” Proceedings of the 37th Annual µE North American Power Symposium, pp. 269-274 (2005). 11. Gaonkar, D. N., Patel, R. N., and Pillai, G. N., “Dynamic µV Model of Microturbine Generation System for Grid Connected/Islanding Operation,” International Conference
    • 20 on Industrial Technology (ICIT 2006), IEEE, pp. 305-310 Turbine Generator Sets,” Power Electronics and Variable (2006). Speed Drives Conference, IEE, Vol. 429, pp. 103-107 12. Etezadi, M., and Choma, K., “Harmonic Characteristics of (1996). a new 30 kW Microturbine Generator,” Harmonics and 20. Illindala, M., and Venkataramanan, G., “Control of Quality of Power, IEEE, Vol. 3, pp. 816-820 (2000). Distribution Generation System to Mitigate Load and 13. Amorim, A., Cardoso, A. L., Oyarzabal, J., and Melo, N., Line Imbalance,” Power Electronics Specialists “Analysis of the Connection of a Microturbine to a Low Conference, IEEE, Vol. 4, pp. 2013-2018 (2002). Voltage Grid,” International Conference on Future Power 21. Barsali, S., Ceraolo, M., Pelacchi, P., and Poli, D., Systems, pp. 1-5 (2005). “Control Techniques of Dispersed Generators to Improve 14. Suter, M., “Active Filter for a Microturbine,” the Continuity of Electricity Supply,” Power Engineering Telecommunication Energy Conference, IEE, Vol. 484, pp. Society Winter Meeting, IEEE, Vol. 2, pp. 789-794 162-165 (2001). (2002). 15. Zhang, K., and Chang, L., “Harmonic Current Reduction 22. Colson, C. M., Wang, C., Nehrir, M. H., Guda, S. R., and for a PWM Rectifier with Very Low Carrier Ratio in a Li, J., “Stand-alone Hybrid Wind-Microturbine Microturbine System,” Canadian Conference on Electrical Distributed Generation System: A Case Study,” th and Computer Engineering, pp. 587-590 (2005). Proceedings of the 39 North American Power 16. Chen, Z., and Spooner, E., “Wind Turbine Power Symposium (NAPS '07), pp. 337-341 (2007). Converters: A Comparative Study,” Power Electronics 23. Al-Hinai, A., Sedhisigarchi, K., and Feliachi, A., and Variable Speed Drives Conference, IEE, Vol. 456, pp. “Stability Enhancement of a Distribution Network 471-476 (1998). Comprising a Fuel Cell and a Microturbine,” Power 17. Mollerstedt, E., and Stothert, A., “A Model of a Engineering Society General Meeting, IEEE, Vol. 2, pp. Microturbine Line-side Converter,” International 2156-2161 (2004). Conference on Power System Technology, IEEE, Vol. 2, 24. Jurado, F., and Jose, R. S., “Adaptive Control of a Fuel pp. 909-914 (2000). Cell-Microturbine Hybrid Power Plant,” IEEE Trans. 18. Hofmeester, N. H. M., and Polinder, H., “Modelling and Energy Conversion, Vol. 18, No. 2, pp. 342-347 (2003). Control of a Cycloconverter with Permanent Magnet Generator,” European Conference on Power Electronics and Applications, European Power Electronics 2007 03 01 Association, Vol. 4, pp. 382-387 (1993). 2007 04 02 19. Vickers, S. L., Al Zahawi, B. A. T., and Shuttleworth, R., 2008 03 04 “Matrix Converter Application for Direct-drive Gas 2008 03 06